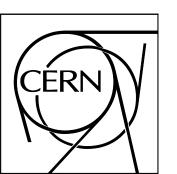


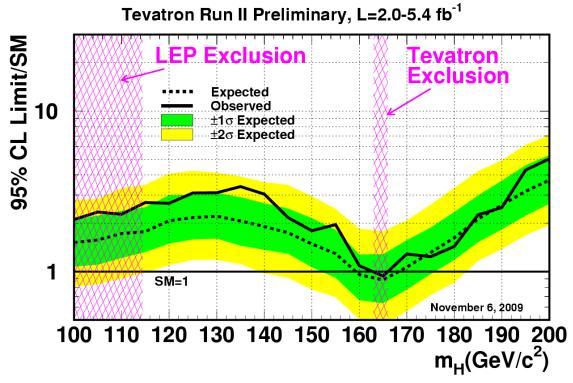
Higgs search prospects at LHC

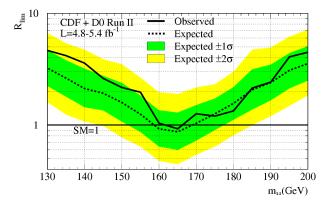

Rebeca González Suárez IFCA

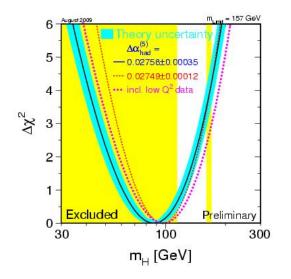
On behalf of the **ATLAS** and **CMS** Collaborations

26 June 2010

BEACH 2010 - IX International Conference on Hyperons, Charm and Beauty Hadrons

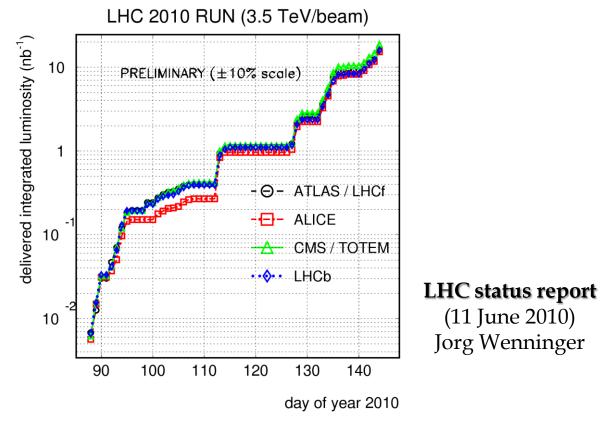

University of Perugia, Italy



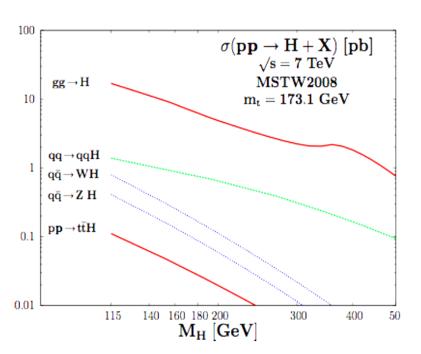

Current Status of the Higgs Searches

<u>Direct Searches:</u> $m_H > 114.4 \text{ GeV}$ and outside the [162, 166] interval <u>Indirect (precision fit)</u>: $m_H < 157 \text{ GeV}$; including LEP2 $m_H < 186 \text{ GeV}$

LEP Higgs Working Group
Tevatron New Phenomena & Higgs Working Group

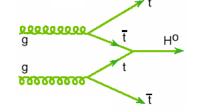


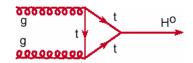
The LHC is running!


- Running at 7 TeV since March 30th 2010
- Continuously collecting luminosity

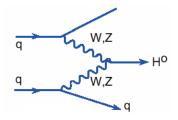
2010/05/27 08.08

Projected Luminosity deliver before the shut down to go to higher energies: 100 pb^{-1} by Nov $2010 \rightarrow 1 \text{ fb}^{-1}$ by end of 2011

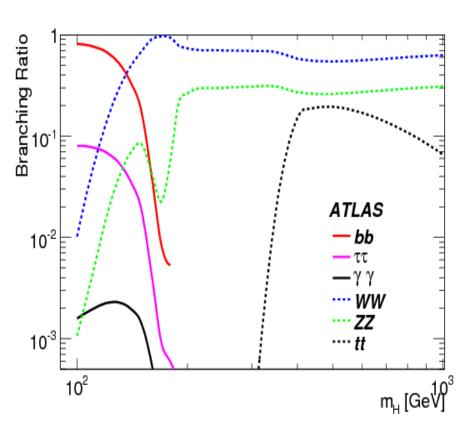

Higgs production at the LHC


Associated production (WH, ZH, ttH):

Relevant in the low mass region, brings an 'easy' triggering



Gluon-gluon fusion (ggH): Dominant production mode



Vector Boson Fusion, VBF (qqH):

Characteristic signature with two forward jets and rapidity gap, increasingly important for high masses

Higgs decay modes

High mass $(m_H > 2m_Z)$

H→**tt**: Difficult selection

Low mass $(m_H < 2m_Z)$

H→bb: Highest BR for low masses. Challenging experimentally, huge QCD background

H→ττ: Important for low masses. Collinear approx.→mass reco. Accesible through VBF

H→**γγ**: Important for low masses. Mass-peak with good resolution, decays through top and W loops

H→WW: Earliest sensitivity

H→**ZZ:** Very clean experimental signature (4 leptons). Mass peak.

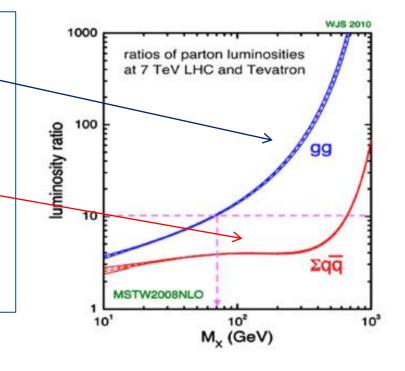
LHC Vs. Tevatron

Higgs searches in ATLAS and CMS at the LHC will go in paralell with the Tevatron experiments CDF and DØ

Tevatron 2011: 2 TeV, 10 fb⁻¹

LHC 2011: 7 TeV, 1 fb⁻¹

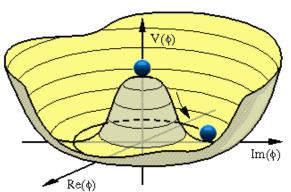
LHC


Higher cross-sections:

More than a factor 10 for gg processes (Higgs)

Better S to B:

The effect in σ is less pronounced for qq (Backgrounds)


Detectors optimized for Higgs searches

Prospective Higgs Searches ATLAS/CMS

Both experiments work in a wide range of Higgs decay channels (see backup)

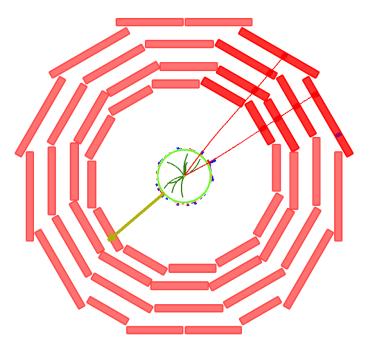
Public results available at different √s: CMS ATLAS

CMS: 7 TeV Projections for the main search channels

About the projections

The 7 TeV projections are **not** new analyses done with 7 TeV MC samples and new detector simulation/reconstruction software.

Start from public results at 14 TeV ($\int L \sim 1-30 \text{ fb}^{-1}$)

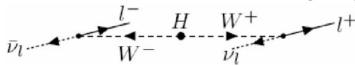

Re-scale signal and background event counts by the ratio of **7 TeV/14 TeV** cross sections

Project for $\int L 1 = fb^{-1}$


No corrections for higher acceptance at smaller \sqrt{s} , up to $\sim 20\%$ No corrections for improvements in reconstruction (efficiencies, resolution)

(*ATLAS projections at 7 TeV will be public by ICHEP)

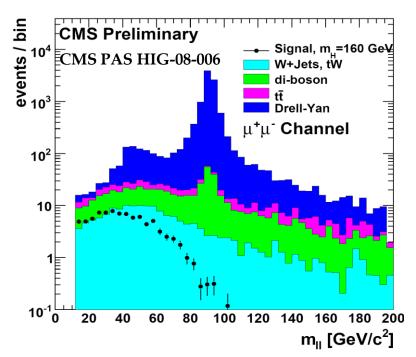
SM H → **WW*** → **212v**

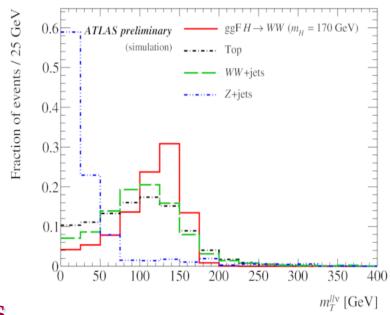

• The **discovery channel** for a SM Higgs boson in a wide mass range in the LHC

• Branching ratio close to 1 in

$$2m_W < m_H < 2m_Z$$

- Clear experimental signature:
 - 2 high PT leptons with opposite charge and a small transverse opening angle

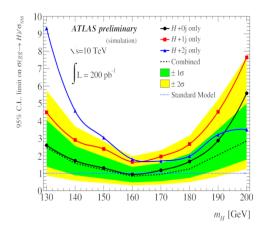

- Missing ET
- No jets (GF) or two forward jets with rapidity gap (VBF)


Backgrounds:

Real or fake multi-lepton final states + missing ET: 'irreducible' WW (WZ, ZZ), ttbar (tW), Drell-yan, W+jets...

SM H \rightarrow WW* \rightarrow 212v

ee, μμ, eμ final states
No mass peak
Good knowledge of backgrounds
mandatory (control regions & datadriven methods)
Systematic uncertainties
Multivariate approach

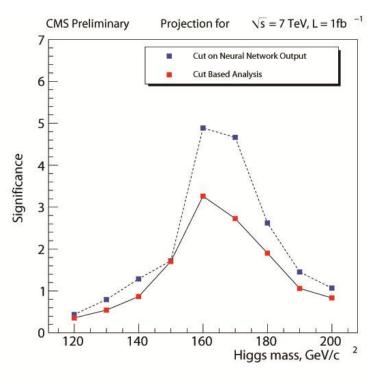

ATLAS

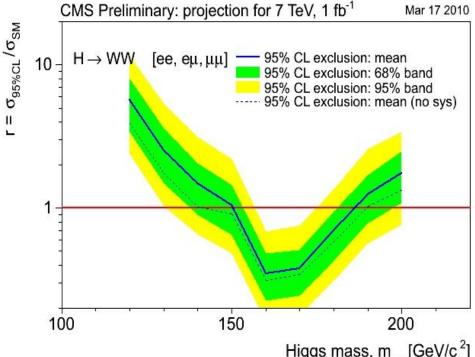
Three events selections: *H*+0 *j;H*+1 *j and H*+2 *j analyses* Use of the transverse mass

CMS

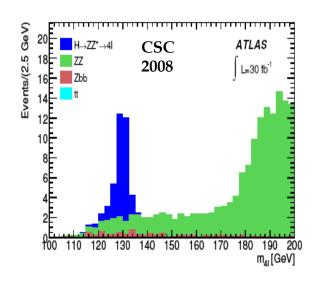
H+0j (+ independent VBF analysis) Sequential cut-based analysis: 3 final states Multivariate analysis: all together

SM H \rightarrow WW* \rightarrow 212v


ATLAS 10 TeV, ∫Ldt = **200pb**-¹ exclusion: **160-170 GeV** 95%CL


CMS

7 TeV, ∫Ldt = 1fb⁻¹ (projection)


Exclusion 95%CL: **150<m**_H**<185 GeV**

Discovery level sensitivity (\sim 5 σ) : **160<m**_H**<170 GeV**

SM H → **ZZ***→ 4I

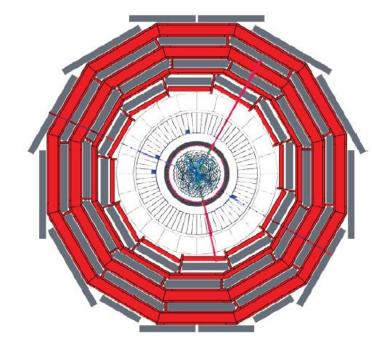
'Golden' Higgs decay:

experimentally cleanest signature for discovery.

Narrow 4-lepton invariant mass peak on top of a smooth background.

Wide mass range

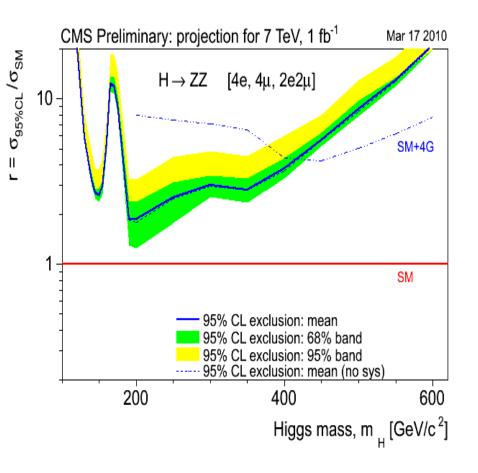
Challenge: m_H between 120 and 150 (one of the Z's off-shell)

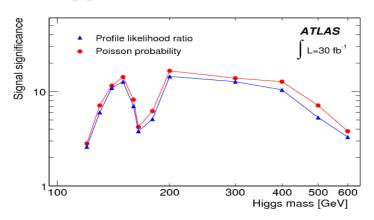

2 pairs of same flavour, opposite-sign leptons (4e, 4μ , $2e2\mu$)

H mass reconstruction Lepton isolation & impact parameter cuts Background estimation by fit on sidebands

Backgrounds:

Irreducible: **ZZ*** dominant


Reducible: **Zbb**, **tt**, **ZW**, **Z** + **X**



SM H → **ZZ***→ 4I

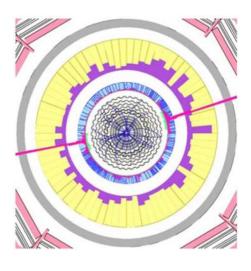
ATLAS

14 TeV, \int Ldt = 30fb⁻¹ Highly sensitive in the high mass region (200 GeV/c² < m_H < 400 GeV/c²)

CMS

7 TeV, ∫Ldt = 1fb⁻¹ (projection)

The SM Higgs boson cannot be excluded anywhere in the entire mass range.


In the 4th generation model* the Higgs boson with a mass:

 m_H <400 GeV

would be excluded

* An extra doublet of quarks would make the gg→H production rate ~9 times larger, regardless of how massive the the two extra quarks might be.

SM $H \rightarrow \gamma \gamma$

Promising channel in the **low mass range**

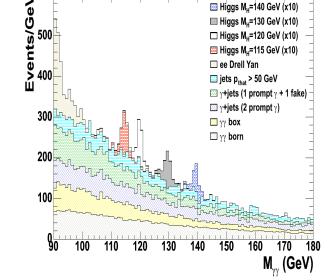
 $(110 < m_H < 140 \text{ GeV})$

Clear signature:

-2 High E_T isolated photons

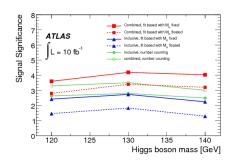
-Mass peak

Small Branching ratio, **High Luminosity analysis**


Background assessed from data sidebands

Backgrounds:

 $\gamma\gamma$, $\gamma\gamma$ +jets (irreducible) γ +jets, jets, DY


Cut-based analysis
Event-by-event kinematical
Likelihood Ratio

ATLAS

Search for $H \rightarrow \gamma\gamma$ and $H \rightarrow \gamma\gamma + jets$ Unbinned maximum-likelihood fit

SM H → YY

ATLAS

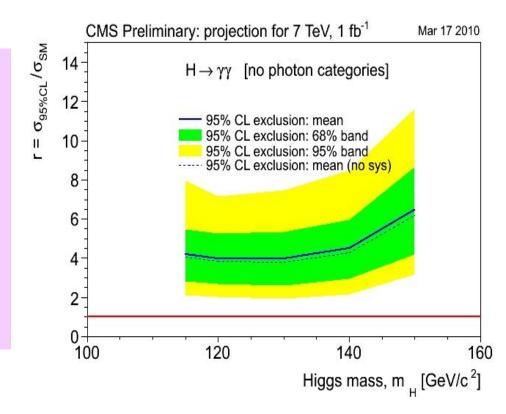
14 TeV, JLdt = 10fb-1

Event Counting: $\sigma = 2.6$

Fixed (floating) mass fit [0j,1j,2j]: $\sigma = 3.6$ (2.8)

CMS

7 TeV, ∫Ldt = **1fb**-¹ (projection)

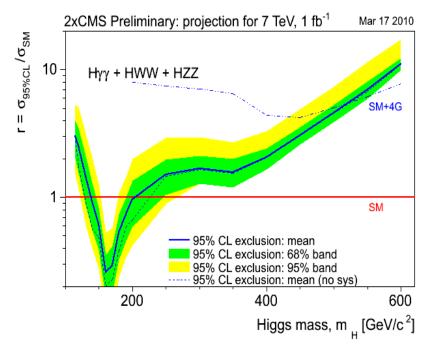

The SM Higgs boson cannot be excluded anywhere in the mass range.

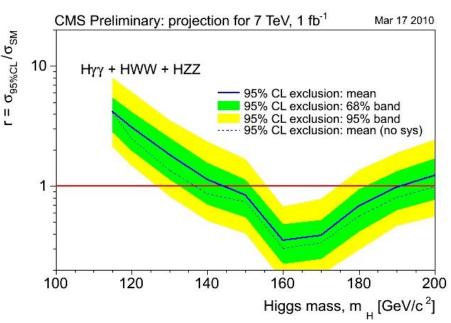
A fermio-phobic Higgs* with:

$m_h < 110 \text{ GeV}$

would be excluded, as for this mass range, the yield $\sigma(pp \rightarrow h_{fph})xBR(h_{fph} \rightarrow \gamma\gamma)$ is ~ 4

*The limit on the anomalous production is expected to be about 4 times $\sigma(pp \rightarrow H_{SM}) \times BR(H_{SM} \rightarrow \gamma \gamma)$.




SM Higgs Combination at 7 TeV

CMS

Projected exclusion limits combining $H \rightarrow WW \rightarrow 2l2v$, $H \rightarrow ZZ \rightarrow 4l$, $H \rightarrow \gamma\gamma$ Expected exclusion 95%CL:

145< m_H <190 GeV

<u>2xCMS</u>:

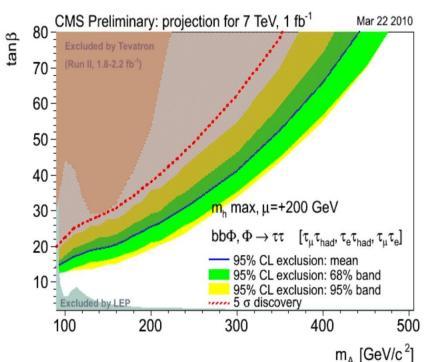
Projected exclusion limits assuming twice amount of data to *indicate* **ATLAS + CMS**.

SM Higgs:

140<m_H<200 GeV

SM Higgs +4th fermion generation:

 m_H <500 GeV

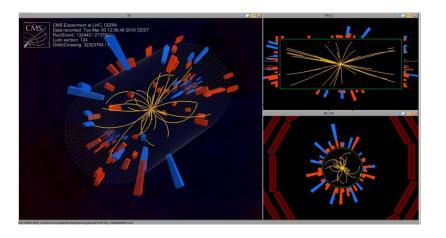

MSSM Higgs bbФ

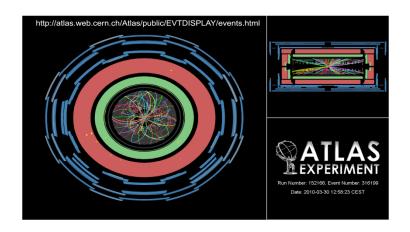
Heavy neutral MSSM Higgs bosons at the LHC

 \rightarrow b quark associated production with subsequent **decay to \tau leptons**

Final states with:
Isolated pairs of $(\tau_{had}\tau_{\mu})$ $(\tau_{had}\tau_{e})$ $(\tau_{e}\tau_{\mu})$ MET
one b-tagged jet, veto extra jets
counting events in $\tau\tau$ -mass window (collinear approximation)

Backgrounds: Z+bb/cc/jets tt

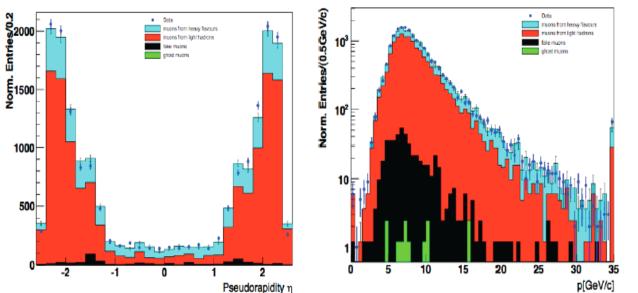


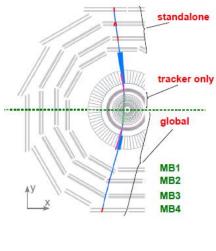

CMS 7 TeV, \int Ldt = **1fb**⁻¹ (projection) pp→bbΦ→bbττ channel.

At low $m_A \sim 90$ GeV, discovery could be possible for

Exclusion could be achieved for tanβ~15

Rebeca Gonzalez Suarez BEACH10

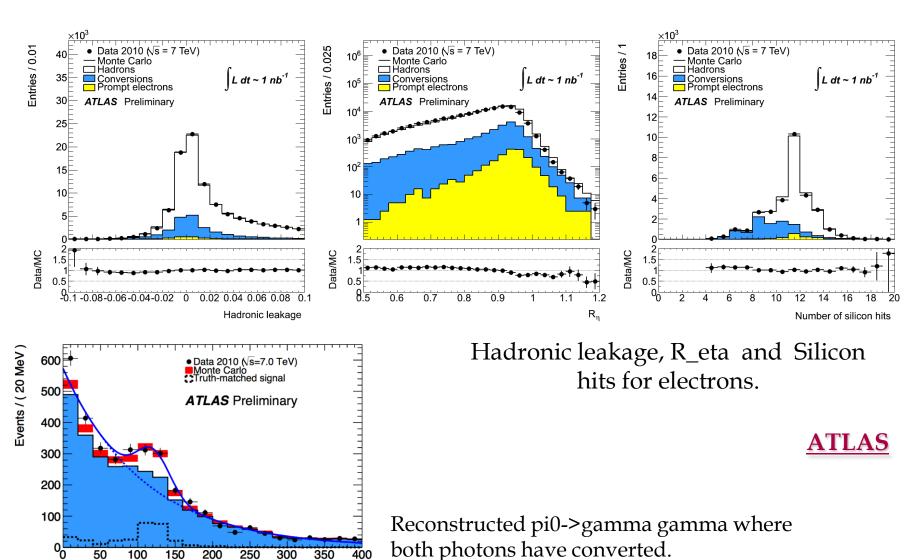

Currently...


It is a bit too early for Higgs physics at the LHC, but

we can already look at the main ingredients with the **first data at 7 TeV**

Muons

- Several Cosmic ray data campaigns → Muons well understood before collisions
- Good performance in collisions



CMS

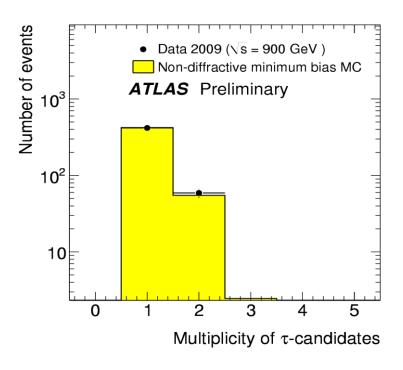
 η and P_T distributions dominated by light hadron decay muons (red), good agreement with MC prediction including heavy flavor decays (blue), punch-through (black) and fakes (green).

Electrons / Photons

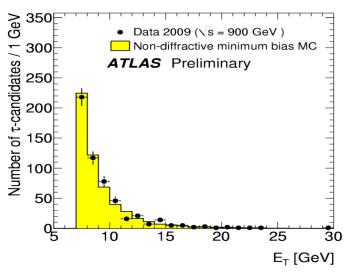
200

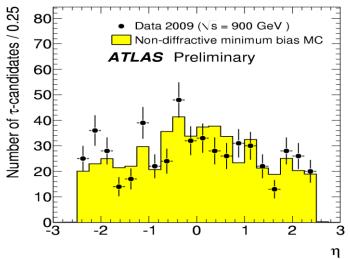
100

250

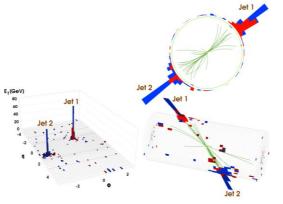

300

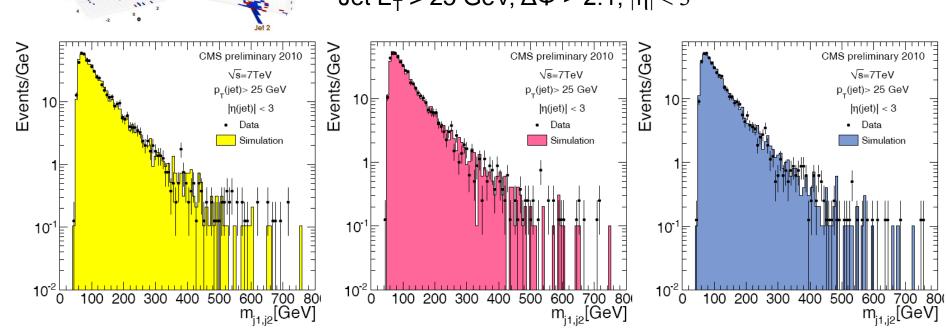
 $m_{\gamma(\rightarrow\,e^+\,e^-)\gamma(\rightarrow\,e^+\,e^-)}~(MeV)$

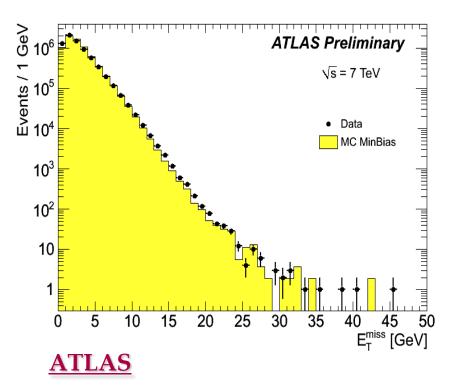

350


Taus

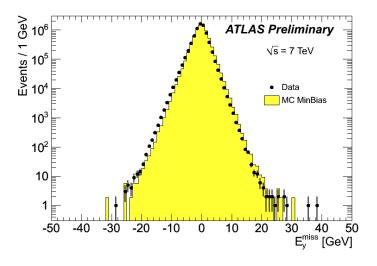
ATLAS

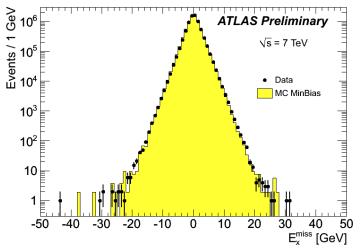

Number of reconstructed tau candidates, uncalibrated transverse energy and pseudorapidity of reconstructed tau candidates for the inclusive sample.


Jets

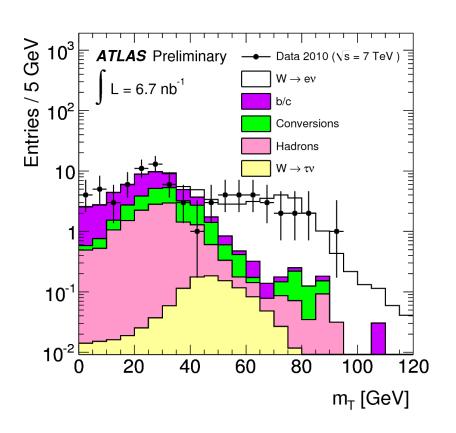

 m_{j1j2} in di-jet events Jets reconstructed with the anti- k_{T} 0.5 algorithm Dijet selection :

Jet $E_T > 25$ GeV, $\Delta \Phi > 2.1$, $|\eta| < 3$




Three different approaches:
Pure Calorimetric, Track corrected calo and Particle flow

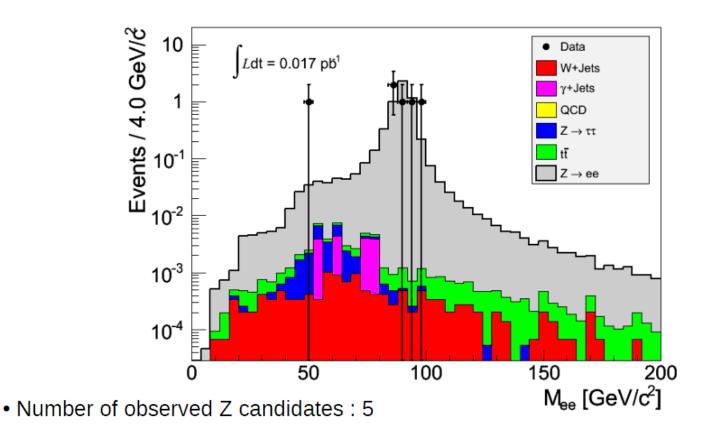
Missing ET

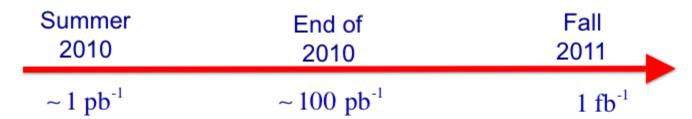

Only topological cluster cells used, with energies calibrated at the electromagnetic scale.



First SM Backgrounds: W

• $W \rightarrow \mu \gamma$ and $W \rightarrow e \gamma$ observed in CMS and ATLAS




First SM Backgrounds: Z

• $Z \rightarrow \mu\mu$ and $Z\rightarrow$ ee also observed in CMS and ATLAS

The road ahead at the LHC

- QCD, b measurements
- W, Z cross sections
- Electroweak program
- Early ttbar observation
- Early searches, mainly Exotica
 - + top physics program
 - + broad search program: Mainly Exotica, SUSY
 - + Higgs program

Summary

- The performance of ATLAS and CMS in collision data has been very good since the start of the data taking
- The main physics objects used in the Higgs analyses are performing well
- Low luminosity, tens of nb⁻¹: enough already to start exploring Standard Model processes (W and Z, soon top!)
- At 7 Tev with enough luminosity (1 fb⁻¹), ATLAS and CMS will begin to explore a sizable range of Higgs mass:
 - SM Higgs discovery sensitivity : [160-170] GeV
 - SM Higgs exclusion range : [140-200] GeV (Low mass SM Higgs searches require high \sqrt{s} and \int L)
 - MSSM Neutral Higgs discovery range: $tan\beta \sim 20$ for small mA
 - MSSM Neutral Higgs exclusion range :down to $tan\beta \sim 15$ for small mA

With $\int L \sim 1$ fb-1 at $\sqrt{s} = 7$ TeV We will do Higgs physics at the LHC!

Backup

ATLAS Vs. CMS

	ATLAS	CMS
	(A Toroidal LHC ApparatuS)	(Compact Muon Solenoid)
Dimensions	Width: 44m	Width: 22 m
	Diameter: 22 m	Diameter: 15 m
	Weight: 7.000 t	Weight: 14.500 t
Magnetic Field	2T solenoid + 3 toroid (0.5T barrel, 1T endcaps)	4T solenoid + return yoke
Tracker	Si pixels, strips + TRT	Si pixels, strips
ECAL	Pb + LAr	PbWO4 crystals
	(Liquid Argon Calorimeter)	(Crystal calorimeter)
	(Optimized towards background rejection)	(optimized towards precise measurements)
HCAL	Fe + scint. / Cu + LAr (10λ)	Cu + scintillator (5.8λ + catcher)
Muon System	Air core spectrometer	Iron core spectrometer
Trigger	3 – Level (region-of-interest 2-Level)	2 - Level

Similar concepts, different execution, detector technologies, design emphasis...

Prospective Higgs Searches ATLAS/CMS

ATLAS:

 $H \rightarrow \gamma \gamma$

 $H \rightarrow ZZ$

 $H \rightarrow WW$

VBF $H \rightarrow \tau \tau$

 $ttH (H \rightarrow bb)$

 $ttH, H \rightarrow WW^*$

WH, $H \rightarrow WW^*$

MSSM $h/A/H \rightarrow \tau\tau$

 $MSSM h/A/H \rightarrow \mu\mu$

Invisible Higgs

Charged Higgs

• • •

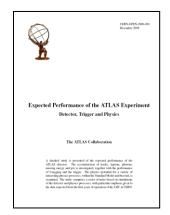
CMS:

 $H \rightarrow \gamma \gamma$

 $H \rightarrow ZZ$

 $H \rightarrow WW$

VBF $H \rightarrow WW/ZZ/invisible$


 $H \rightarrow \tau \tau$

Light charged Higgs

Heavy charged Higgs

Doubly charged Higgs

. . .

Public Results

CMS ATLAS

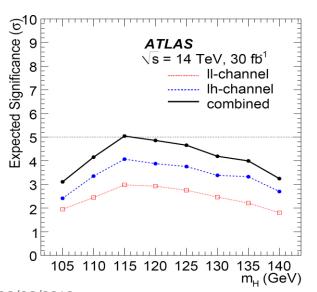
ATLAS: CERN OPEN 2008-020

(+ some 10 TeV updates)

CMS: CERN/LHCC2006-021 (+ Updates!!)

SM VBF H → TT

Three channels investigated:


$$H \rightarrow \tau_l \tau_l, H \rightarrow \tau_l \tau_h, H \rightarrow \tau_h \tau_h$$

- Hadronically decayed taus reconstructed as tau-jets
- VBF signature:

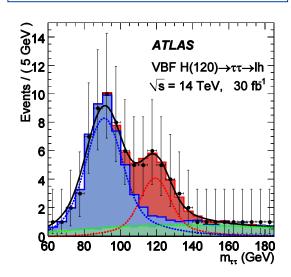
two forward jets with large rapidity gap

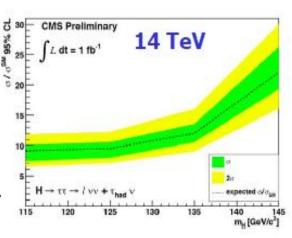
Mass reconstruction:

Collinear approximation

<u>ATLAS</u>

14 TeV, ∫Ldt = **30fb-1** 5σ for 115-120 GeV


CMS


14 TeV, \int Ldt = 1fb-1 exclusion limit $r\sim$ 12

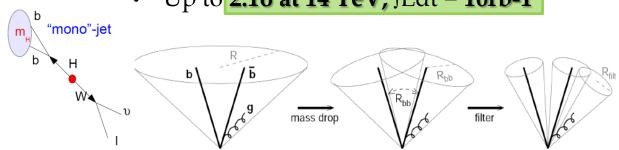
At 7 TeV signal drops by 50%, r will get worse

Backgrounds:

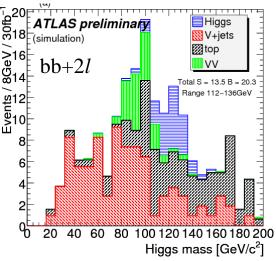
Z+jets, tt, W+jets, QCD

SM H→bb

Modes considered: ttH, $H \rightarrow bb$ & VH, $H \rightarrow bb$

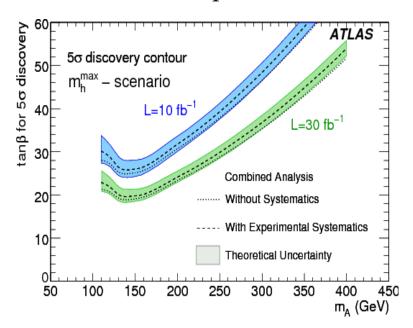

ttH: Experimentally very challenging


- Full reconstruction of the final state demanding
- Combinatorics of jet assignement to W, t, H
 Good control of backgrounds needed to contribute to sensitivity


VH: Three channels: **bb+1l**, **bb+2l**, **bb+(missing ET)**

- More robust against systematics than ttH
- Substantially improves sensitivity for H→bb

b-quarks in the fat mono-jet → Need to analyse jet sub-structure

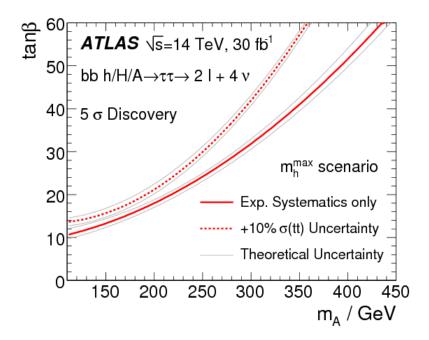

MSSM Higgs

h/H/A→μμ

- Two analyses:
 0b-tag (gluon fusion) & ≥1b-tag
 (bbH production)
- Backgrounds:

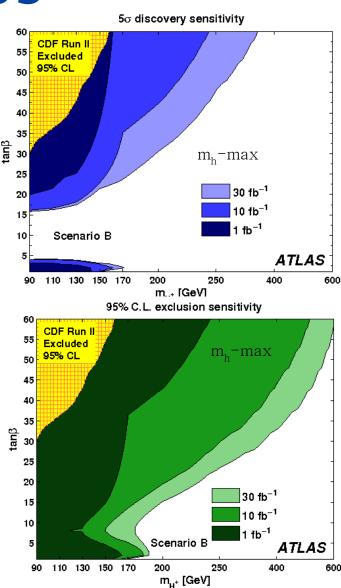
Zb, Z+jets, ZZ, WW, tt

Estimate with side-bands & control samples



$h/H/A \rightarrow \tau \tau \rightarrow ll + 4v$

- Only $\geq 1b$ -tag (bbH production)
- Main backgrounds:


 $Z \rightarrow \tau \tau$ (low m_H), tt (high m_H)

 Estimation in similar way as SM VBF channel

Charged Higgs

- Five channels investigated
 - 3 channels for $\mathbf{m}_{H^+} < \mathbf{m}_{t}$: $tt \rightarrow bWbH^+, \ H^+ \rightarrow \tau v \text{ with } \tau \rightarrow had \text{ or } lvv$ $W \rightarrow qq \text{ or } lv$
 - 2 channels for $\mathbf{m}_{H+} > \mathbf{m}_{t}$: $gg/gb \rightarrow [b]tH^{+}, H^{+} \rightarrow \tau \nu \text{ or } H^{+} \rightarrow tb$
- Need good τ and b-tagging, E_T^{miss} and lepton reconstruction
- Most important backgrounds: tt, QCD
 - Produce control samples using embedding technique

