

Quarkonium and Heavy Flavour Physics with the ALICE muon spectrometer at the LHC

N. Bastid for the ALICE Collaboration LPC Clermont-Ferrand

Outline:

- Physics motivations
- The ALICE muon spectrometer
- Feasibility studies in p-p & Pb-Pb for selected channels
- First heavy flavour & quarkonium measurements
- Conclusion & Outlooks

Heavy flavour cross-sections @ LHC

Pb-Pb (LHC) vs Au-Au (RHIC)

- $\sigma_c(LHC) = \sigma_c(RHIC) \times 10$
- $\sigma_{b}(LHC) = \sigma_{b}(RHIC) \times 100$

•
$$\sigma_z(LHC) = \sigma_{\Upsilon}(RHIC)$$

ALICE baseline for charm/bottom: NLO predictions (+ binary scaling & shadowing in PbPb)

	р-р @ 14 ТеV	р-р @ 7 ТеV	Pb-Pb (5%) @ 5.5 TeV
σ _{qq} (mb)	11.2/0.445	6.91/0.232	4.32/0.18
N _{qq} (/event)	0.16/0.0064	0.099/0.0033	115/4.56
C _{shad}	1/1	1/1	0.65/0.84

yields assume σ^{inel} (pp) = 70 mb

Heavy flavours: cross-sections

p-p @ 14 TeV / 5.5 Te 14 TeV Ratio Ratio total uncertain mass mass 2.5 2.5 Ratio scales scales PDFs PDFs fragmentation fragmentation σ(14 TeV)/σ(5.5 TeV 은 1.4 번 1.3 1.5 1.5 Lescaled 1.1 1.0 1.0 1.0 0.5 0.5 0.8 charm bottom bottom 0.7 0.7 0.6 0.6 0 20 15 20 10 15 0.5 E 0.5 charm hadron p, (GeV/c) beauty hadron p. (GeV/c) charm quark p. [GeV/c] beauty quark p. [GeV/c]

- stringent test of pQCD calculations
- NLO uncertainties on x-sections at 14 TeV: a factor 2-3
- uncertainties on extrapolation: ~10%
- similar uncertainty expected for $\sigma(7 \text{ TeV})/\sigma(2.75 \text{ TeV})$

measuring $\sigma(c)$, $\sigma(b)$ in p-p @ 7 (and 14) TeV is top priority

14 TeV: J. Phys. G 32 (2006) 12957 TeV: M. Cacciari, private communication3

Heavy flavours: energy loss effects

- dN/dp_t: crossing point of μ from (c, b) & W shifted down by 5-7 GeV/c
- new medium-blind reference available: W affected by shadowing, only
- R_{AA} reduced by a factor 2-5 for 2 <p_t <20 GeV/c
- new ratio $R_{AA}(B)/R_{AA}(C)$ available: isolate mass dependence of ΔE

Z. Conesa del Valle et al., Phys. Lett. B 663 (2008) 202 Phys. Rev. Lett. 89 (2002) 092303, J. Phys. G 35 (2008) 054001

Quarkonium production scenarios

The muon spectrometer of the ALICE experiment

- acceptance: -4 <η <-2.5
- high resolution tracking system: △M < 100 MeV/c² @ 10 GeV/c²
- trigger system: time resolution < 2ns, decision in < 800 ns, rate < 1 kHz 6

Performance of the system: muon tracking-trigger matching

 muon tracking-trigger matching very powerful to reject the hadronic contribution

DCA = Distance of Closest Approch (distance between extrapolated track & interaction vertex in the plane perpendicular to the beam direction & containing the vertex)

B (D)-hadron cross section from single muon p_t distribution in p-p collisions (I)

B (D)-hadron cross section from single muon p_t distribution in p-p collisions (II)

Second step: convert N(µ) ← B (D) into a B (D)-hadron cross section • correct for global efficiency, luminosity and decay kinematics

method developed by UA1: C. Albajar et al., Phys. Lett. B 213 (1988) 405

B (D)-hadron cross section well reconstructed over a large p_t range
 small statistical errors & systematic errors of ~ 20%
 note: analysis strongly model dependent

B-hadron cross section in Pb-Pb @ 5.5 TeV feasibility study with fast simulations

Quarkonium production in p-p collisions

	S	S/B	Signif.	
J/ Ψ	2.8.10 ⁶	12.0	1610	
Ψ'	0.075.10 ⁶	0.6	170	
Ύ (1S)	27.10 ³	10.4	157	
Ύ (2S)	6.8.10 ³	3.4	73	
Ύ (3S)	4.210 ³	2.4	55	

statistics: $L = 3.10^{30} \text{ cm}^{-2} \text{ s}^{-1}$, $t = 10^7 \text{ s}$ cross-sections: hep-ph/0311048

quarkonium states well separated with good significance & S/B > 1 (except for Ψ')
huge statistics for J/Ψ, p_t range: 0-20 GeV/c

First p-p run at 7 TeV

- assuming $\varepsilon_{LHC} = 12\% \& L = 3.10^{29} \text{ cm}^{-2} \text{ s}^{-1}$, one expects $10^4 \text{ J/}\Psi \text{ month}^{-1}$
- Y measurement should be possible

Quarkonium differential distributions & quarkonium polarization in p-p collisions

• shape of J/Ψ vs y sensitive to gluon distribution functions

D. Stocco et al., from J. Phys. G.: Nucl. Part. Phys. 32 (2006) 1295

• error on J/ Ψ polarization < 2% (with 2.10⁵ J/ Ψ) after background subtraction

Quarkonium production in Pb-Pb @ 5.5 TeV

- J/Ψ: large statistics (0-20 GeV/c), good significance
- Ψ ': small S/B
- Y (1S): good statistics (0-8 GeV/c),
- S/B > 1, good significance
- Y (2S): good statistics (0-8 GeV/c),
- S/B > 1, good significance

• Y (3S): low statistics, 2-3 runs needed

			=				
	b (fm)	0-3	3-6	6-9	9-12	12-16	min-
	ε (GeV/fm³)	32	30	28	16	5	bias
J/ψ	S (×10³)	132.6	234.6	198.2	94.75	21.66	681.4
	S/B	0.2	0.27	0.48	1.08	3.13	0.33
	S/√S+B	148	224	254	222	128	413
ψ'	S (×10³)	3.69	6.53	5.5	2.61	0.59	18.92
	S/B	0.012	0.017	0.03	0.063	0.172	0.02
	S/√S+B	6.7	10.4	12.6	12.4	9.3	19.53
r	S (×10³)	1.349	2.38	1.991	0.932	0.204	6.33
	S/B	1.66	2.31	3.6	6.06	9.12	2.46
	S/√S+B	29	40.8	39.5	28.3	13.6	67.14
Y'	S (×10³)	0.353	0.623	0.522	0.244	0.054	1.8
	S/B	0.65	0.9	1.36	2.25	3.46	1.03
	S/√S+B	11.8	17.2	17.3	13	6.4	30.19
Υ"	S (×10³)	0.201	0.354	0.297	0.139	0.03	1.02
	S/B	0.48	0.63	0.99	1.57	2.22	0.74
	S/√S+B	8.1	11.7	12.2	9.2	4.6	20.85

 $L = 5.10^{26} \text{ cm}^{-2} \text{ s}^{-1}$, $t = 10^{6} \text{ s}$, with shadowing, w/o absorption/suppression/enhancement

S. Grigoryan, J. Phys. G: Nucl. Part. Phys. 32 (2006) 1295

Suppression scenarios

• suppression 1 (quenched QCD): $T_c = 270 \text{ MeV}$, $T_D/T_c = 4.0 (1.4) \text{ for } \Upsilon (\Upsilon)$ • suppression 2 (unquenched QCD): $T_c = 190 \text{ MeV}$, $T_D/T_c = 2.9 (1.06) \text{ for } \Upsilon (\Upsilon)$

clear sensitivity of the observables to the QGP temperature

dissociation temperatures: C.Y. Wong, hep-ph/0408020 & W.M. Alberico, hep-ph/0507084 S. Grigoryan from DiMuonNet report (2008) & J. Phys. G: Nucl. Part. Phys. 32 (2006) 1295

First measurements in p-p @ 7 TeV

from J. Schukraft & A. Dainese talks at Physics LHC 2010, Hamburg, June 2010

p-p @ 7 TeV event with 2 tracks in the muon spectrometer

Heavy flavours from single muons in p-p @ 7 TeV

charm & bottom production via single muons

- hadrons rejected by requiring a tracking-trigger matching
- background contribution ($\mu \leftarrow \pi$, K) subtracted according to Pythia (ATLAS-CSC) normalized to data at low p_t
- results still can be improved with better alignment
- on going: unravel charm and bottom components via a combined fit, efficiency correction, systematic errors

First quarkonium signals in p-p @ 7 TeV

• on-going: improve alignment, efficiency correction, systematic errors, cross section calculation, $p_t \& y$ distributions, $<p_t^2>$

 the ALICE muon spectrometer is successfully operated since the beginning of data taking

 promising performance for heavy flavours and charmonia from analysis of first p-p data at 7 TeV

- first attempt to extract the p_t distribution of $\mu \leftarrow c$, b
- first $J/\Psi \rightarrow \mu^+\mu^-$ observed

 more physics results with the ALICE muon spectrometer expected soon

Pb-Pb collisions in ALICE: November 2010

Backup slides

First measurements in p-p @ 7 TeV

Integrated triggers

~2.7 nb⁻¹ (2·10⁸ min. bias events)

p-p @ 7 TeV event with 2 tracks in the muon spectrometer

from J. Schukraft & A. Dainese talks at Physics LHC 2010, Hamburg, June 2010