

New β s measurement at CDF

F. Bedeschi, INFN-Pisa BEACH 2010 Perugia, 22 June 2010

Introduction

- SM description
- The measurement
 - Fit strategy
 - Signals
 - Flavor tagging

Results

June 22 - BEACH 2010, Perugia

The Context

Great SM success in B_d/B_u sector

- Thanks B-factories!
- ...but no evidence for new physics there

Bs sector can still provide surprises

- Natural physics for Tevatron experiments
- ➢ In 2006 ∆m_s measurement from Bs mixing

Right on the SM expectations!

- Next step is measurement of CP violating phases eg. β_s
 - ...some excitement there so far
- June 22 BEACH 2010, Perugia

Status July 2009

Previous CDF+D0 combined results intriguing

F. Bedeschi, INFN-Pisa

3/18

Related measurements

as

ΒB

Semileptonic asymmetry

- Related to $\Delta\Gamma$, Δm and βs
 - SM expectation ~ 10⁻⁵

Old results from CDF and D0:

Intriguing new D0 result

June 22 - BEACH 2010, Perugia

4/18

♦ βs is the phase of –Vts
 > ≠ 0 in O(λ⁴) CKM expansion

$$V_{\text{CKM}} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} - \frac{\lambda^4}{8} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda - A^2 \lambda^5(\rho + i\eta - \frac{1}{2}) & 1 - \frac{\lambda^2}{2} - (\frac{1}{8} + \frac{A}{2})\lambda^4 & A\lambda^2 \\ A\lambda^3[1 - (\rho + i\eta)(1 - \frac{\lambda^2}{2})] & -A\lambda^2 - A\lambda^4(\rho + i\eta - \frac{1}{2}) & 1 - \frac{1}{2}A^2\lambda^4 \end{pmatrix} + \mathcal{O}(\lambda^6)$$

Quite well constrained assuming SM and very small

2 state effective theory:

- Describes mixing and CP violation
- \blacktriangleright M, Γ hermitian
 - **CPT** invariance: $M_{11} = M_{22}$, $\Gamma_{11} = \Gamma_{22}$
- After diagonalization:
 - Eigenvalues:

$$i\frac{d}{dt} \begin{pmatrix} |B_s^0(t)\rangle \\ |\bar{B}_s^0(t)\rangle \end{pmatrix} = \left(\mathbf{M} - \frac{i}{2}\Gamma\right) \begin{pmatrix} |B_s^0(t)\rangle \\ |\bar{B}_s^0(t)\rangle \end{pmatrix}$$
$$M = \begin{pmatrix} m & m_{12} \\ m_{12} & m_{12} \end{pmatrix}$$

$$\Gamma = \begin{pmatrix} m_{12}^* & m \\ \gamma_{12} & \gamma \end{pmatrix}$$

$$\Gamma = \begin{pmatrix} \gamma & \gamma_{12} \\ \gamma_{12}^* & \gamma \end{pmatrix}$$

$$\pm = (m \pm \Delta m) - \frac{i}{2}(\gamma \pm \Delta \gamma)$$

$$= m - \frac{i}{2}\gamma \pm \sqrt{(m_{12} - \frac{i}{2}\gamma_{12})(m_{12}^* - \frac{i}{2}\gamma_{12}^*)}$$

Eigenstates:

$$|B_s^H\rangle = p |B_s^0\rangle - q |\bar{B}_s^0\rangle \qquad |B_s^L\rangle = p |B_s^0\rangle + q |\bar{B}_s^0\rangle$$

June 22 - BEACH 2010, Perugia

For B_s dominated by D_s+D_s Δ Γ/Γ ~ 0.10
 Γ₁₂ mostly real: φ_s ~ -2β_s
 Tree level dominated
 Hard to see new physics here

Mixing frequency (theory limited):

 $\rightarrow \Delta M = 2 |M_{12}|$

Width difference (statistics limited):

 $\triangleright \Delta \Gamma = 2|\Gamma_{12}|\cos \phi$

Semileptonic-asymmetry (stat.+syst. limited) $A_{SL} = -\frac{1}{M_{12}} \sin A = \frac{c}{c} M \tan A$

♣ Bs – Bs bar interference in decay to common final state such as J/ψ φ (statistics limited)
Fun(p/q) ~ sin(2β_s) ~ -sin φ

This measurement

F. Bedeschi, INFN-Pisa

 $\Rightarrow \sin(2\beta_{e})$

Analysis strategy

Simplified time evolution ($\Delta\Gamma$ =0) and f = CP-eigenstate

< f jB(t) > = ei imtei i t=2A_f
$$\cos(\phi \text{ mt}=2)$$
 ; i $A_f \text{ p} \sin(\phi \text{ mt}=2)$
< f jB(t) > = ei imtei i t=2A_f $\cos(\phi \text{ mt}=2)$; i $A_f \text{ p} \sin(\phi \text{ mt}=2)$
<

• Study time evolution of $Bs \rightarrow \mathcal{K}\psi\phi$ decay ► No SM weak phases in

Sign depends on CP of final state

\blacktriangleright ... but J/ $\psi \phi$ is vector-vector \rightarrow mixture of CP-even and CP-odd

Need to perform full angular analysis to separate the components

- ♠ L=0 and L=2 are CP-even, L=1 is CP-odd
- prefer to use "transversity basis": $A_0, A_{//}$: CP-even, A_{\perp} : CP-odd
 - Phys. Lett. B 369, 144 (1996), 184 hep-ph/9511363

Need to introduce more hadronic decay amplitudes and their phases: $\begin{bmatrix} A \\ B \end{bmatrix}^2 + \begin{bmatrix} A \\ B \end{bmatrix}^2 + \begin{bmatrix} A \\ B \end{bmatrix}^2 = \begin{bmatrix} A$

• A₀, A_{//}, A_⊥), $\delta_{1/2}$, δ_{\perp} (phases relative to A_0) June 22 - BEACH 2010, Perugia

June 22 - BEACH 2010, Perugia

~ $6500 \text{ Bs} \rightarrow J/\psi\phi, S/N \sim 1$

★ Improved flavor tagging completely recalibrated (see later) ★ Inclusion of f_0 scalar component (Bs→J/ ψf_0) (see later)

June 22 - BEACH 2010, Perugia

Results: Bs lifetime & $\Delta\Gamma$

INFN Istituto Nazionale di Fisica Nucleare

13/18

Point measurement assuming SM

- Set $\beta s = 0$
- Most precise measurement of Bs lifetime and ΔΓ

$$au_s = 1.53 \pm 0.025 \text{ (stat.)} \pm 0.012 \text{ (syst.) ps}$$

 $\Delta \Gamma = 0.075 \pm 0.035 \text{ (stat.)} \pm 0.01 \text{ (syst.) } ps^{-1}$

PDG 2009 averages: $\tau_{s} = 1.472^{+0.024} ps$ $\Delta \Gamma_{s} = 0.062^{+0.034} ps^{-1}$

CP-even (B_s^{light}) and *CP*-odd (B_s^{heavy}) components have different lifetimes $\rightarrow \Delta \Gamma \neq 0$

Results: polarization amplitudes

\$\overline{\beta}s = 0\$ fit
 Most precise measurement

 $\begin{aligned} |A_{\parallel}(0)|^2 &= 0.231 \pm 0.014 \text{ (stat)} \pm 0.015 \text{ (syst.)} \\ |A_0(0)|^2 &= 0.524 \pm 0.013 \text{ (stat)} \pm 0.015 \text{ (syst.)} \\ \phi_{\perp} &= 2.95 \pm 0.64 \text{ (stat)} \pm 0.07 \text{ (syst.)}. \end{aligned}$

Signal fit projection

Background fit projection

June 22 - BEACH 2010, Perugia

F. Bedeschi, INFN-Pisa

14/18

Istituto Nazionale

CP Violation Phase β_s with 5.2 fb⁻¹ at CDF

Full fit results

Low statistics & dilutions Some parameters very non-Gaussian, including β s Contours corrected for Non-gaussian effects Systematics Note fit symmetry $2\beta_s \to \pi - 2\beta_s \quad \Delta\Gamma \to -\Delta\Gamma$ $\delta_{\parallel} \to 2\pi - \delta_{\parallel}, \quad \delta_{\perp} \to \pi - \delta_{\perp}$ \clubsuit βs projection [0.02, 0.52] U [1.08, 1.55] at 68% C.L.

 $L = 5.2 \text{ fb}^{-1}$ **CDF Run II Preliminary** 18 95% CL 2 Δ log (L) 16 68% CL SM prediction 14 12 10 8 6 4 2 β_{s} (rad) β_{s} (rad)

June 22 - BEACH 2010, Perugia

F. Bedeschi, INFN-Pisa

15/18

Effect of s-wave resonance

(Suggested in arXiv:0908.3627v1 [hep-ph] 25 Aug 2009)

16/18

June 22 - BEACH 2010, Perugia

F. Bedeschi, INFN-Pisa

- ***** Tighter constraints on β s
 - \blacktriangleright Improved agreement with SM (~1 σ)
- Future improvements
 - Statistics doubled (10 fb⁻¹) by end of 2011 Tevatron run
 - ➢ More data ~ 25-30% from track based triggers
 - Additional decay modes:
 - $\psi(2S)\phi$ ■ J/ ψ f₀, f₀→ $\pi\pi$ (CP-eigenstate)

17/18

Tevatron 2011: discover or exclude NP in wide range of phases.

LHCb competitive (if everything turns out as expected)

June 22 - BEACH 2010, Perugia

June 22 - BEACH 2010, Perugia

Opposite Side Tagging Calibration and Performance

NFN Istituto Nazionale

20/18

- OST combines in a NN opposite side lepton and jet charge information
- Initially calibrated using a sample of inclusive semileptonic B decays
 - predicts tagging probability on event-by-event basis
- Re-calibrated using $\approx 52,000 B^{+/-} \rightarrow J/\Psi K^{+/-}$ decays

-OST efficiency = 94.2 +/- 0.4%, OST dilution = 11.5 +/- 0.2 %

- Total tagging power = 1.2% June 22 - BEACH 2010, Perugia

Same Side Tagging Calibration

21/18

lstituto Nazionale di Fisica Nucleare

- Event-by-event predicted dilution based on simulation
- Calibrated with 5.2 fb⁻¹ of data
- Simultaneously measuring the B_s mixing frequency Δm_s and the dilution scale factor A

$$P_{Sig}(ct|\sigma_{ct},\xi=\xi_D\cdot\xi_P,D) = \frac{1}{N}\cdot\left[\frac{1}{\tau}e^{-\tilde{t}/\tau}\cdot(1+\xi\mathcal{A}D\cdot\cos(\Delta m_s\tilde{t}))\right]\otimes\mathcal{G}(c\tilde{t}|\sigma_{ct})\cdot\epsilon(ct|\sigma_{ct})$$

- D – event by event predicted dilution - ξ – tagging decision = +1, -1, 0 for B_s , B_s and un-tagged events

- Fully reconstructed B_s decays selected by displaced track trigger

Decay Channel	old S
$B_s^0 \to D_s^- \pi^+, \ D_s^- \to \phi \pi^-$	5613 ± 75
$B_s^0 \to D_s^- \pi^+, \ D_s^- \to K^* K^-$	2761 ± 53
$B_s^0 \to D_s^- \pi^+, \ D_s^- \to (3\pi)^-$	2652 ± 52
$B_s^0 \to D_s^- (3\pi)^+, \ D_s^- \to \phi \pi^-$	1852 ± 43
Sum	12877 ± 113

June 22 - BEACH 2010, Perugia

Detector Angular Efficiency

- *CP even* and *CP odd* final states have different angular distributions \rightarrow use angles $r = (\theta, \phi, \psi)$ to statistically separate *CP even* and *CP odd* components

- Detector acceptance distorts the angular distributions

 \rightarrow determine 3D angular efficiency function from simulation and account for this effect in the fit

22/18

Istituto Nazionale di Fisica Nucleare

INFN

- As noted in arxiv:0812.2832v3, the final state in $B_s \rightarrow J/\Psi KK$ decays can be in an s-wave state with a ~6% contribution in a +/-10 MeV window around the Φ peak

- Systematic effects from neglecting such contribution were first investigated by Clarke *et al* in arxiv:0908.3627v1 where it is shown that:

- 10% un-accounted s-wave contamination in the Φ region leads to
 - 10% bias in the measured $2b_s$, towards the SM prediction
 - 15% increase in statistical errors

- S-wave contribution can be either non-resonant or from the $f^0(980)$ resonance

- To account for potential s-wave contribution, enhance the likelihood function to account for the s-wave amplitude A_s and interference between s-wave and p-wave

- Time dependence of the s-wave amplitude A_S is *CP-odd*, same as A_{\perp}
- Mass and phase of s-wave component are assumed flat (good approximation in a narrow +/- 10 MeV around the Φ mass)

June 22 - BEACH 2010, Perugia

- Cross check the result from angular fit by fitting the KK invariant mass spectrum

- From a fit to the B_s mass distribution with wide KK mass range selection (0.980,1.080 GeV), determine contributions of combinatorial background, mis-reconstructed B⁰, and B_s events

- Good fit of the KK mass spectrum with 2% f⁰ contributions

June 22 - BEACH 2010, Perugia

F. Bedeschi, INFN-Pisa

Non-Gaussian Regime

Pseudo-experiments show that we are still not in perfect Gaussian regime

 \rightarrow quote confidence regions instead of point estimates

In ideal case (high statistics, Gaussian likelihood), to get the 2D 68% (95%) C.L. regions, take a slice through profiled likelihood at 2.3 (6.0) units up from minimum

- In this analysis integrated likelihood ratio distribution (black histogram) deviates from the ideal c² distribution (green continuous curve)

- Using pseudo-experiments establish a "map" between Confidence Level and 2Dlog(L)

- All nuisance parameters are randomly varied within +/- 5s from their best fit values and maps of CL vs 2Dlog(L) re-derived

- To establish final confidence regions use most conservative case
- June 22 BEACH 2010, Perugia

25/18

Systematic Uncertainties

Systematic	ΔΓ	$c\tau_s$	$ A_{\ }(0) ^2$	$ A_0(0) ^2$	ϕ_{\perp}
Signal efficiency:					
Parameterisation	0.0024	0.96	0.0076	0.008	0.016
MC reweighting	0.0008	0.94	0.0129	0.0129	0.022
Signal mass model	0.0013	0.26	0.0009	0.0011	0.009
Background mass model	0.0009	1.4	0.0004	0.0005	0.004
Resolution model	0.0004	0.69	0.0002	0.0003	0.022
Background lifetime model	0.0036	2.0	0.0007	0.0011	0.058
Background angular distribution:					
Parameterisation	0.0002	0.02	0.0001	0.0001	0.001
$\sigma(c\tau)$ correlation	0.0002	0.14	0.0007	0.0007	0.006
Non-factorisation	0.0001	0.06	0.0004	0.0004	0.003
$B^0 \to J \psi K^*$ crossfeed	0.0014	0.24	0.0007	0.0010	0.006
SVX alignment	0.0006	2.0	0.0001	0.0002	0.002
Mass error	0.0001	0.58	0.0004	0.0004	0.002
c au error	0.0012	0.17	0.0005	0.0007	0.013
Pull bias	0.0028		0.0013	0.0021	
Totals	0.01	3.6	0.015	0.015	0.07

June 22 - BEACH 2010, Perugia