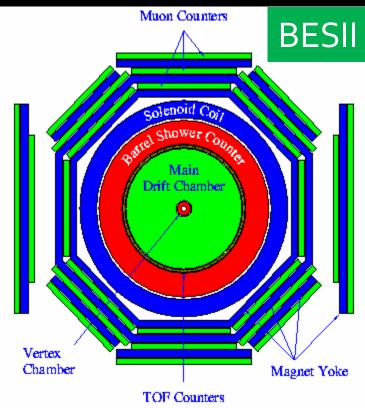
RECENT RESULTS ON LIGHT HADRON SPECTROSCOPY AT BES

Ji Xiaobin For BESIII Collaboration Institute of High Energy Physics Beijing, China

IX International Conference on Hyperons, Charm and Beauty Hadrons (BEACH2010)
June 21 – 26, 2010
Perugia, Italy


Contents

- Introduction
- Preliminary BESII results of charged κ
- Confirmation of pp mass threshold enhancement at BESIII
- Confirmation of X(1835) at BESIII
- $a_o(980) f_o(980)$ mixing
- Summary

Thanks to Fred, Haibo, and many other BESIII members

BEPC and BESII

Beijing Electron Positron Collider

CM energy ranges from 2 to 5 GeV Luminosity at $J/\psi \sim 5x10^{30} cm^{-2}s^{-1}$

BEPC II

A high lumonisity double-ring collider

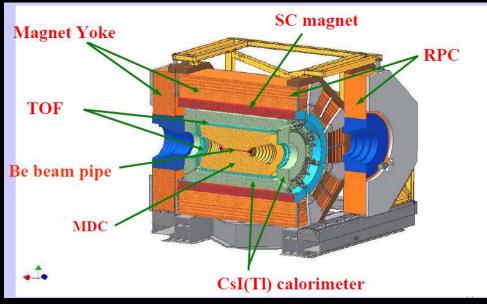
Beam energy: 1.0 – 2.3 GeV

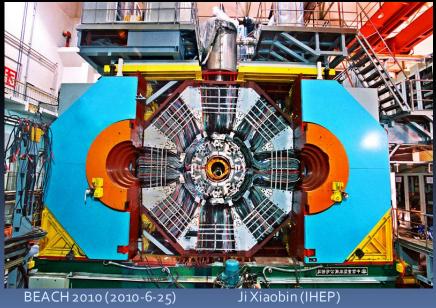
Luminosity: **1**X**1**0³³ cm⁻² s⁻¹

Optimum energy: 1.89 GeV

No. of bunches: 93

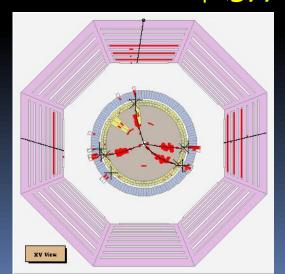
Bunch length: 1.5 cm


Total current: 0.91 A


SR mode: 0.25A @ 2.5 GeV

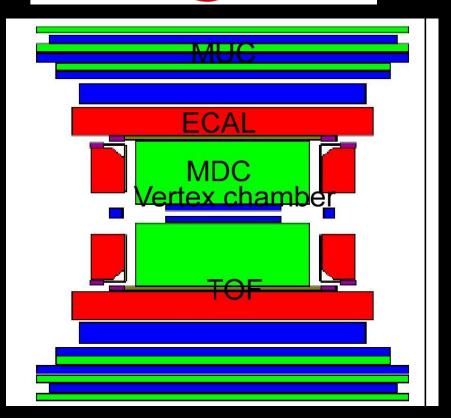
Beam magnets

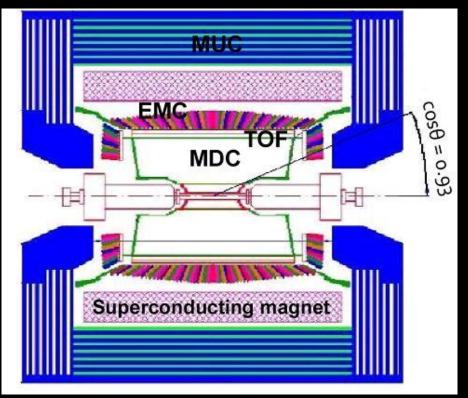
BESIII


July 18, 2008:

First e+e- collision event at BESIII

Apr. 14, 2009: 106 M ψ(2S) events (x4 CLEOc)


July 28, 2009: ~226 M J/ψ events (x4 BESII)


June 1, 2010: ~0.8 fb⁻¹ at ψ(3770)

BES II @ BEPC

BES III @ BEPC II

	BESII	BESIII
MDC	$\sigma(p)/p = 1.78 \% \cdot \sqrt{1 + p^2}$	$\sigma(p_t)/p_t = 0.32 \% \cdot p_t$
	$dE/dx_{reso} = 8 \%$	$dE/dx_{reso} < 6\%$
TOF	180 ps (for bhabha)	90 ps (for bhabha)
EMC	$\sigma(E)/E = 22\% \cdot \sqrt{E}$	$\sigma(E)/E = 2.3\% \cdot \sqrt{E}$
MUC	3 layers for barrel	9 layers for barrel, 8 for endcap

Light Hadron Spectroscopy

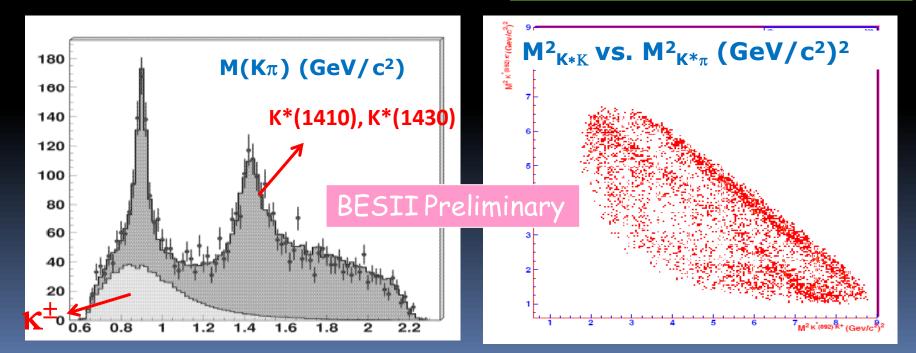
- Establish spectrum of light hadrons
- Search for non-conventional hadrons

- BESIIII advantages:
 - Gluon rich
 - Clean environment
 - Important J^{PC} filter, and isospin filter

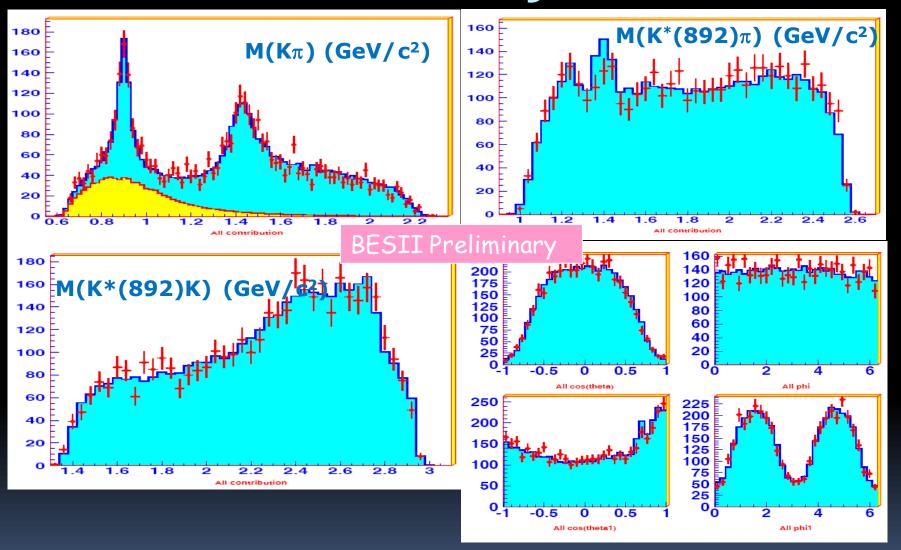
observation of charged κ @BESII

- lacksquare κ was first found in K π scattering data
- However, its phase shift is much less than 180° and it cannot be filled into any nonets of ordinary qq mesons.
 There have been hot debates on the existence of κ.

<u>In recent years:</u>


- FNAL E791 found evidence of neutral κ in D⁺ \rightarrow K⁻ π ⁺ π ⁺ $M = 797 \pm 19 \pm 43 \text{ MeV/c}^2$, $\Gamma = 410 \pm 43 \pm 87 \text{ MeV/c}^2$
- CLEO $D^{\circ} \rightarrow K^{-}\pi^{+}\pi^{\circ}$ data find no evidene of κ
- FOCUS data on $D^+ \to K^- \pi^+ \mu^+ \upsilon$ required K^{*o} interfere with either a constant amplitude or a broad o⁺ resonance in $K\pi$.
- BESII observed neutral κ in $J/\psi \to K^{*o}K\pi \to K^+K^-\pi^+\pi^-$ in 2006.

neutral
$$\kappa$$
 pole: $m + i\frac{\Gamma}{2} = (841 \pm 30^{+81}_{-73}) - i(309 \pm 45^{+48}_{-72}) \text{ MeV/c}^2$


BEACH 2010 (2010-6-25) Ji Xiaobin (IHEP)

The existence of charged κ is expected

- CLEO reported the necessity of $\kappa^{\pm} \rightarrow K^{\pm}\pi^{\circ}$ in $D^{\circ} \rightarrow K^{+}K^{-}\pi^{\circ}$
- However, no charged κ is needed in BABAR data.
- BESII studied charged κ in $J/\psi \to K^{*\pm}\kappa^{\mp} \to K_s\pi^{\pm}K^{\mp}\pi^0$

Partial wave analysis results

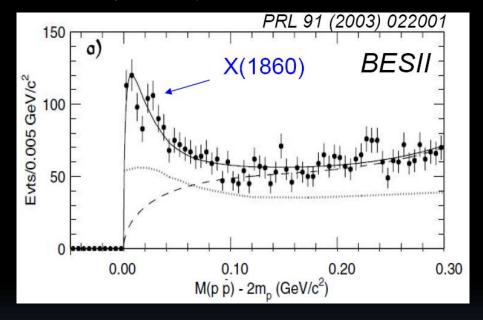
Resonance parameters of charged κ

charged κ	Constant BW	BW with ρ	Zheng BESII Prelimi	
Mass(MeV)	810±68 ⁺¹⁵ -24	884±40 ⁺¹¹ -22	1165±58 ⁺¹²⁰ -41	
Width(MeV)	536±87 ⁺¹⁰⁶ -47	478±77 ⁺⁷¹ -41	1349±500 ⁺⁴⁷² -176	
pole(MeV)	(849±77 ⁺¹⁸ ₋₁₄) -i(256±40 ⁺⁴⁶ ₋₂₂)	(849±51 ⁺¹⁴ ₋₂₈) -i(288±101 ⁺⁶⁴ ₋₃₀)	(839±145 ⁺²⁴ -7) -i(297±51 ⁺⁵⁰ -18)	
neutral κ	Constant BW	BW with ρ	Zheng	
neutral κ Mass(MeV)	Constant BW 745±26+14-91	BW with ρ 874±25 ⁺¹² -55	Zheng 1140±39 ⁺⁴⁷ -80	
Mass(MeV)	745±26+14 ₋₉₁	874±25 ⁺¹² -55	1140±39 ⁺⁴⁷ -80	

 \blacktriangleright Different parameterizations of κ give consistent results on the pole of charged κ

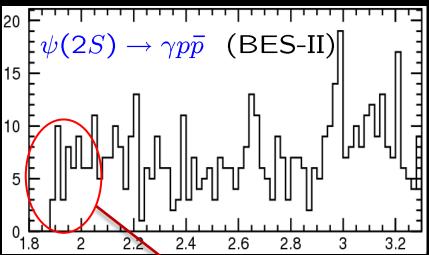
PI.

 \triangleright The pole position for charged κ is consistent with that for neutral κ within the error.

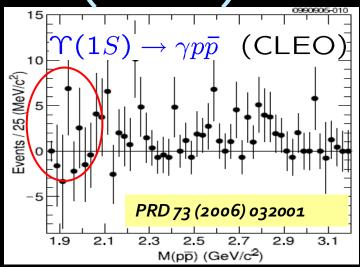

pp threshold enhancement @BESII

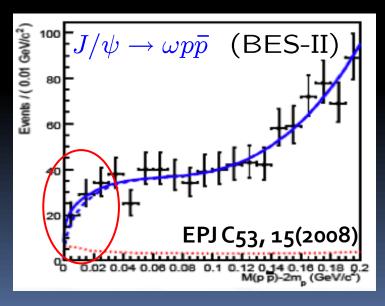
If fitted with a S-wave resonance

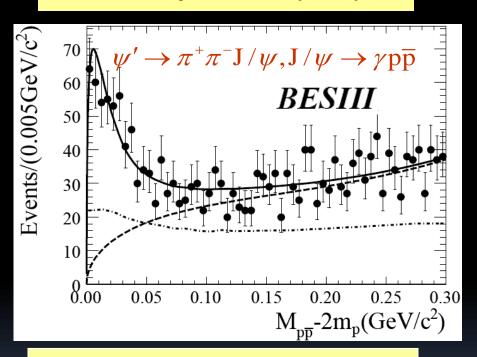

M =
$$1859_{-10-25}^{+3}$$
 MeV/c²
 Γ < 30 MeV/c² (90% CL)

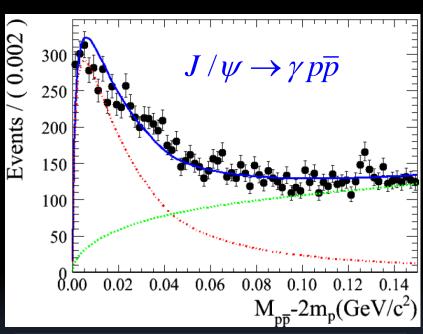

- Theoretical speculation:
 - pp bound state?
 - FSI effect?
 - ··· ···

$J/\psi \rightarrow \gamma p\overline{p}$




Non-observation of X(1860)


No significant signal of X(1860) found (only 2σ significance)



pp threshold enhancement @BESIII

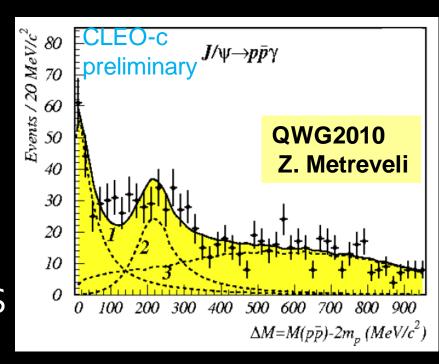
Chinese Physics C 34(2010)421

BESIII preliminary

$$M=1861^{+6}_{-13}^{+7}_{-26} MeV/c^{2}$$

 $\Gamma < 38 \text{ MeV/c}^2 (90\% \text{ CL})$

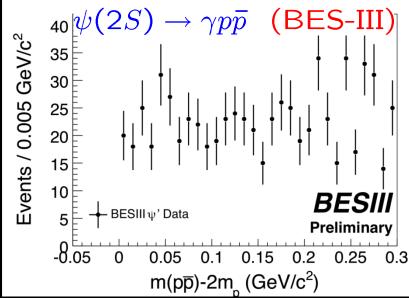
 $M=1861.6 \pm 0.8 \text{ MeV/c}^2$

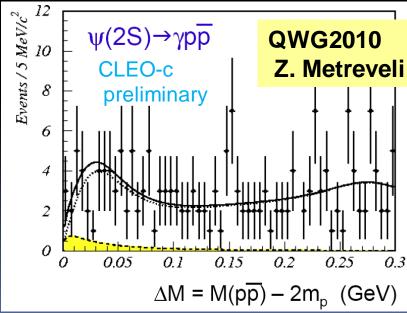

 $\Gamma < 8 \text{ MeV/c}^2 (90\% \text{ CL})$

Consistent observation by BESIII!

pp threshold enhancement @CLEOc

- CLEO-c does the same fit as that BES, they obtain $M(R_{thr}) = 1861^{+6}_{-16}$ (MeV/c²), $\Gamma(R_{thr}) = 0^{+32}_{-0}$ (MeV/c²) which agree with BESII results.
- CLEO-c fit with three contributions: $R_{thr}+f_{o}(2100)+PS$ $M(R_{thr})=1837^{+10}_{-12}^{+9}_{-7}(MeV/c^{2}),$ $\Gamma(R_{thr})=0^{+44}_{-0}(MeV/c^{2})$ CL=26.1%

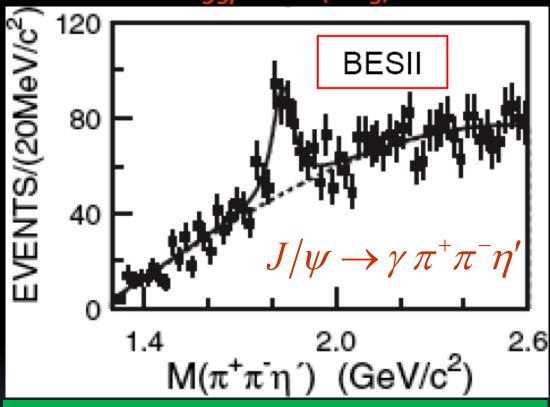

BES considered 2nd and 3rd parts as systematic errors.



The central value of the mass is close to the resonance mass reported by BES with $M(R) = 1833.7 \pm 6.1 \pm 2.7 \text{ MeV/c}^2$, observed in $J/\psi \rightarrow \gamma R$, $R \rightarrow \pi^+\pi^-\eta^-$ [PRL 95 (2005) 262001]

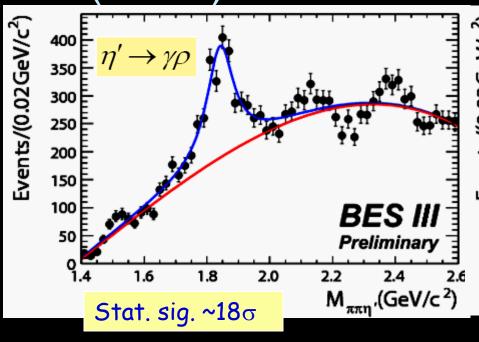
X(1860) in $\psi(2S)$ decays (preliminary)

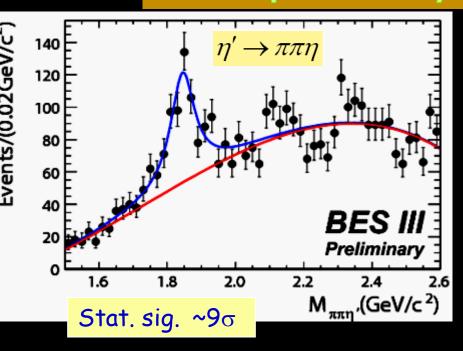
- Check also for enhancement in ψ(2S) decays (high statistics) confirmation of no observation of enhancement in ψ(2S) channel ⇒ pure FSI effect unlikely
- $B(\psi(2S)\rightarrow \gamma R)xB(R\rightarrow pp)$
 - CLEO-c fit assuming M=1859MeV, Γ =20MeV < 1.6 x 10-6 @90% CL
 - BESII result:
 PRL 99(2007)011802
 < 5.4 x 10-6 @90% CL

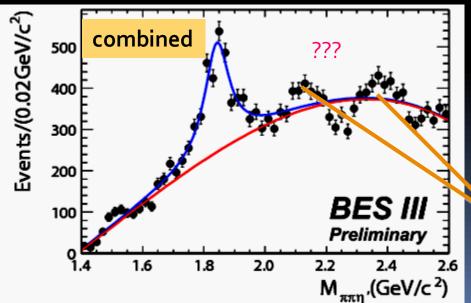


X(1835) at BESII

- The X(1860) should be detected in other decay modes.
- G.J. Ding and M.L. Yan suggest η'ππ to be a favorable mode. (PR C₇₂, o15208 (2005))
 - there is gluon content in pp
 - η' has strong coupling to gluons
- Confirmation of X(1835) is necessary with BESIII
 ~230M J/ψ data sample

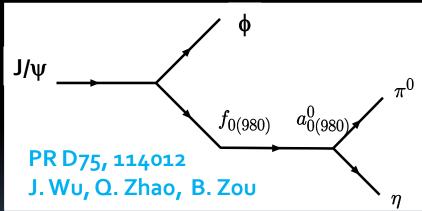

PRL 95,262001(2005)

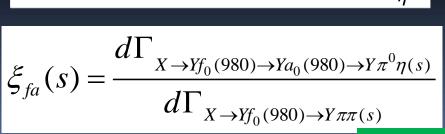


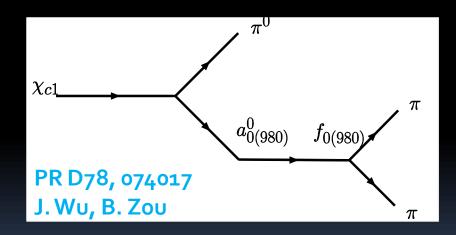

M = 1833.7 \pm 6.1 \pm 2.7 MeV/c² Γ = 67.7 \pm 20.3 \pm 7.7 MeV/c² B(J/ ψ \rightarrow γX) × B(X \rightarrow π + π - η ') = (2.2 \pm 0.4 \pm 0.4) × 10⁻⁴ sig. = 7.7 σ

X(1835) at BESIII

BESIII preliminary

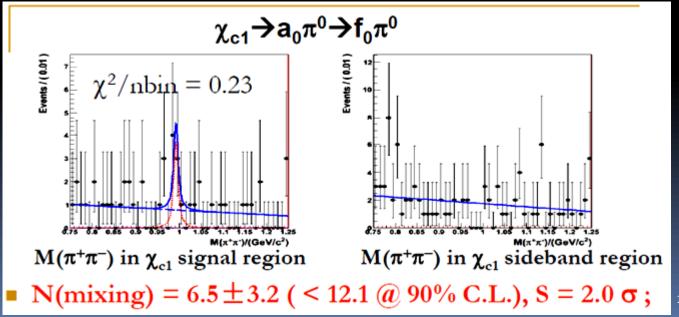

M = 1842.4 \pm 2.8(stat.) MeV/c² Γ = 99.2 \pm 9.2 (stat.) MeV/c² Fit result: Stat. sig. ~ 21 σ


X(1835) confirmed by BESIII


The possibility that there are two new resonances is under further study.

$a_0(980) - f_0(980)$ mixing

- Light scalar mesons f_0 and a_0 are still controversial.
- Described as quark-antiquarks, four quarks, KK-bar molecule, qq-bar g hybrids, etc.
- Study of mixing important to clarify their nature.
- $J/\psi \rightarrow \phi f_0 \rightarrow \phi a_0 \rightarrow \phi \eta \pi$ and $\chi_{c1} \rightarrow a_0 \pi^o \rightarrow f_0 \pi^o \rightarrow \pi^+ \pi^- \pi^o$ provide complementary information:


$$\xi_{af}(s) = \frac{d\Gamma_{X \to Ya_0(980) \to Yf_0(980) \to Y\pi\pi(s)}}{d\Gamma_{X \to Ya_0(980) \to Y\pi^0\eta(s)}}$$

$a_0(980) - f_0(980)$ mixing

BESIII preliminary

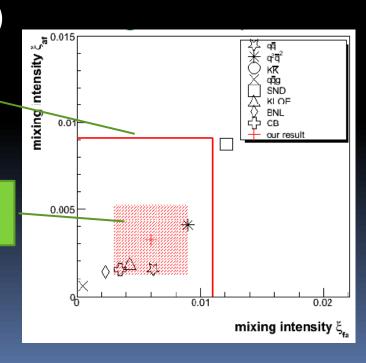
Mixing peaks expected at ~991 MeV/c² with 8 MeV/c² width.

$J/\psi \rightarrow \phi \ f_0 \rightarrow \phi \ a_0$ $\int_{\mathbb{R}^2} \frac{\chi^2}{\pi^2} \int_{\mathbb{R}^2} \frac{\chi^2}{\pi^2} \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} \frac{\chi^2}{\pi^2} \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} \frac{\chi^2}{\pi^2} \int_{\mathbb{R}^2} \int$

$a_0(980) - f_0(980)$ mixing

Mixing intensity

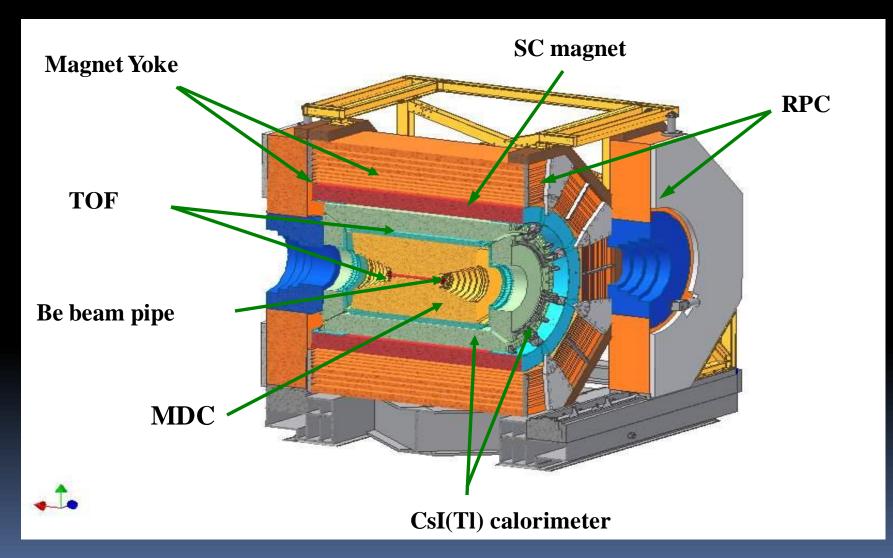
BESIII preliminary


*
$$\xi_{fa}$$
= (0.6±0.2(stat.)±0.2(sys.))% (<1.1% @90% C.L.)

* ξ_{af} = (0.32±0.16(stat.)±0.12(sys.))%

(<0.91% @90% C.L.)

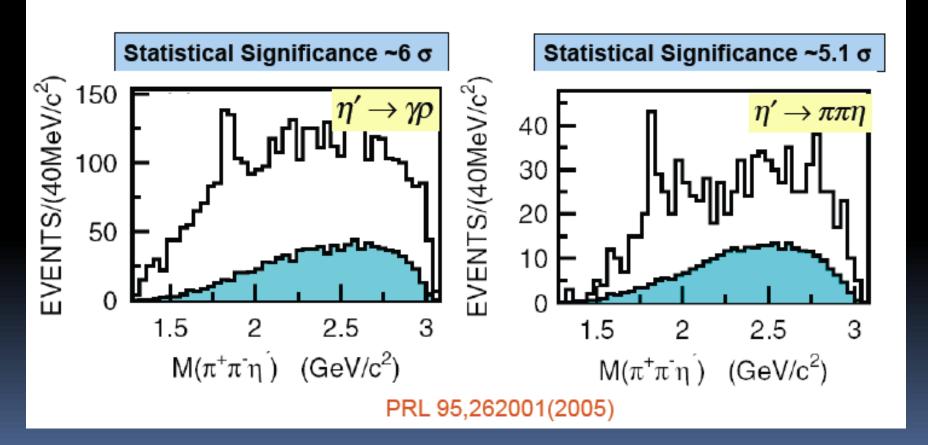
our upper limit


our measurement

Summary

- BEPCII/BESIII had been successfully constructed and commissioned with excellent performance
- 100 M ψ (2S) and 230 M J/ ψ events samples have been accumulated, >800 pb⁻¹ at ψ (3770) so far in 2010.
- charged κ is observed at BESII
- pp threshold enhancement is confirmed at BESIII
- X(1835) is confirmed at BESIII
- $a_0(980) f_0(980)$ mixing is meausred
- More exciting results are expected

Thank you!



BESIII Performance

Sub-detectors			design	measurement
MDC	Momentum resolution (1 GeV)		0.5-0.7%	0.58%
	dE/dx resolution		6-8%	6.0 %(hadron) 5.3% (Bhabha)
ЕМС	Energy resolution (1 GeV)		2.5-3.0%	2.5%
	Spatial resolution		5-7 mm	6 mm
TOF	Time resolution	Barrel	80 – 90 ps	8o ps (Bhabha)
		Endcap	100-110 ps	100 ps (Di-muon)
мис	$\delta_{R\Phi}$ =1.4 cm~1.7 cm			<1.7 cm

BEACH 2010 (2010-6-25) Ji Xiaobin (IHEP) 2

Observation of X(1835) in $J/\psi \rightarrow \gamma \pi^+\pi^-\eta'$ at BESII

