Status of the SuperB project SuperB

Matteo Rama Laboratori Nazionali di Frascati

BEACH 2010, Perugia 21-26 June 2010

what is SuperB

- The SuperB project is a next-generation e⁺e⁻ flavor factory based on novel accelerator concepts, aiming at reaching a baseline luminosity of 10³⁶cm⁻²s⁻¹
 - Luminosity 50-80 times larger than current B-factories peak records
 - mainly operating at the Y(4S) resonance, it can run at energies between $\Psi(3770)$ and Y(5S)
 - Iongitudinal polarization of electron beam ($\sim 80\%$)
 - the candidate site is in Rome area, Italy. Site decided after approval
- □ B, charm, tau factory in clean environment
 - allows measurements difficult or not possible at hadronic colliders (final states with neutrals/neutrinos)
- Main physics goal: search for effects beyond the SM and constrain the flavor sector of New Physics

the data sample

the role of SuperB in the LHC era

- * New Physics (NP) is expected beyond the Standard Model
 - at what scale Λ ? 0.5,1, 10...10¹⁶ TeV?

* Two scenarios:

- LHC finds New Physics (Λ is known)
 - SuperB can study the flavour structure of NP, measure the flavour couplings, search for even heavier states
- The NP scale is above the LHC reach
 - explore the NP scale beyond the LHC reach (up to $\Lambda \sim$ 10TeV or more), look for indirect NP signals, understand where they may come from

* Complementary to LHC

- Many rare decay final states are only accessible at an e^+e^- machine
- Sensitive to off-diagonal terms in the squark mixing matrix.
- Test CP, CPT, and Lepton Flavour Violation (LFV) in τ decay, τ anomalous magnetic moment.
- Search for CP (and CPT) violation in D decays

Super Flavour factory and Super LHCb

constraints on charged Higgs from $B \rightarrow \tau v$

correlation of NP effects in flavor blind MSSM

flavor blind MSSM: CKM matrix is the only source of flavor violation

a correlated analysis of the above asymmetries at SuperB is a powerful tool to probe the FBMSSM scenario

Pattern of flavour violation in SM extended to 4 quark and lepton generations

SM extended to 4th generation of quarks and leptons (an addition of 3 angles+2 CP phases)

Similar pattern of $A_{CP}(b \rightarrow s\gamma)$ vs $S_{\phi Ks}$ as in the FBMSSN scenario

 $A_{CP}(b \rightarrow s\gamma)$ remains small also in SM4, but the sign flip for large $S_{\psi\phi}$ could help to distinguish SM4 from SM

Flavor physics to probe (non-)SUSY models

The pattern of flavor violation in SM extensions differs from model to model

*** large effects

- ****** visible but small effects
- ★ negligible effects
- precision measurement at SuperB

	AC	RVV2	AKM	δLL	FBMSSM	LHT	RS
$D^0 - \overline{D}^0$	***	*	*	*	*	***	?
ϵ_K	*	***	***	*	*	**	***
$S_{\psi\phi}$	***	***	***	*	*	***	***
$S_{\phi K_S}$	***	**	*	***	***	*	?
$A_{\rm CP}\left(B\to X_s\gamma\right)$	*	*	*	***	***	*	?
$A_{7,8}(B \to K^* \mu^+ \mu^-)$	*	*	*	***	***	**	?
$A_9(B \to K^* \mu^+ \mu^-)$	*	*	*	*	*	*	?
$B \to K^{(*)} \nu \bar{\nu}$	*	*	*	*	*	*	*
$B_s \to \mu^+ \mu^-$	***	***	***	***	***	*	*
$K^+ \to \pi^+ \nu \bar{\nu}$	*	*	*	*	*	***	***
$K_L \to \pi^0 \nu \bar{\nu}$	*	*	*	*	*	***	***
$\mu \to e \gamma$	***	***	***	***	***	***	***
$\tau \to \mu \gamma$	***	***	*	***	***	***	***
$\mu + N \rightarrow e + N$	***	***	***	***	***	***	***
d_n	***	***	***	**	***	*	***
d_e	***	***	**	*	***	*	***
$(g-2)_{\mu}$	***	***	**	***	***	*	?

Altmannshofer, Buras, Gori, Paradisi, Straub Nucl. Phys. B830, 17 (2010), 0909.1333

Lepton flavor violation in τ decays

Process	Expected 90% CL upper limit	3σ evidence reach	PDG		
$\mathcal{B}(\tau \to \mu \gamma)$	2.1×10^{-9}	$4.8 imes 10^{-9}$	<4.5 x 10 ⁻⁸		
$\mathcal{B}(\tau \to e \gamma)$	2.7×10^{-9}	$6.0 imes 10^{-9}$	<1.1 x 10 ⁻⁷		
$\mathcal{B}(\tau \to \ell \ell \ell)$	$2.3 - 8.3 \times 10^{-10}$	$1.2{-}4.0\times10^{-9}$	<2.0-3.6 x 10 ⁻⁸		

further improvement with polarized e⁻ beam (60-80%) under study:

- background suppression
- helicity structure of LFV coupling

upper bound on LFV decay BF in LHT model with NP scale f=500GeV hep-ph/0206021

decay	f = 500 GeV
$\tau \to e\gamma$	$1 \cdot 10^{-8}$
$\tau \to \mu \gamma$	$2 \cdot 10^{-8}$
$\tau^- \rightarrow e^- e^+ e^-$	$2 \cdot 10^{-8}$
$\tau^- \to \mu^- \mu^+ \mu^-$	$3 \cdot 10^{-8}$
I — — — — "— — I	

CPV in charm decays

- D mixing observed by BaBar, CDF and Belle
- Size of charm sample at SuperB reduces errors by an order of magnitude
- Derived Plus, possibility of running $@ \Psi(3S)$:

11

in 4 months ~0.3ab⁻¹ \rightarrow 1000x CLEO-c, 10x BESIII !!

Mode	Observable	B Factories (2 ab	$\mathrm{Super}B~(75~\mathrm{ab^{-1}})$
$D^0 \rightarrow K^+ K^-$	y_{CP}	23×10^{-3}	$5 imes 10^{-4}$
$D^0 \to K^+ \pi^-$	y'_D	23×10^{3}	$7 imes 10^{-4}$
	$x_D^{\prime 2}$	$1\text{-}2 \times 10^{-4}$	$3 imes 10^{-5}$
$D^0 \rightarrow K^0_s \pi^+ \pi^-$	y_D	23×10^{3}	$5 imes 10^{-4}$
	x_D	23×10^{3}	$5 imes 10^{-4}$
Average	y_D	$1\text{-}2 \times 10^{-3}$	$3 imes 10^{-4}$
	x_D	23×10^{3}	$5 imes 10^{-4}$

* Measurement of D oscillations opens new window to search of CPV in charm.
 Observation of CPV would provide unequivocal NP signals

Precise measurement of the CKM matrix

Precise measurement of CKM matrix elements is the prelude of the SuperB physics program

in some cases a reduction of theoretical error (e.g. Vub) is required (should be possible)

B Physics @ Y	(4S)		Observable	B Factories (2 ab^{-1})	Super B (75 ab^{-1})	Charm m	<mark>ixing and C</mark> F	
Observable	B Factories (2 ab^{-1})) Super B (75 ab^{-1})	$ V_{cb} $ (exclusive)	4% (*)	1.0% (*)			
$\sin(2eta)~(J/\psiK^0)$	0.018	0.005 (†)	$ V_{cb} $ (inclusive)	1% (*)	0.5%~(*)	Mode	Observable $\Upsilon(4S)$	$\psi(3770)$ (300 fb ⁻¹)
$\cos(2\beta) \left(J/\psi K^{*0}\right)$	0.30	0.05	$ V_{ub} $ (exclusive)	8% (*)	3.0% (∗)	$D^0 \rightarrow K^+ \pi^-$	$\frac{(75 \text{ ab}^{-1})}{x^{\prime 2}} = 3 \times 10^{-5}$	(300 ID -)
$\sin(2eta)~(Dh^0)\ \cos(2eta)~(Dh^0)$	0.10 0.20	$0.02 \\ 0.04$	$ V_{ub} $ (inclusive)	8% (*)	2.0%~(*)	$D \rightarrow K^+ \pi$	x 3×10 y' 7×10^{-4}	
$S(J/\psi \pi^0)$	0.10	0.02	${\cal B}(B o au u)$	20%	4% (†)	$D^0 \rightarrow K^+ K^-$	y_{CP} 5×10^{-4}	
$S(D^+D^-)$	0.20	0.03	${\cal B}(B o \mu u)$	visible	-470 (∏) 5%	$D^0 \rightarrow K_S^0 \pi^+ \pi^-$	$x 4.9 imes 10^{-4}$	
$S(\phi K^0)$	0.13	0.02 (*)	$\mathcal{B}(B \to D \tau \nu)$	10%	2%		y $3.5 imes10^{-4}$	
$S(\eta'K^0) \ S(K^0_{s}K^0_{s}K^0_{s})$	0.05 0.15	$0.01 \; (*) \\ 0.02 \; (*)$					$ q/p $ $3 imes 10^{-2}$	
$S(K_g^0\pi^0)$	0.15	0.02 (*)	${\cal B}(B o ho\gamma)$	15%	3% (†)	$\psi(3770) \rightarrow D^0 \overline{D}^0$	$\phi 2^{\circ}$	$(1 2) \sim 10^{-5}$
$S(\omega K_s^0)$	0.17	0.02 (*)	${\cal B}(B ightarrow\omega\gamma)$	30%	5%	$\psi(3770) \to D^*D$	<i>x</i> ⁻	$(1-2) \times 10^{-5}$ $(1-2) \times 10^{-3}$
$S(f_0K_s^0)$	0.12	0.02 (*)	$egin{aligned} A_{CP}(B o K^* \gamma) \ A_{CP}(B o ho \gamma) \end{aligned}$		0.004 († *) 0.05		$s \cos \delta$	$(1-2) \times 10$ (0.01-0.02)
$\gamma \; (B o DK, D o CP \; ext{eigen} \; ext{tar}$	The Sur	oorB nh		ogram is		dor		()
$\gamma (B \to DK, D \to \text{cP eigen dat})$ $\gamma (B \to DK, D \to \text{suppressed at})$	$\sim 12^{\circ}$		$A_{CP}(b \rightarrow (s+d)\gamma)$	Juli 13	0.006 (†)	uei		
$\gamma \; (B o DK, D o ext{multibod} angle$ s	For ovt	ensive r		600 ^{0.15}	0.02 (*)			
$\gamma \ (B \to DK, \text{ combined})$								Sensitivity
$lpha \; (B o \pi \pi)$	- I 6°						$^{0} \rightarrow \mu^{+} \mu^{-}$	$1 imes 10^{-8}$
$\begin{array}{c} \alpha \ (B \to \rho \rho) \end{array}$	the Super	rB CDR: ar	Xiv:0/09.	.0451	1% C	harm	$\mu^0 o \pi^{-0} \mu^+ \mu^-$	2×10^{-8}
$lpha \; (B o ho \pi)$	the Super	B 'Valenc	a proceed	lings': arXi	v:0810.131		$_{-}$ $\rightarrow \eta_{\mu}^{+}\mu^{-}$	$3 imes 10^{-8}$
$\alpha \ (\text{combined})$	~ 0 -	1-2 (*)	$\mathcal{B}(B \to K \nu \overline{\nu})$	visible			$,D^0 ightarrow K^0_s\mu^+\mu^-$	$3 imes 10^{-8}$
$2\beta + \gamma \ (D^{(*)\pm}\pi^{\mp}, D^{\pm}K_s^0\pi^{\mp})$	the Physi	cs white p	aper: will	l be release	d soon		$D^+ - \pi^+ \mu^+ \mu^-$	$1 imes 10^{-8}$
								1 / 10
τ Physics						ד + ות		110-8
Process	Sensitiv	rity D _s Pl	nysics @ Y	[(33)		$D^0 ightarrow e^{\pm} \mu^{\mp}$	_	1×10^{-8}
	Densitiv	Observ	able	Error with 1 ab^{-1}	Error with 30 ab^{-1}	$D^+ o \pi^+ e^\pm \mu^\pm$		$1 imes 10^{-8}$
$\mathcal{B}(\tau \to \mu \gamma)$	$2 imes 10^{-1}$	- 9 ΔΓ		$0.16 \ {\rm ps}^{-1}$	$0.03 \ {\rm ps}^{-1}$	$D^0 o \pi^0 e^{\pm} \mu^{\mp}$		2×10^{-8}
· · · · · · · · · · · · · · · · · · ·		Г		$0.07 \ {\rm ps^{-1}}$	$0.01 \ {\rm ps}^{-1}$	$D^0 o \eta e^{\pm} \mu^{\mp}$		$3 imes 10^{-8}$
${\cal B}(au o e \gamma)$	2×10^{-1}	β_s from	n angular analysis	20°	8°	$D^0 o K^0_s e^{\pm} \mu^{\mp}$	F	$3 imes 10^{-8}$
$\mathcal{B}(au o \mu \mu \mu$	$(1) 2 \times 10^{-1}$	-10 $A_{\rm SL}^s$		0.006	0.004	2		
ο(ι γμμμ	/	ACH		0.004	0.004	D++.+	$D^+ \to K^- e^+ e^+$	1×10^{-8}
$\mathcal{B}(\tau \to eee)$	$2 imes 10^{-1}$	-10 $\mathcal{B}(B_s -$	$\rightarrow \mu^+\mu^-)$	-	$< 8 imes 10^{-9}$,	
		V_{td}/V_t		0.08	0.017		$^{+}, D^{+} \rightarrow K^{-} \mu^{+} \mu^{+}$	1×10^{-8}
$\mathcal{B}(au o \mu \eta)$	4×10^{-1}	$\mathcal{B}(B_s - \beta_s)$	$ ightarrow \gamma \gamma)$ n $J/\psi \phi$	38% 10°	7% 3°	$D^+ o \pi^- e^\pm \mu^\pm$	$\overline{F}, D^+ \to K^- e^{\pm} \mu^{\mp}$	1×10^{-8}
${\cal B}(au o e\eta)$	$6 imes 10^-$	-10 β_s from	n $J/\psi arphi$ n $B_s o K^0 ar K^0$	24°	3 11°			
			$\mu_S \rightarrow \mu_1 \mu_S$	41	11	Spectros	сору	
$\mathcal{B}(\tau \to \ell K_s^0)$	2×10^{-1}	-10						

The accelerator concept

$$\mathcal{L} = f_{coll} \times \frac{N^+ N^-}{4\pi\sigma_x \sigma_y} \times R_l$$

N⁻,N⁺: number of electrons/positrons in the bunch f_{coll} : the collision frequency $\sigma_x (\sigma_y)$: horizontal (vertical) beam size at the IP R_1 : luminosity reduction factor from crossing angle and 'hourglass effect'

Two approaches to increase the luminosity:

- increase the currents
 - Iarge backgrounds, large wall plug power
- decrease the beams section (SuperB)

The 'Italian scheme':

- small beams
- Large Piwinsky angle and crab waist with a pair of sextupoles/ring
- Currents comparable to present B-factories

crab waist test at Dafne

- When the crab waist is turned off:
 - beam size increases
 - Iuminosity drops down

luminosity scan in the tunes plane performed for DAFNE in the Siddharta configuration

with the crab waist:

- many X-Y betatron resonances disappear or become weaker
- good working area is significantly enlarged
 - (→ larger integrated luminosity)

SuperB luminosity expectation

detector layout: baseline and options

the baseline detector

(compared to the BaBar detector)

Goal: equal or improve the BaBar performance in environment with much higher bkg rates

DEWAR

REMOVABLE

HORSE COLLAR

PMT SHIELD

IFR

- amount and distribution of iron re-optimized
 - Use extruded plastic scintillator coupled to geiger mode APDs through WLS fibers

FDIRC

based on BaBar DIRC design

- reuse BaBar quartz bar
- photon camera 25x smaller (10x bkg suppression)
- PMTs 10x faster (another10x bkg suppression)

SVT

- Iayer-0
 - as close to the IP as possible
 - striplets is the baseline technology for TDR
- 5 external layers
 - double-sided microstrip sensors a la BaBar

EMC

MAGNET

JCTING SOLENOID BARREL CALORIMETER

barrel

- reuse BaBar CsI(TI) crystals
- forward

UPR IFR BELT

LYSO crystals (fast, rad hard, small Moliere radius, good light yield)

DCH

- design based on BaBar drift ch. concept
 - faster and lighter electronics
 - lighter structure

FORWARD END FLU

 optimization of gas mixture and wires layout

detector options under evaluation

backward EMC

- Meant to increase EMC hermiticity at modest cost. <u>Used as veto</u>
- 24 layers of lead(3mm) + scintillator(3mm) read by WLS fibers coupled to SiPM
- Benefits on Physics under evaluation

forward PID

- pros and cons under evaluation
 - improved hadron ld in the forward region compared to dE/dx only
 - 🙁 material in front of fwd EMC, cost
- □ Several options:
 - Time of Flight (2 options)
 - FARICH (better PID separation but 3x material and R&D less advanced)
 - use of EMC LYSO crystal fast component
- Bernefits on Physics under evaluation

the approval process

- The TDR phase has started. The detector and machine TDR are currently expected to be released in 2011
 - MoU signed between INFN and France, Russia (BINP) and US (SLAC). Letter of commitment from Canada (IPP)
- The Italian Minister of Research has presented the project to the Italian Government. The project is inserted as flagship project in the Italian National Research Plan 2010-2012. <u>Government decision expected soon</u>
- Joint agreement of mutual financial support of a fusion research reactor (IGNITOR) in Russia and the SuperB project in Italy signed by Prime Ministers Berlusconi and Putin.

- SuperB is a next generation e⁺e⁻ flavor factory which employs a novel design to achieve unprecedented high luminosity, L=10³⁶cm⁻²s⁻¹ as baseline
- The physics program of SuperB complements that of the high-energy frontier experiments at hadron colliders
- The project has entered the TDR phase, which is expected to end in 2011
- A decision on the project approval by the Italian Government is expected to be taken soon

BACKUP

New Physics in $|\Delta F|=1$ transitions

New Physics in $|\Delta F|=2$ transitions

- ▲F=2 transitions mediated by box diagrams
- NP can contribute to these processes
 - * parameterize NP as:

$$C_{q}e^{i\phi_{q}} = \frac{\left\langle B_{q}^{0} \mid H_{SM+NP} \mid \overline{B}_{q}^{0} \right\rangle}{\left\langle B_{q}^{0} \mid H_{SM} \mid \overline{B}_{q}^{0} \right\rangle}$$

- * In SM $C_q=1$ and $\phi_q=0$
- present measurements already constrain NP in B_d mixing _____
- SuperB will dramatically improve the constraint

Parameter	New Physics fit today	New Physics fit at $Super B$
C_{B_d}	1.24 ± 0.43	± 0.031
ϕ_{B_d} (°)	-3 ± 2	± 0.4

d

B⁰

_ b

b.

B mixing

B-recoil technique

Powerful technique possible only at e⁺e⁻ B-factories

NP search in $B \rightarrow s$ invisible

- * $B \rightarrow K^{(*)} v \overline{v} can probe NP in Z^0 penguins$
- * Best exp. bound: $BF(B \rightarrow K_{VV}) < 14 \times 10^{-6}$

- closely related to $K \rightarrow \pi v \bar{v}$
- * SM prediction: $4x10^{-6} \rightarrow 20\%$ error with 75ab⁻¹
- * B-recoil analysis crucial for this analysis

Fisica Nucleare

- measurement only possible at e⁺e⁻ (Super)B-factories
- important to improve detector hermiticity: bkg-dominated, 30% bkg reduction corresponds to 1/0.7~1.40 more luminosity

Mode	Sensitivity				
	Current	10 ab^{-1}	75 ab^{-1}		
$\mathcal{B}(B \to X_s \gamma)$	7%	5%	3%		
$A_{CP}(B \to X_s \gamma)$	0.037	0.01	0.004 - 0.005		
$\mathcal{B}(B^+ \to \tau^+ \nu)$	30%	10%	3–4%		
$\mathcal{B}(B^+ \to \mu^+ \nu)$	X	20%	5 - 6%		
$\mathcal{B}(B \to X_s l^+ l^-)$	23%	15%	4–6%		
$A_{\rm FB}(B \to X_s l^+ l^-)_{s_0}$	X	30%	4–6%		
$\mathcal{B}(B \to K \nu \overline{\nu})$	X	Х	16 - 20%		
$S(K_s^0\pi^0\gamma)$	0.24	0.08	0.02 - 0.03		

TABLE II: Golden modes in different New Physics scenarios. A "X" indicates the golden channel of a given scenario. An "O" marks modes which are not the "golden" one of a given scenario but can still display a measurable deviation from the Standard Model. The label CKM denotes golden modes which require the high-precision determination of the CKM parameters achievable at SuperB.

	H^+ high tan β	Minimal FV	Non-Minimal FV (1-3)	Non-Minimal FV (2-3)	NP Z-penguins	Right-Handed currents
$\mathcal{B}(B \to X_s \gamma)$		Х	¥8 - 56	0		О
$A_{CP}(B \to X_s \gamma)$				X		О
$\mathcal{B}(B \to \tau \nu)$	X- CKM					
$\mathcal{B}(B \to X_s l^+ l^-)$				0	0	О
$\mathcal{B}(B \to K \nu \overline{\nu})$				0	X	
$S(K_S \pi^0 \gamma)$						X
β			X- CKM			0

flexibility for the parameters choice

P. Raimondi @ Annecy10

	1	Base	Line	Low Em	ittance	High C	urrent	Tau/Charm	(prelim.)		Tau/charm
Parameter	Units	HER (e+)	LER (e-)	HER (e+)	LER (e-)	HER (e+)	LER (e-)	HER (P+)	LER (e-)		
LUMINOSITY	cm'2 s'1	1.00E	+36	1.008	+36	1.008	+36	1.00E	+35		threshold running
Energy	GeV	6.7	4.18	6.7	4.18	6.7	4.18	2.58	1.61	-	at 10 ³⁵
Circumference	m	1258	3.4	125	8.4	125	8.4	4258	-		at 10**
X-Angle (full)	mrad	66		66	i	66	1.	66			
Piwinski angle	rad	22.88	18.60	32.36	26.30	14.43	11.74	8.80	7.15		man and the set of
β _x @ IP	cm	2.6	3.2	2.6	3.2	5.06	6.22	6.76	8.32		Baseline +
β _v @ IP	cm	0.0253	0.0205	0.0179	0.0145	0.0292	0.0237	0.0658	0.0533		other 2 options:
Coupling (full current)	%	0.25	0.25	0.25	0.25	0.5	0.5	0.25	0.25		
e _x (without IBS)	nm	1.97	1.82	1.00	0.91	1.97	1.82	1.97	1.82		 Lower y-emittance
e _x (with IBS)	nm	2.00	2.46	1.00	1.23	2.00	2.46	5.20	6.4		•Higher currents
e _y	pm	5	6.15	2.5	3.075	10	12.3	13	16		
σ _x @IP	μm	7.211	8.872	5.099	0.274	10.060	12.370	18.749	23.076		(twice bunches)
σ _y @IP	μm	0.036	0.036	0.021	0.021	0.054	0.054	0.092	0.092		
Σx	μm	11.4	33	8.0	85	15.9	44	29.7	32		
Σy	μm	0.0	50	0.0	30	0.0	76	0.13	1		Baseline:
σ _L (0 current)	mm	4.69	4.29	4.73	4.34	4.03	3.65	4.75	4.36		•Higher emittance
oL (full current)	mm	5	5	5	5	4.4	4.4	5	5		
Beam current	mA	1892	2447	1460	1888	3094	4000	1365	1766		due to IBS
Buckets distance	#	2	-	2		-	-	1			 Asymmetric beam
lon gap	%	2	()	2		2		2			
RF frequency	Hz	4.76E		4.76E		4.76E		4.76E	A 17 7 1		currents
Harmonic number		199	10.0	199		199	Autor and A	199			
Number of bunches		97		97	and a start of the start of the	195		195	a second s		
N. Particle/bunch			and a state of the second second	and the second se	and an entropy of the second s	4.15E+10	and the second sec	and the second second second	and set in the set of the set of the		
Tune shift x		0.0021	0.0033	0.0017	0.0025	0.0044	0.0067	0.0052	0.0080		RF power includes
Tune shift y	-	0.0970	0.0971	0.0891	0.0892	0.0684	0.0687	0.0909	0.0910		
Long. damping time	msec	13.4	20.3	13.4	20.3	13.4	20.3		40.6	-	SR and HOM
Energy Loss/turn	MeV	2.11	0.865	2.11	0.865	2.11	0.865	and the second	0.166		
σ _E (full current)	dE/E	6.43E-04		6.43E-04	and all a second second	6.43E-04		the second se			R
CM ore	dE/E	5.008		5.000	1000	5.001	and the second se	5.26E	Contraction of the second		DDA Particle Physics
Total lifetime	min	4.23	4.48	3.05	3.00	7.08	7.73	11.41	6.79		B Bstrophysics
Total RF Power	MW	C 17.0	16	C 12.	12	30.	10	3.1			

Tests of crab waist at Dafne

- When the crab waist is turned off:
 - beam size increases
 - Iuminosity drops down

successful test at DAFNE

possible sites

SuperB at LNF with Polarization

Tor Vergata campus site

Machine Parameters for 10³⁶ cm⁻² s⁻¹ (Raimondi)

The IP and ring parameters have been optimized based on several constraints to maintaining wall plug power, beam currents, bunch lengths, and RF requirements comparable to present B Factories.

J. Seeman June 2010

- Planning for the reuse as much as possible of the PEP-II hardware.
- Simplifying the IR design as much as possible. In particular, reduce the synchrotron radiation in the IR, reduce the HOM power and increase the beam stay-clear.
- Relaxing as much as possible the requirements on the beam demagnification at the IP. Improved chromatic correction in arc cells.

Flexibility for the parameters choice:

- The horizontal emittance can be decreased by about a factor 2 in both rings by changing the partition number (by changing the RF frequency [LEP] or the orbit in the ARCS) and the natural ARC emittance by readjusting the lattice functions.
 - The Final Focus system as a built-in capability of about a factor 2 in decreasing the IP beta functions.
 - The RF system will be able to support higher beam currents (up to a factor x1.6) over the baseline, when all the available PEP RF units are installed.

Elba SuperB Workshop

Page 31

Machine backgrounds

Two colliding beams

- \square radiative Bhabha \rightarrow dominant effect on lifetime
- $e^+e^-e^+e^-$ production $\rightarrow \sim 3\%$ contribution to lifetime, important source for SVT layer-0

Single beam

- synchrotron radiation \rightarrow strictly connected to IR design
- □ Touschek → negligible in BaBar, important in SuperB
- beam-gas
- intra-beam scattering

	Cross section	Evt/bunch _{xing}	Rate
Beam Strahlung	~ 340 mbarn (Εγ/Ebeam > 1%)	~680	0.3THz
rad. Bhabha	~ 40 mbarn (Eγ/Ebeam ≥ 50%)	~80	35GHz
pair production	~7.3 mbarn	~15	7GHz
Elastic Bhabha	O(10 ⁻⁴) mbarn (Det. acceptance)	~200/Million	100KHz
Υ(4S)	O(10 ⁻⁶) mbarn	~2/Million	l KHz

vertex detector: need of "layer 0"

- The nominal SuperB boost is $\beta\gamma=0.24$ (BaBar's is 0.56)
- □ Time-dependent analyses require to separate the two B vertices:
 □ BaBar: <∆L>=250µm ; SuperB: <∆L>=106µm
- □ Solution: compensate low boost with improved vertex resolution by reducing the beam pipe radius and putting layer-0 as close as possible to the IP → driven by the e⁺e⁻→e⁺e⁻e⁺e⁻ bkg rate
 - keep material of beampipe+layer-0 to a minimum to minimize mult. scattering $B \rightarrow \pi \pi$ channel, 10 µm hit resolution

layer 0 strategy

- Striplets baseline option for TDR:
 - Better physics performance (lower material) even with some inefficiency, due to high background conditions.

striplets at r=1.6cm if bkg rate sustainable

- Upgrade to pixel (Hybrid or CMOS MAPS), more robust against background, is foreseen for a second generation of Layer0
 - Very challenging to keep the material for a pixel system at the level of the striplets (~0.5%X0)
 - R&D continue on various pixel items: CMOS MAPS, high rate readout electronics, low material support with cooling.
 - Need IR and SVT mechanics designed for a rapid replacement of LayerO.

external layers of SVT

the external layers will be made of double sided microstrip sensors

tracking studies to determine number and position of layers

- Number of layers besides layer-0
 - modest gain in tracking performance in L0+3 or L0+4 w.r.t. L0+5
 - □ improved reco efficiency in L0+5
 - L0+5 has redundancy

 \rightarrow L0+5 preferred to L0+3 or L0+4

- Which external radius of SVT?
 - tracking performance worsens if SVT radius larger than in BaBar
 - ...and in any case it would be limited by space needed by cryostats
 - → external radius as in BaBar in baseline configuration

The drift chamber

Build on BABAR drift chamber concept: no major R&D effort needed, but:

Lighter structure, all in Carbon Fiber (CF)

- Preliminary studies show that dome-shaped CF end-plates with X0~2% seem achievable (compare 13-26% in BaBar DCH)
- Design faster&lighter electronics (taking into account detectors options to be possibly installed behind backward end-plates)
- To control expected increase in occupancy:
 - studying faster gas mixtures
 - considering smaller cells
 - alternative solutions being explored
 - tapered shape of end-plates

drift chamber

geometric constraints

outer radius	80 cm	cons. by DIRC quartz bars
inner radius	20-25 cm	cons. by cryostats of IR magnets
bwd length	+30cm w.r.t. Babar if NO bwd EMC is built	but little impact on tracking and dE/dx overall
fwd length	~ as in BaBar	\sim not affected by a fwd TOF

background occupancy summary*

Small-angle Bhabha	~2%
Pair production	0.5-1.0%
Large-angle radiative Bhabha	0.4%

* prel results to be confirmed

 Some indications that conical endplates are not required after all

cluster counting: interesting but very challenging R&D item

- single ionization clusters are resolved time-wise and counted, improving dE/dx and space resolutions
- not proven to be feasible
 impact on physics to be quantified

PID – the focusing DIRC

- Hadronic PID system essential for P(π,K)>0.7GeV/c (use dE/dx for p<0.7GeV/c)
- Baseline is to reuse BaBar DIRC design
 - Excellent performance to 4GeV/c
 - Robust operation
 - Elegant mechanical support
 - Photon detectors outside field region
 - Radiation hard fused silica radiators
 - But... PMTs are slow and aging. Need replacement. Large SOB region sensitive to backgrounds so volume reduction is necessary
- Photon detector replacement
 - Baseline: Use pixelated fast PMTs with a smaller SOB to improve background performance by x100 with identical PID performance

the Babar SOB is replaced with photon camera 25 times smaller

10 times bkg rate reduction

PMTs 10 times faster than Babar
→<u>10 times bkg rate reduction</u>

Total: 100 times bkg rate reduction

forward PID

K⁺νν

5σ

- □ Is it worth it?
 - \bigcirc improved hadron Id in the forward region compared to dE/dx only
 - $\ensuremath{\mathfrak{S}}$ material in front of fwd EMC
 - \odot cost
- Several options:
 - Time of Flight (2 options)
 - FARICH (better PID separation but 3x material and R&D less advanced)
 - use of EMC LYSO crystal fast component
- Physics case (preliminary results)

The electromagnetic calorimeter

BaBar Barrel 5760 Csl(Tl) Crystals

σ_E _	-2.30% $\oplus 1.35\%$	$\sigma_{*} = 4mrc$	ιd
E	$\sqrt[4]{E(GeV)} \oplus 1.55\%$	$\sigma_{\theta} = \frac{1}{\sqrt{E(G)}}$	eV)

Essential detector to measure energy and direction of γ and e, discriminate between e and π , and detect neutral hadrons

- Barrel
 - BaBar barrel crystals not suffering signs of radiation damage. They're sufficiently fast and radiation hard for the SuperB needs

They can be reused (Would have been) most expensive detector component

- Endcaps
 - Best possible hermiticity important for key physics measurements
 - New forward endcap
 - backward endcap is an option

EMC endcaps – forward and backward

forward endcap

BaBar Csl(Tl) endcap inadequate for higher rates and radiation dose of SuperB

LYSO crystals:

41

- radiation hard, fast, small Moliere radius, good high yield
- more compact, could free10cm for a fwd PID system
- expensive (~40\$/cc) [price of 2009]

backward endcap (still an option)

- meant to increase EMC hermiticity at modest cost (used as veto)
- 24 layers of lead(3mm)+scintillator(3mm) read by WLS fibers coupled to SiPM

 $B \rightarrow \tau v: S/sqrt(S+B)$ increases by ~8% with bwd EMC (machine bkg **NOT** included)

 \rightarrow need to repeat the analysis with machine bkg

bwd EMC

fiber layout

The IFR

- □ Provides discrimination between μ and π^{\pm} . Help detection and direction measurement of K_L (together with EMC)
- Add absorber w.r.t. BaBar to improve π/μ separation. Amount and distribution is being optimized
 - $\hfill\square$ baseline: 92cm of iron (5.5 λ_l), 7 layers, reuse of BaBar IFR iron
- Use extruded plastic scintillator coupled to geiger mode APDs through WLS fibers
 - expected hit rates of O(100) Hz/cm²
 - single layer or double coord. layout depending on the x-y resolution needs

IFR

Layout optimization

three configurations

16

16

12

12121

1212

212

0.5

 52.9 ± 0.3

 57.0 ± 0.2

 51.0 ± 0.3

beam test of prototype planned at Fermilab

12

12

10

|=|=|======|======|======|======|=====

12

C₁₄ Fe 620mm

 80.7 ± 0.2

 61.5 ± 0.2

 92.1 ± 0.1

 87.3 ± 0.2

 56.0 ± 0.2

 92.1 ± 0.1

 93.1 ± 0.1

 75.9 ± 0.1

 95.9 ± 0.1

muon efficiency when pion misld = 2%

Neutron background

- SiPM are degraded by neutrons, many of them being produced by the tungsten EM shield
- neutron rate decreases with distance from beampipe
- possibly move innermost SiPM outside

to move the SiPM of the inner layers in a outer gap

