

Hiroaki Natori The University of Tokyo on behalf of the MEG collaboration

The MEG Collaboration

Outline

- Physics motivation for $\mu \rightarrow e \gamma$
- MEG experiment
- Analysis of 2008 data
- 2009 data taking and prospects for future

Physics Motivation for $\mu \rightarrow e \gamma$

- cLFV, Clear evidence of new physics beyond the SM
 - Beyond experimental reach with SM with neutrino oscillation extension : $Br(\mu \rightarrow e \gamma) \sim 10^{-54}$

• New physics, e.g. SUSY-GUT theories predict observable branching ratio: $Br(\mu \rightarrow e \gamma) \sim 10^{-14}$ to 10^{-11} , just below the current upper limit 1.2x10⁻¹¹ (MEGA)

Prompt B.G.

Accidental Pileup

μ→evvγ Radiative muon decay(RMD)

e⁺ from μ→evv(Michel decay) + γ from RMD, AIF, etc.

Dominant

Signal

Prompt B.G.

Accidental Pileup

- 2 body decay
 - Back to back
 - Monochromatic

$$Ee = E\gamma = 52.8 \text{ MeV}$$

• Te = $T\gamma$

- Any angle(energy correlated)
- Ee, Eγ < 52.8 MeV
- Te = $T\gamma$

- Any angle
- Ee, E γ < 52.8 MeV
- Flat time difference

Prompt B.G.

Accidental Pileup

To distinguish signal from B.G, γ Good E $_{\gamma}$, E $_{e}$, $\theta_{e\gamma}$, $\phi_{e\gamma}$, $T_{e\gamma}$ resolution is

- 2 body decay
 - Back to back
 - Monochromatic

$$Ee = E\gamma = 52.8 \text{ MeV}$$

• Te = $T\gamma$

(energy correlated)

● Ee, Eγ < 52.8 MeV

Anvimportant

• Te = $T\gamma$

Any angle

 $\nu_{\rm e}$

- Ee, E γ < 52.8 MeV
- Flat time difference

etc.

Mu-E-Gamma Collaboration

MEG experiment

 Large intensity DC muon beam: 3x10⁷ μ⁺ stop in a 205μm target

Liquid Xenon γ-ray detector

- Positron spectrometer
 - Gradient B-field SC
 Solenoid magnet
- Drift chamber
- Plastic Scintillator timing counter

LXe gamma ray detector

LXe gamma detector

LXe gamma detector

Gamma resolutions 2008

Energy resolution of upper tail $\sigma(E_{\gamma})_{up} = 2.0\%$ (deep >2cm), 3.0% (1-2cm), 4.2%(0-1cm)

Position resolution $\sigma = 5 \text{mm}$ (along inner face), 6 mm (depth)

900 litre Liquid Xenon as a scintillator 846 PMTs

Positron spectrometer

Positron spectrometer

Positron spectrometer

Lateral View -

- Cross-sectional View -

Target

Timing Counter

Target

Positron resolutions in 2008

 $\sigma(Ee^+) = 0.708\%$ (core)

2.01%, 3.79%(tail)

COBRA Solenoid

(Fraction 60%, 33%, 7%)

 $\sigma(\varphi) = 10 \text{ mrad}$

 $\sigma(\theta) = 18 \text{ mrad}$

2008 run

- We started physics data taking from 2008
- The first three months of physics data taking (09/08 12/08)
- 3x10⁷ muons/sec rate, in total 9.5x10¹³ muons stopped on the target

2008 run

- We started physics data taking from 2008
- The first three months of physics data taking (09/08 12/08)
- 3x10⁷ muons/sec rate, in total 9.5x10¹³ muons stopped on the target

• Unfortunately, Low statistic because of DC discharge problem ($\epsilon(e^+) \sim 14$ %, 1/3 of expected)

2008 data analysis

*No Ee+, direction cut

- Blind-box likelihood analysis was adopted
- Accidental backgroundstudy using side-band
- Prepared PDFs for signal, RMD, and accidental B.G.

2008 data analysis

*No Ee+, direction cut

RMD in normal physics run $\sigma(t_{e\gamma}) = 148 \pm 17 \text{ psec}$

(energy dependence correction done)

Result 2008

Nsig < 14.7 @ 90% CL $Br(\mu \rightarrow e \gamma) < 2.8 \times 10^{-11}$ @ 90% CL

Note: all the other parameters are cut to select ~90% of signal events in these plots

Expected 90% CL UL on BR(no signal) \sim 1.3 x 10⁻¹¹ 90% CL UL from sideband data (no signal): (0.9-2.1) x 10⁻¹¹ Probability of getting this result by statistical fluctuations is \sim 5%

Main news about 2009 run

- 2 months of physics data taking, total 6.5x10¹³ muon stop
- All DC modules worked
 - efficiency $14\% \rightarrow 40\%$, resolution improved

Performances 2009

	2008	2009(preliminary)
Gamma Energy (%)	2.0 (w>2cm)	←
Gamma Timing (psec)	80	>67
Gamma Position (mm)	5 /6(depth)	←
Gamma Efficiency (%)	63	←
e+ Timing (psec)	<125	←
e+ Momentum (%)	1.6	0.85
e+ angle (mrad)	$10(\varphi)/18(\theta)$	$8(\varphi)/11(\theta)$
e+ efficiency (%)	14	40
e+-γ timing (psec)	148	<180
Muon Decay Point (mm)	3.2(R)/4.5(Z)	2.2(R)/3.1(Z)
Trigger efficiency (%)	66	88
Stopping Muon Rate (sec-1)	$3x10^{7}$	$2.9x10^{7}$
DAQ time/Real time (days)	48/78	35/43
S.E.S @90% box	5x10 ⁻¹²	2.3x10 ⁻¹²
Expected N _{BG}	0.5	0.7
Sensitivity	1.3x10 ⁻¹¹	6.6x10 ⁻¹²
BR upper limit (obtained)	2.8x10 ⁻¹¹	_

- Beam time was short, but efficiency improvement made statistics bigger
- With the improvement of e⁺ resolutions, Expected N_{BG} is 0.7
- We expect to renew the current limit from 2009 data
- We will release result of 2009 in this summer

2010 run

- APD will be operational and it will help us to improve trigger efficiency 88% → 94%
- Data statistics will be about 10 times higher than 2008, and sensitivity is estimated to be 1.3 x 10⁻¹²
- We continue to improve reconstruction algorithm and calibration methods

Summary and prospect

- The first 3 months of MEG was taken in 2008
 - Unfortunately, statistic is small, but we could get data in good quality
 - Result was good enough to show we will renew the current limit soon
- We could get more statistic in 2009 in more stable condition, and we will release the result soon
- We will continue running until 2012 to reach our goal sensitivity of ~10⁻¹³ level

Thank you