The KLOE-2 experiment at DAΦNE upgraded in luminosity

Presented by

Francesco Gonnella

(INFN and Università di Roma "Tor Vergata")

On behalf of the KLOE-2 collaboration

BEACH2010 - Perugia

June, the 24th 2010

The old KLOE detector

COIL Cryostat Barrel EMC DRIFT CHAMBER 6 m

The KLOE experiment collected an integrated luminosity of ~2.5 fb⁻¹ at the DAΦNE collider at LNF. It consists of a large volume drift chamber surrounded by an electromagnetic

calorimeter and it operates in a magnetic field of 0.52T. The experiment achieved several precision results in:

Kaon physics: measurements of all significant branching ratios of K_S, K_L, K⁺, K⁻

Hadron physics: study of the properties of scalar and pseudoscalar mesons and measurement of the $e^+e^- \rightarrow \pi^+\pi^-$ cross section giving the main contribution to the error of muon anomaly.

KLOE-2 physics programme

The programme, discussed in arXiv:1003.3868 (to be published by EPJC) includes the improvement of several KLOE measurements and

- the study of $\gamma\gamma$ physics based on a sample tagged by a new system for the detection of e[±] from the process e⁺e⁻ \rightarrow e⁺e⁻ X;
- the search for particles from a hidden sector which could explain the dark matter problem;
- precise measurements of the hadronic cross section near threshold and if the upgrade in energy of the collider is approved in the region from 1.02 GeV to 2.3 GeV.
- List of topics include:
 - CKM unitarity and lepton universality;
 - CPT symmetry and Quantum Mechanics;
 - Low-energy QCD;
 - Physics in the continuum: hadronic cross section;
 - Physics in the continuum: γγ processes;
 - Hidden WIMP dark matter.

DA\PiNE upgrade

INFN

- A new collision scheme worked out with:
 - large crossing angle;
 - reduced beam size at the crossing point;
 - sextupole pairs for crab-waist configuration of beam interaction.

Project status and planning

DAΦNE machine:

- The machine commissioning starts by the end of June;
- Three-months period scheduled for major tuning of the operation;
- Upgrade of the LINAC by the end of 2010.

KLOE detector:

- STEP0: Lepton tagging system for γγ physics:
 - High Energy Tagger (HET);
 - Low Energy Tagger (LET);
- STEP1: 3 new detectors inside KLOE:
 - Inner Tracker (IT);
 - 2 new calorimeters: QCALT, CCALT.

KLOE rolled in successfully

Detector closed and ready for data taking!!

New beam pipe installed!

The electron tagging system

4 new detectors, 2 in the e⁺ and 2 in the e⁻ arm, for measuring off energy leptons.

Technical Design Report of the $\gamma\gamma$ tagger system for the KLOE-2 experiment - **LNF:10-14(P)**

The HET and the LET detectors

The **LET** is a calorimeter composed of:

LYSO crystal matrix with SiPM readout

The **HET** is a position detector made of:

- Fast plastic scintillators;
- Clear light guides;
- Photomultipliers.

130-230 MeV/c e⁺ or e⁻ tagged in this position.

γγ physics

- $\sigma \propto \alpha^4 \ln^2(s)$ (α^2/s for single γ case)
- Similar to bremsstrahlung $N_X \propto 1/E_Y \rightarrow low M_X$

$$\frac{\mathrm{d}N_X}{\mathrm{d}W_{\gamma\gamma}} = L_{ee} \frac{\mathrm{d}L}{\mathrm{d}W_{\gamma\gamma}} \sigma(\gamma\gamma \to X)$$

KLOE detector upgrade

Major detector upgrades (late 2011) for second KLOE-2 run:

INNER TRACKER

- 4 layers of cylindrical triple GEM;
- Better vertex reconstruction near IP;
- Larger acceptance for low p_t tracks.

QCALT

- W + scintillator tiles + SiPM/WLS
- QUADS instrumentation for K_L decays

CCALT

- LYSO + APD
- Increase acceptance for γ 's from IP (21° \rightarrow 8°)

The Inner Tracker

For fine vertex reconstruction of K_s , η and η rare decays and

K_s- K_L interference measurements:

- $\sigma_{r\phi}$ ~ 200 µm and σ_{z} ~ 500µm;
- low material budget:<2%X₀
- 5 kHz/cm² rate capability.

Cylindrical GEM detector

- 4 CGEM layers with radii from 13 to 23 cm from IP and before DC Inner Wall;
- 700 mm active length;
- XV strips-pads readout (40° stereo angle);
- 1.5% X₀ total radiation length in the active region with Carbon Fiber supports.

Technical Design Report of the Inner Tracker for the KLOE-2 experiment - arXiv:1002.2572

Kaon interferometry

$$I(\pi^+\pi^-,\pi^+\pi^-;\Delta t) \propto$$

$$\propto [e^{-\Gamma_L \Delta t} + e^{-\Gamma_S \Delta t} +$$

$$-2(1-\zeta_{\rm SL})e^{-(\zeta_{\rm S}+\zeta_{\rm L})\frac{\Delta t}{2}}\cos(\Delta m\Delta t)]$$

 $\zeta_{\rm SL}$ = 0 Q.M. $\zeta_{\rm SL}$ = 0.003 ± 0.018 ± 0.006 Experimental sensitivity improved by a factor ~ 2 using the Inner Tracker.

A. Di Domenico and KLOE Coll. J. Phys. Conf. Ser., 171, 012008, 2009

The I (π^+ π^- , $\pi^+\pi^-$; $|\Delta t|$) distribution as function of $|\Delta t|$ with the present KLOE resolution $\sigma_{|\Delta t|} \approx \tau S$ (wide bins), with $\sigma_{|\Delta t|} \sim 0.3\tau S$ (narrow bins) and the ideal case (blue line).

The QCALT calorimeter

- Two tile calorimeters + Wavelength Shifter
 + SiPM readout around the new QUADs
 (2 times light yield, faster green fibers, 10 times improvements σ₂ w.r.t old QCAL)
- Dodecagonal structure (1 m length)
- 5 layers of W (3.5mm) + tiles (5mm) + air gap (1mm) for a total of 5.5 X₀ (4.75cm depth)
- 20 cells/layer (100 SIPM/module) for a total of 2400 readout channels;
- Located after the Inner Tracker;
- Granularity of 5x5÷5x7.7 cm² tiles;
- Fast timing resolution (< 1 ns).

QCALT physics: $K_L \rightarrow 2\pi^0$

- KLOE has been designed to study the CP violation into the KKbar system through Re(ε'/ε) measurement.
- To reduce systematic errors we measure the double ratio:

$$R = \frac{BR(K_L \to \pi^+\pi^-)/BR(K_L \to \pi^0\pi^0)}{BR(K_S \to \pi^+\pi^-)/BR(K_S \to \pi^0\pi^0)}$$

- The most important bg source in this measurement is $K_L \rightarrow 3\pi^0$;
- QCAL works well on rejecting background losing 1% of signal;
- QCALT will increase the detection efficiency and the high granularity will help on reducing accidental losses.

The CCALT calorimeter

Dodecagonal Barrel

2 small barrels of 24 crystals each, with a length of 10-13 cm and transversal area from 1.5x1.5 cm² to 2x2 cm²

INFN

CCALT Physics: Ks → γγ

Last KLOE measurement on BR(Ks $\rightarrow \gamma \gamma$) (JHEP 0805:051,2008) differs by 3σ from NA48. A more precise measure is needed! KLOE put a limits to O(p⁶) prediction of ChPT.

Major bkg: $Ks \rightarrow \pi^0 \pi^0$ with 2 photons lost. (beam pipe or QCAL inefficiency)

with CCALT

KLOE EMC covers down to 21°, with the CCALT extension down to 8°!

Conclusions

- New beampipe ready and installed;
- The KLOE detector is up and running;
- Magnet has been switched ON;
- Electron tagging system:
 - LET: tested and installed;
 - HET: mechanics installed, detector on his way.;
- Work is in progress for detector upgrades (IT, QCALT and CCALT);
- DAΦNE commissioning is starting;
- DA Φ NE High Energy Proposal.

Thanks for your attention.

