Charmonium Results From BESIII

Jingzhi Zhang (For the BESIII collabration)

BEACH 2010 (06/21– 06/26) Perugia, Italy

Outline

- Introduction
- $\chi_{c0,2} \rightarrow \pi^0 \pi^0$, $\eta \eta$
- $\chi_{cJ} \rightarrow VV$
- h_c
- Summary

χ_{cJ} decays

- Most hadronic decays of χ_{cJ} are not known.
- A good laboratory to study QCD
 - Color octet mechanism in χ_{cJ} decays
 - Study singly and doubly OZI suppressed decays
- Study of light hardrons produced in χ_{cJ} decays
- The e^+e^- BEPCII machine provides clean sample via $\psi' {\rightarrow} \gamma \chi_{cJ}$

 $\chi_{c} \rightarrow \pi^0 \pi^0, \eta \eta$

- Radiative decays of charmonium to $\pi^0\pi^0$, $\eta\eta$ are interesting channels for glueball searches.
- Exclusive decays of χ_{cJ} provide a good lab to test the color octet mechanism in P-wave charmonium decays.
 - G.T. Bodwin et al., Phys Rev. Lett. D51, 1125 ; H.-W. Huang and K.-T. Chao, Phys. Rev.D54, 6850; J. Bolz et. al., Eur.Phys.J. C 2:705-719(1998)

Leading-order QCD

Color octect theory

- BFs of ηη, ηη', η'η' determine the relative strength of Singly-OZI and Doubly-OZI contributions.
 - *Zhao PRD 72, 074001 (2005)*

 $\chi_{cJ} \rightarrow VV \ (V: \omega, \phi)$

Results from BESII

×10 ⁻³	φφ	ωω	ωφ
Xc0	0.94±0.21 ±0.13	2.29±0.58 ±0.41	DOZI (Thy 0.45)
Xc2	$1.70{\pm}0.30{\pm}0.25$	1.77±0.47±0.36	DOZI (Thy 0.24)
Xc1			
	HSR	HSR	DOZI HSR

Ref: PLB630:7, 2005. PLB642:197,2006. PRD72,074001.Q.Zhao

- $\chi_{c1} \rightarrow VV$, suppressed by Helicity Selection Rule (HSR).
- $\chi_{cJ} \rightarrow \phi \phi/\omega \omega$, singly OZI suppressed.
- $\chi_{c1} \rightarrow \phi \phi/\omega \omega$, only allowed for L=2. Suppressed?
- $\chi_{cJ} \rightarrow \phi \omega$, doubly-OZI suppressed. Not measured

^x\$07l

$h_{c} ({}^{1}P_{1})$

- Spin singlet P wave (L=1, S=0)
- M(h_c) is important to learn about hyperfine (spin-spin) interaction of P wave states.
- Mass and product BF from CLEOc $\begin{array}{l} M(h_{c})_{AVG} = 3525.20 \pm 0.18 \pm 0.12 \ MeV/c^{2} \\ (B_{1} \times B_{2})_{AVG} = (4.16 \ \pm \ 0.30 \ \pm \ 0.37) \times 10^{-4} \end{array}$

 $\Delta M_{hf}(1P) = \langle M(^{3}P_{J}) \rangle - M(^{1}P_{1}) = 0.08 \pm 0.08 \pm 0.12 MeV/c^{2}$

 $<M(^{3}P_{J})>$: the spin weighted centroid of 3PJ states, to represent M($^{3}P_{J}$).

Consistent with lowest order expectation of 0.

BEPCII Storage ring: Large angle, double-ring

Beam energy: 1.0-2.3 GeV Luminosity: $3 \sim 10 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$ **Optimum energy: 1.89 GeV Energy spread:** 5.16 × 10⁻⁴ No. of bunches: **93 Bunch length: 1.5 cm Total current: 0.91** A SR mode: 0.25A @ 2.5 GeV

BESIII Detector

BESIII Data-taking

• July 18, 2008: First e⁺e⁻ collision event in BESIII

 $\chi_{c0,2} \rightarrow \pi^0 \pi^0$, $\eta \eta$

 $\chi_{c0,2} \rightarrow \pi^0 \pi^0$, $\eta \eta (\eta/\pi^0 \rightarrow \gamma \gamma)$

Good agreement of data & MC

Note: the third error are due to the branching fractions of $\psi' \rightarrow \gamma \chi_{cJ}$ 12 Ref: PRD81, 052005 (BESIII); PRD79,072007 (CLEO)

$\chi_{cJ} \rightarrow V V$

Study of $\chi_{CJ} \rightarrow \phi(KK)\phi(KK)$

Errors statistical only

resonance estimated from ϕ sideband (as blue)

Study of $\chi_{cJ} \rightarrow \omega(\pi^+\pi^-\pi^0)\omega(\pi^+\pi^-\pi^0)$

Study of $\chi_{cJ} \rightarrow \omega \phi$

- $\chi_{cJ} \rightarrow \phi \omega$ doubly OZI suppressed.
- <u>This is observed for the</u> <u>first time.</u>

- Clear $\omega \phi$ signals are seen
- Background studied from sideband & 100M MC.

h_c: E1-γ tagged inclusive analysis

Events/1MeV

- Select inclusive $\pi^0 (\psi' \rightarrow \pi^0 h_c)$
- Use E1-photon γ to tag $h_c \rightarrow \gamma \eta_c$
- Double-Gauss ⊗ BW
 + E1-γ sideband

Results:

- $Br(\psi' \rightarrow \pi^0 h_c) \times Br(h_c \rightarrow \gamma \eta_c)$ = $(4.58 \pm 0.40 \pm 0.50) \times 10^{-4}$
- $M = 3525.40 \pm 0.13 \pm 0.18 \text{ MeV/c}^2$

h_c: inclusive analysis

- Select inclusive π^0 ($\psi' \rightarrow \pi^0 h_c$)
- D-Gauss ⊗ BW (for signal) + 4th Poly. (for bkg)
- Fit: mass and width fixed as tagged measurement

Ref: PRL 104, 132002

Summary of h_c

Ref: BESIII, PRL 104, 132002 (2010)

	BESIII	CLEOc
$Br(\psi' \rightarrow \pi^0 h_c) \times Br(h_c \rightarrow \gamma \eta_c)$ [10 ⁻⁴]	$4.58 \pm 0.40 \pm 0.50$	$4.19 \pm 0.32 \pm 0.45$
M [MeV/c ²]	$3525.40 \pm 0.13 \pm 0.18$	$3525.80 \pm 0.23 \pm 0.15$
Г [MeV]	$0.73 {\pm} 0.45 {\pm} 0.28$	1.1 (NRQCD) Kuang
	<1.44 @ 90%CL	0.51 (PQCD) Kuang
$\Delta M_{hf}(1P) [MeV/c^2]$	$0.10 {\pm} 0.13 {\pm} 0.18$	$0.08 \pm 0.18 \pm 0.12$
	Ref: CLEOc PRL101, 182003 (2008)	
	BESIII	theoretical prediction
$Br(\psi' \rightarrow \pi^0 h_{c)} [imes 10^{-4}]$	$8.4 \pm 1.3 \pm 1.0$	4 - 13
Br(h _c →γη _c)	54.3±6.7±5.2	41 (NRQCD) Kuang
		88 (PQCD) Kuang
		38 Godfrey, Rosner

Ref: Theory, PRD65, 094024 (2002) & PRD 66, 014012 (2002).

Summary

- We measured the transition rates of $\psi' \rightarrow \pi^0 h_c$, $h_c \rightarrow \gamma \eta_c$ for the first time; improved the mass and width measurements of h_c .
- Observed $\chi_{cJ} \rightarrow \phi \phi$, $\omega \omega$, $\omega \phi$; $\chi_{c1} \rightarrow \phi \phi$, $\omega \omega$ and $\chi_{cJ} \rightarrow \omega \phi$ are first observations.
- Improved measurements of the branching fractions of χ_{cJ} decays into two neutral pseudoscalar meson pairs, i.e. $\chi_{c0,2} \rightarrow \pi^0 \pi^0$, $\chi_{c0,2} \rightarrow \eta \eta$.
- More BESIII results are coming. Stay tuned.

Backup slides

 $\chi_{c0,2} \rightarrow \pi^0 \pi^0$, $\eta\eta$, $\eta/\pi^0 \rightarrow \gamma\gamma$ selection

- No charged tracks
- Photon:

 E_{γ} >50 MeV, timing

- π⁰, η
 - -0.06<M($\gamma\gamma$)-m_{$\pi0$}<0.04; -0.09<M($\gamma\gamma$)-m_{$\eta}<0.06 GeV/c²$ </sub>
 - Decay angle $\cos\theta < 0.95$;

Events

– Have two $\pi^{0/\eta}$ with a minimum χ

$$\begin{split} \chi &= \sqrt{P_1^2(\eta / \pi_1^0) + P_2^2(\eta / \pi_2^0)}, \\ \text{where } \mathsf{P}(\eta / \pi^0) = (\mathsf{M}(\gamma \gamma) - \mathsf{m}_{\eta / \pi^0}) / \sigma_{\eta / \pi^0}. \\ \sigma_{\pi^0} &= 7 \text{MeV} / c^2, \sigma_{\eta} = 12 \text{MeV} / c^2. \end{split}$$

Decay angle is the polar angle of
$$\gamma$$
 in π^0 / η rest frame

$\chi_{cJ} \rightarrow V V$ Event selection

- Photons
 - $|\cos\theta| < 0.93;$ $E_{\gamma} > 25 MeV$
- Charged tracks
 - $-|V_z|<5cm, |V_r|<0.5cm, |cos\theta|<0.8$
- Events
 - $N_{charged}$ = 4; ΣQ =0; $N\gamma$ > N_{should}
 - Selection best $\gamma\,$ by minimizing 4C χ^2 .
 - $\begin{array}{l} \ \varphi: \, |M_{KK} m_{\varphi}| <\!\! 0.015 \ GeV; \ \omega: \, |M_{\pi\pi\pi0} m_{\omega}| <\!\! 0.050 \ GeV \\ \ \chi^2 <\!\! 60 \end{array}$

$$\psi' \rightarrow \gamma \chi_{cJ}, \chi_{cJ} \rightarrow \pi^0 \pi^0, \eta \eta$$
 Systematics

- The systematic uncertainties from
 - γ detection (1% per γ)
 - π^0 (η) reconstruction (1% per π^0)
 - Selection cuts
 - Signal/bkg shape, fit range
 - Trigger (0.1%)
 - Number of ψ ' (4%)

E1 photon angular distribution

MC: E1 transition assumed in $\psi(2S) \rightarrow \gamma \chi_{cJ}$

 $dN/d\cos\theta_{\gamma} \propto (1 + \alpha \cos^2\theta_{\gamma})$ $\alpha = 1 \quad (\chi_{c0})$ $-1/3 \quad (\chi_{c1})$ $1/13 \quad (\chi_{c2})$