

ATLAS results on charm production

Eleni Mountricha (NTU Athens – CEA Saclay) on behalf of the ATLAS collaboration

BEACH2010 Perugia, Italy 21/06/10

Introduction

Aim:

- measurement of charm (and beauty) production
- seither full or partial D meson reconstruction
- b/c separation

Charm (and beauty) production at LHC, pp → QQX

- •Flavour Creation (FC):
 - $g+g \rightarrow Q+Q$
 - $q+q \rightarrow Q+Q$
- •Flavour Excitation (FE):
 - $Q+g \rightarrow Q+g$
 - $Q+q \rightarrow Q+q$
- Gluon Splitting (GS):
 - $g \rightarrow Q + Q$

Production in pp collisions

- @ $\sqrt{s} = 7\text{TeV}$:
- $\ \sigma(cc) \sim 4.4mb$
- \circ σ (bb) \sim 0.24mb

Reconstruction already feasible in ATLAS with the first LHC data due:

- large cross-section values
- clean D meson signatures
- very good ATLAS tracking

The ATLAS detector

Muon Detectors

Length: ~46 m Radius: ~12 m Weight: ~7 Ktons

Inner Detector (|n|<2.5, B=2T): Si Pixels, Si strips, Transition Radiation Tracker (straws). Precise tracking and vertexing, e/π separation. p_t resolution: $\sigma/p_{t} \sim 3.8 \times 10^{-4} p_{t}$ $(GeV) \pm 0.015$

Liquid Argon Calorimeter

Tile Calorimeter

3-level trigger reducing the rate from 40 MHz to ~200 Hz

Muon **Spectrometer**

 $(|\eta| < 2.7)$: aircore toroids (average 0.5T) with gas-based muon chambers. Muon trigger and measurement with momentum resolution < 10% up to $E(\mu) \sim 1 \text{ TeV}$

Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker Toroid Magnets

EM calorimeter: Pb-LAr Accordion. e/y trigger, identification and measurement. E-resolution: $\sigma/E \sim 10\%/\sqrt{E}$

HAD calorimetry ($|\eta|$ <5): Fe/scintillator Tiles (central), Cu/W-LAr (fwd). Trigger and measurement of jets and missing ET. E-resolution: $\sigma/E \sim 50\%/\sqrt{E \pm 0.03}$

Overall statistics for 7TeV

collisions

ntegrated Luminosity [nb⁻¹/day]

Instantaneous luminosity L derived from:

- MBTS (trigger scintillators at ±3.5m from IP) double-side coincidence trigger rate
- LAr offline event selection (coincidence of in-time end-cap energy deposits)
- Measurement from dedicated LUCID forward detectors, at ±17m from IP Present overall L scale uncertainty ~20% from systematic uncertainties (MC crosssection)

Total luminosity about 16 nb⁻¹; 89 % of the luminosity delivered by LHC

For our analysis: 1.4 nb⁻¹

Introduction to the analysis

Ingredients of this analysis:

- Trigger
- Using the ATLAS Minimum Bias Trigger Scintilators (MBTS): > 99.5% for any track multiplicity
- With higher luminosity, lepton trigger will be used

• Tracking:

Inner Detector ($|\eta| < 2.5$, B=2T) Precise tracking and vertexing

- Pixel Detector
- Semiconductor Tracker (SCT)
- Transition/Radiation Tracker

5

(TRT)

ATLAS Inner Detector

- Pixel Detector:
- 3 barrel layers, 2 x 3 end-cap discs
- $\sigma_{r\phi} \sim 10 \ \mu m, \ \sigma_z \sim 115 \ \mu m$
- Silicon Strip Detector (SCT)
- 4 barrel layers, 2 x 9 end-cap discs
- $\sigma_{r\phi} \sim 17 \ \mu m, \ \sigma_z \sim 580 \ \mu m$
- Transition Radiation Tracker(TRT)
- 73 barrel straw layers, 2x160 end-cap radial straw discs

$$\sigma_{r\phi} \sim 130 \ \mu m$$

Subdetector	Number of Channels	Approximate Operational Fraction
Pixels	80 M	97.5%
SCT Silicon Strips	6.3 M	99.3%
TRT Transition Radiation Tracker	350 k	98.0%

Tracking: data/MC agreement

Detailed studies comparing data/MC

Dedicated care that Monte Carlo samples reflect conditions during data taking (beam spot position, inactive modules, noisy channels)

In general, there is an excellent agreement between data and MC

ATLAS vertex reconstruction

Longitudinal Plane distribution least 10 tracks

for events with at

Excellent primary vertex reconstruction

Analysis strategy

- D-meson selection:
- All hard nature of charm production ($p_t(D)$, $p_t(K, \Pi)$)
- All hard nature of charm fragmentation ($p_t(D)/E_t$)
- relatively large D-mesons' life-time (decay length Lxv)
- "spin" angular behaviour of D-mesons' decays ($\cos\theta^*$, $\cos\theta'^{[1]}$)

•Goals:

- If use widest kinematic range where signals can be measured $[p_t(D) > 3.5 \text{ GeV}, |\eta(D)| < 2.1]$
- make signals as clean (significant) as possible in the kinematic range

^[1] In the example of D_s^+ -> ϕ π⁺ -> (K⁻ K⁺) π⁺ θ*(π): angle between the π in the KKπ rest frame and the KKπ line of flight in the laboratory frame

θ'(K): angle between the K and the π in the $KK_{06/10}$ rest frame

D* reconstruction

ст(D⁰) ~ 123 um

- Tracks used satisfying the selection criteria
- Vertexing has been used to combine the 2 oppositely charged tracks to a single vertex (secondary vertex) and combination of 3rd track
- Apply D-meson selection criteria (in previous slide)
- For D* the $\Delta m = M(K\Pi\Pi) M(K\Pi)$ variable is mostly discriminant

D* reconstruction in 7TeV data

$$D^{*+} -> D^0 \pi_s^+ -> (K^- \pi^+) \pi_s^+$$

Positive decay length $p_t(D^*)/E_t > 0.02$

$$\begin{split} & p_t(\pi_s) > 0.25 \text{ GeV, } p_t(K,\pi) > 1.0 \text{ GeV} \\ & | \eta(K,\pi,\pi_s) | < 2.5, \ N^{pix} \geq 1, \ N^{SCT} \geq 4 \\ & d_0^{PV}(\pi_s) < 0.8 \text{mm, } z_0^{PV}(\pi_s) \text{sin}\theta < 1.5 \text{mm} \\ & d_0^{PV}(D^0) < 0.2 \text{mm, } z_0^{PV}(D^0) \text{sin}\theta < 0.5 \text{mm} \\ & \chi^2(D^0) < 5 \end{split}$$

$|M(K\pi) - M^{PDG}(D^0)| < 35MeV$

$144 \text{MeV} < \Delta m < 147 \text{MeV}$

~2000 D*± in the signal

11

D+ reconstruction in 7TeV data

$$D^+ -> K^- \pi^+ \pi^+$$

$$\begin{split} & p_t(\pi_{1,2}) > 0.8 \text{ GeV, } p_t(K) > 1.0 \text{ GeV} \\ & \max(p_t(\pi_{1,2})) > 1.0 \text{GeV} \\ & |\eta(K, \pi_{1,2})| < 2.5, \ N^{pix} \ge 1, \ N^{SCT} \ge 4 \\ & d_0^{PV}(D) < 0.15 \text{mm, } z_0^{PV}(D) \text{sin}\theta < 0.3 \text{mm} \\ & \chi^2(D) < 6 \end{split}$$

 $L_{xy} > 1.3 \text{ mm}$ $p_t (D)/E_t > 0.02$ $cos\theta^*(K) > -0.8$

Suppressing D* and Ds:

D* -> D⁰ π -> (K π) π vetoing Δm < 150 MeV D_s^+ -> ϕ π -> (K K) π vetoing $|M(K"K") - M^{PDG}(\phi)|$ < 8MeV

~1700 D[±] in the signal

Dat reconstruction in 7TeV data

$$D_{s}^{+} -> \phi \pi^{+} -> (K^{-} K^{+}) \pi^{+}$$

 $p_t(K_{1,2}) > 0.7 \text{ GeV}, p_t(\pi) > 0.8 \text{ GeV}$ $|\eta(\pi, K_{1,2})| < 2.5, N^{pix} \ge 1, N^{SCT} \ge 4$ $d_0^{PV}(D_s) < 0.15 \text{mm}, z_0^{PV}(D_s) \sin\theta < 0.3 \text{mm}$ $\chi^2(D_s) < 6$ $L_{xy} > 0.4 \text{ mm}$ $p_t (D_s^+)/E_t > 0.04$ $cos\theta^*(\pi) < 0.4$ $|cos\theta'(K)|^3 > 0.2$

$M(KK) - M^{PDG}(\phi) < 6 \text{ MeV}$

$1.93 \text{GeV} < M(KK\pi) < 2.01 \text{GeV}$

• \sim 330 D_s in the signal

21/06/10

Conclusions

- Clear D^{\pm} , D^{\pm} and Ds^{\pm} signals reconstructed with the ATLAS detector in pp collisions @ 7TeV using $\int \mathcal{L}$ of 1.4nb⁻¹:
- •D*±: 2020 ± 120
- •D±: 1667 ± 86
- •Ds±: 326 ± 57
- © Confirm high performance of ATLAS detector for precision tracking measurements
- Validate vertexing algorithms in ATLAS
- Next step: measure cross-sections