Production of heavy flavours in ep collisions at HERA

Wojciech Perlański (University of Łódź)
on behalf of the H1 and ZEUS Collaborations

Motivation

Predictions

Tagging methods

Tests of QCD in PhP and DIS

Structure Functions and PDF of Proton

The HERA Collider

e[±] energy 27.5 GeV
p energy 920 GeV
centre-of-mass energy 318 GeV
2 collider experiments: ZEUS and H1

IX BEACH 22 June 2010

2

Heavy Quark production in ep interactions

invariant kinematical variables:

$$s=(k+p)^2$$
 center-of-mass energy of ep system squared

$$Q^2 = -q^2 = -(k-k')^2$$
 boson virtuality

Two kinematic regimes:

3

Deep Inelasting Scattering

Boson Gluon Fusion (BGF)

dominating mechanism of heavy quark production

Motivation

c and b quarks provide a hard scale

-Tests of pQCD based models – scales Q^2 , m_{HQ} , p_T

BGF process is directly sensitive to the gluon density in the proton

-Measurement of charm and beauty contribution to the structure function of the proton – F_2^{cc} and F_2^{bb} and their impact on the protons PDF

pQCD calculations

Massive (FFNS)

c and b generated dynamically

c and b massive

Neglects $[\alpha_S ln(\mu^2/m^2)]^n$

Valid for μ²≈m²

Programs: HVQDIS, FMNR(PhP)

Massless (ZM-VFNS)

c and b massles partons in

proton and photon

Resums $[\alpha_s ln(\mu^2/m^2)]^n$

Valid for $\mu^2 >> m^2$

Variable Flavour Number Scheme (GM-VFNS)

Interpolation between massive and massless model

Massive at low Q²

Massless at high Q2

(eg. for prediction of F_2^{cc} and F_2^{bb})

5

Monte Carlo Generators

PYTHIA – most frequently used for PhP at HERA for all quark flavours PS – according DGLAP approximation of the evolution of PDF fragmentation – Lund string model

RAPGAP – standard event generator for DISHQ production in the massive scheme

CASCADE – instead of DGLAP uses CCFM evolution equation Can be used both for PhP and DIS

MC@NLO – NLO matrix elements for HQ production PS and hadronisation from MC

Heavy quark tagging methods

Reconstruction of D meson

ZEUS N(D⁺)= 7206 ± 168 Decay-length significance S, > 4 Decay-length significance S, > 4 Decay-length significance S, > 4 ZEUS D⁺ (prel.) 323 pb⁻¹ Gaussian + background 1.7 1.75 1.8 1.85 1.9 1.95 2 2.05 2.1 M(Kππ) (GeV)

Semileptonic decay $c,b \rightarrow e$ or $c,b \rightarrow \mu$

7

Heavy quark tagging methods

Inclusive method based on information from vertex detector and using long B and D lifetime

IX BEACH 22 June 2010

8

Charm **Photoproduction** using D* and dijets

 $\Delta m = m(K\pi\pi) - m(K\pi)$ [GeV]

Beauty in Photoproduction with jets

data sample: 128 pb⁻¹ (2006-07)

reconstructed using secondary vertex information

Beauty in Photoproduction with jets

HERA

All beauty measurements in reasonable agreement NLO prediction agrees with measurements

New measurement compatible with previous results

D* production in **DIS** at Q²>100 GeV²

data sample: 351 pb⁻¹

D* production Cross Section in full Q² Range D* production in DIS

HVQDIS – describes data for whole kinematic region

D[±] in DIS

data sample: 323 pb⁻¹ (2005 -07)

information

Inclusive charm & beauty in DIS

$$\tilde{\sigma}^{c\bar{c}}(x,Q^2) = \frac{\mathrm{d}^2 \sigma^{c\bar{c}}}{\mathrm{d}x \,\mathrm{d}Q^2} \frac{xQ^4}{2\pi\alpha^2(1+(1-y)^2)}$$

Predictions reasonably describe the data

charm & beauty in DIS with Jets

Good agreement with NLO

 $6 < Q^2 < 1000 \text{ GeV}^2$ 0.07 < y < 0.625 $E_T^{jet} > 6 \text{ GeV}$ $-1 < \eta^{jet} < 1.5$

Requiring a high E_T jet introduces another hard scale

charm & beauty →µ in DIS

data sample: 126 pb⁻¹ (2005)

 $Q^2>20~GeV^2$ 0.01~<y<0.7 $-1.6<\eta_{\mu}<2.3$ $p_T^{\mu}>1.5~GeV$ $p_T^{jet}>2.5~GeV$

3-dimensional fit of p_T^{rel} , missing pt and impact parameter δ of muon using MC templates

Charm: agreement with HVQDIS and RAPGAP Beauty: predictions below the data at low Q²

Beauty $\rightarrow \mu$ in DIS (HERA I)

ZEUS

 $Q^2 > 2 \text{ GeV}^2$ 0.05 < y < 0.7 $\eta^{\mu} > -1.6$ $p_T^{\mu} > 1.5 \text{ GeV}$ $E_T^{jet,lab} > 5 \text{ GeV}$ $-2 < \eta^{jet} < 2.5$

Acceptable description by HVQDIS Similar differences as in previous analysis

Beauty using secondary vertices

10

15

data sample: 354 pb⁻¹ (2004 -07)

25

 E_{T}^{jet} (GeV)

Measurement using secondary vertices

Good agreement with HVQDIS NLO QCD

F₂^{bb} and F₂^{cc} contributions to the proton structure function F₂

$$\frac{\mathrm{d}^2 \sigma}{\mathrm{d}x \mathrm{d}Q^2} = \frac{2\pi\alpha^2}{xQ^4} [(1 + (1-y)^2)F_2 - y^2 F_L].$$

$$\frac{\mathrm{d}^2 \sigma^{c\bar{c}}}{\mathrm{d}x \mathrm{d}Q^2} = \frac{2\pi\alpha^2}{xQ^4} [(1 + (1-y)^2)F_2^{c\bar{c}} - y^2 F_L^{c\bar{c}}]$$

F₂bb MEASUREMENT

FFNS

GM-VFNS

Results of different analyses agree Predictions agree with data

F₂^{cc} combined measurement

F₂^{cc} combined measurement

Comparison with GM-VFNS: precision of the data is smaller than variation of different predictions

F₂^{cc} combined measurement

Agreement with independent measurement of HERAPDF1.0

ZEUS D± (red): result of new analysis compatible with the combined result

Proton PDF fits including combined F₂^{cc}

Using combined F₂^{cc} measurement makes the PDF fit more stable against different treatment of charm mass

Summary and conclusions

Some of the latest Heavy Flavour analyses from H1 and ZEUS presented

General agreement with QCD predictions

F₂^{bb} and F₂^{cc} - different measurements compatible

Charm measurement is about to be included in the global PDF fit