

STATUS OF THE ALICE EXPERIMENT AND FIRST RESULTS ON HEAVY FLAVOR PRODUCTION

Rosa Romita GSI (Darmstadt)

Poro Ciullo Pantaleo

BEACH2010, Perugia, 21-26 June

OUTLINE

- Introduction to ALICE
- Status of the detector and first physics results
 - tracking, vertexing and PID performance
 - \Box multiplicity, p_T , HBT and more
- Heavy flavors at mid rapidity
 motivations and expectations
 - first results
- Conclusions

A Large Ion Collider Experiment

Dedicated to Quark Gluon Plasma detection in heavy ion collisions

CHALLENGING!

high particle density, wide p_T range, need to identify particles... all by: 18 detector technologies, several smaller 'special purpose' detectors central barrel (vertexing, tracking, PID with excellent performance) + muon arm

NOT ONLY HEAVY ION...

... But also p-p physics!

Among the relevant physics topics:

- Physics at high multiplicities: explore possible collective effects, jets, strangeness, etc.
- Systematics of particle production
- Measurement of charm and beauty cross sections, down to low momenta, open charm and quakonia
- Study of underlying event
- Benchmark to Monte Carlo models

Baseline to Pb-Pb collisions

THE ALICE DETECTOR

MIN BIAS TRIGGER & DATA TAKING

6

Date/Time

THE FIRST DATA TAKING! (23/11/2009)

 First
 Perc.
 0
 ±/215
 Hood
 Last
 In Defends
 II
 C Audotact Tume.
 5
 ±

 So ram-fields
 Tomeration
 South and the set of the set of

Inner Tracking System

- 3 different technologies used:
- Silicon Pixel Detector
- Silicon Drift Detector
- Silicon Strip Detector

Good alignment is needed to get excellent tracking and vertexing! For example : SPD Alignment

MULTIPLICITY MEASUREMENTS (I)

MULTIPLICITY MEASUREMENTS (II)

Comparison with event generators

Increase in dN _{ch} /dη	√s	ALICE (%)	MCs (%)
in η < 1 for INEL > 0 arXiv:1004.3514	0.9 → 2.36 TeV	23.3 0.4 _{-0.7} ^{+1.1}	15 – 18
	0.9 → 7 TeV	57.6 0.4 _{-1.8} ^{+3.6}	33 – 48

Time Projection Chamber

- Challenge: reconstruct 15000 primary tracks in heavy ion collisions!
- biggest ever built!
- minimal material budget
- first calibration completed before data taking!

- match two segments of cosmic tracks
- momentum resolution very close to detector design:
 - 7% at 10 GeV/c
 - < 1% at p_T< 1 GeV/c confirmed from K⁰_s measurement

P_T DISTRIBUTIONS (900 GeV)

Test for soft QCD, reference for Pb-Pb, collective flow in p-p

good agreement at p_T<1 GeV/c
 ALICE spectrum harder at higher p_T (η<0.8)

 PYTHIA D6T and Perugia0 more or less OK
 PHOJET and ATLAS-CSC are off

$< p_T > Vs MULTIPLICITY (900 GeV)$

 p_T>500 MeV/c:
 weighted average over data points 0.5<p_T<4 GeV/c
 PYTHIA Perugia0 gives good description of the data

• p_T>150 MeV/c:

 weighted average over data points 0.15<p_T<4 GeV/c

 the models don't reproduce the data! (Perugia0 is the one that gets closer..)

Low p_T and high multiplicity behaviour is not reproduced by models

ONE OF THE ALICE SPECIALTIES: Particle IDentification!

The detectors are complementary and cover the whole p_T range

IDENTIFIED PARTICLE SPECTRA

- Good agreement between the three detectors, both for positives and negatives
- The calibration and understanding of the detectors is good

→ good internal consistency! 15

STRANGENESS

See R. Vernet

Strange and multistrange particles well reconstructed @900 GeV, 7 TeV

γ CONVERSIONS AND π^0

- Interesting measurement: material budget studies + per se
- Electron ID in the TPC
- conversion reconstruction in ITS + TPC

Data MC

TWO PIONS CORRELATION (900 GeV)

- Get information about space-time evolution of the source emitting the pions (i.e. the colliding system)
- Obtained measuring the Bose-Einstein enhancement of pairs of pions with small momentum difference and fit with a gaussian:

HEAVY FLAVORS

- In Pb-Pb collisions: probe the properties of the medium
 - created in the hard initial collisions \rightarrow experience the whole collision history
 - possible comparison heavy quarks/light partons
 - \rightarrow energy loss:

$$\Delta E_g > \Delta E_{u,d,s} > \Delta E_c > \Delta E_b$$

dead cone effect (mass)

Casimir factor (color charge)

 $R_{AA}^{H}(p_{t}) = \frac{1}{N_{AA}} \frac{dN_{AA}^{H}/dp_{t}}{dN_{m}^{H}/dp_{t}} \square \text{ medium density and size } R_{AA}^{\pi} < R_{AA}^{D} < R_{AA}^{B}$

- in p-p collisions:
 - baseline for Pb-Pb
 - measure charm and beauty cross section
 - compare to pQCD predictions

HF PRODUCTION AT LHC

NLO prediction → ALICE baseline for charm and beauty

MNR code (FO NLO): Mangano, Nason, Ridolfi, NBP373 (1992) 295

system, √s	pp, 7 TeV	pp, 14 TeV	Pb-Pb (0-5%), 5.5 TeV
$\sigma_{_{NN}}^{_{QQ}}$ [mb]	<mark>6.9</mark> / 0.23	<mark>11.2</mark> / 0.5	4.3 / 0.2
$N_{tot}^{Q\bar{Q}}$	0.10 / 0.003	0.16 / 0.006	<mark>115</mark> / 4.6

σ_c @LHC goes up by a factor 20 wrt RHIC, σ_b up by a factor 100!

MEASUREMENTS IN PREPARATION

- **Open Charm:** $D^0 \rightarrow K\pi$, \checkmark **Hidden charm:** $J/\Psi \rightarrow ee$
 - ✓ **Beauty:** $B \rightarrow e + X$, $B \rightarrow X J/Psi$

 \checkmark charm & beauty \rightarrow e + X

✓ measurements with µ: see N. Bastid

Features	What is needed to detect them
"Rare" decays	excellent tracking (TPC + ITS) $$
Displaced secondary vertex as signature of heavy-quark decay: ct = 60µm – 300µm	good vertexing + impact parameter resolution (ITS, see next slide) $$
High combinatorial background	good Particle IDentification $$ (TPC, ITS, TOF,TRD)

\rightarrow The ALICE detector has all we need!

VERTEX RESOLUTION & CO.

- The lifetime of particles with charm / beauty is $\sim 100 \ \mu m$
- \rightarrow to identify their displaced vertices we need a good vertex resolution!

ITS performance:

Excellent vertexing and good impact parameter resolution!

Impact parameter resolution

OPEN CHARM IN THE BARREL

Charm candidates "production" (vertexing)

Corrections (efficiencies, acceptance, feed-down from B)

- Topological cuts to separate signal and background
- Invariant mass analysis to extract the raw signal yield
- Example: $D^0 \rightarrow K^-\pi^+$:
 - good pointing of reconstructed D momentum to the primary vertex
 - pair of opposite-charge tracks with large impact parameters

YES, WE SEE THEM!

125 million events pp collisions @ 7 TeV

HF ELECTRONS

- Compute the inclusive cross section using electrons
- For high p_T, the contribution from charm and beauty becomes dominant
- Essential ingredient for the analysis: electron ID! For the moment: TPC + TOF, TRD will join soon!

OPEN BEAUTY IN THE BARREL

Analysis strategy:

- 1. identification of electron candidates
- Cut on impact parameter to reduce charm, Dalitz, γ conversions
- Subtract the residual background

With 10⁹ p-p and 10⁷ Pb-Pb events, very small statistical error expected!

SOME EXPECTATIONS...

Comparison with pQCD

Energy loss studies

 $R_{D/h}(p_t) = R_{AA}^D(p_t) / R_{AA}^h(p_t)$

HIDDEN CHARM IN THE BARREL: $J/\Psi \rightarrow e^+e^-$

- Why in Pb-Pb:
 - J/Ψ dissociation is a signature of QGP formation
 - J/Ψ suppression at RHIC was expected to be higher than at SPS, but it was the same! Not yet explained...
- Why in p-p:
 - reference to heavy ion data
 - none of the models is able to reproduce both production and polarization
 - measure the total cross section

 $J/\Psi \rightarrow e^+e^- @ 7 \text{ Tev}$

- 110M pp events @ 7 TeV
- electrons identified with TPC (TRD will come soon!), pions and protons rejected
- fit with a Cristal Ball function

CONCLUSIONS

- ALICE is in a good shape..
 - many detectors already at design specification
 - able to produce the first physics results already with the very first data taking
 - ..and is producing a lot of interesting results!
 - multiplicity: increase with energy faster than expected
 - \square p_T spectra: low p_T and high multiplicity behaviour not described by models
 - HBT measurements: the size of the emitting source increases with multiplicity, but less K_T dependence than expected
- The game has just started..
 - □Jets
 - Event shape
 - High multiplicity
 - □p / p ratio
 - a very rich heavy flavor program

Looking forward to Pb-Pb collisions!

JETS

- The high p_T hadrons in Pb-Pb collisions should be suppressed when crossing the hot and dense medium → observed @RHIC
- Study the energy loss for different flavor

Uncorrected charged tracks raw spectra

- 4 different algorithms used to identify jets \rightarrow consistent
- much more to come!

The detector dedicated to electron PID is the Transition Radiation Detector:

P/P RATIO

- Protons identified by TPC
- special care for secondaries and absorption correction

vanishes at LHC energies

③ PYTHIA reproduces the data

X all the models with anomalous barion trasport don't !

####