Unitary Triangle and New Physics

P. Paradisi

Physik Department
Technische Universität München

BEACH 2010
Perugia, Italy
June 22, 2010
The fermion mass puzzle

Fermion masses

(large angle MSW)

$\nu_1 \rightarrow \nu_2 \rightarrow \nu_3$

$\begin{align*}
\mu & \quad \text{MeV} \\
\tau & \quad \text{MeV} \\
\mu & \quad \text{GeV} \\
\tau & \quad \text{GeV} \\
\end{align*}$
Smallness and Hierarchy

\[Y_t \sim 1, \quad Y_c \sim 10^{-2}, \quad Y_u \sim 10^{-5} \]
\[Y_b \sim 10^{-2}, \quad Y_s \sim 10^{-3}, \quad Y_d \sim 10^{-4} \]
\[Y_\tau \sim 10^{-2}, \quad Y_\mu \sim 10^{-3}, \quad Y_\nu \sim 10^{-6} \]
\[|V_{us}| \sim 0.2, \quad |V_{cb}| \sim 0.04, \quad |V_{ub}| \sim 0.004, \quad \delta_{\text{KM}} \sim 1 \]

- For comparison: \(g_s \sim 1, \quad g \sim 0.6, \quad g' \sim 0.3, \quad \lambda \sim 1 \)
- The SM flavor parameters have structure:
 smallness and hierarchy
- Why? = The SM flavor puzzle

Nir
SM success

Very likely, flavour and CP violation in FC processes are dominated by the CKM mechanism (Nir)
UT tensions

- Recent theoretical improvements in ϵ_K expose some tensions in the UT analysis [Lunghi & Soni, Buras & Guadagnoli]
- Look at $\epsilon_K, S_{\psi K_S} (\sin 2\beta), \Delta M_d/\Delta M_s$ in the $R_b-\gamma$ plane
- R_b, γ can be obtained from tree-level processes

Altmannshofer et al. ’09
UT tensions

- Recent theoretical improvements in ϵ_K expose some tensions in the UT analysis [Lunghi & Soni, Buras & Guadagnoli]

- Look at ϵ_K, $S_{\psi K_S}$ ($\sin 2\beta$), $\Delta M_d/\Delta M_s$ in the $R_b-\gamma$ plane

- R_b, γ can be obtained from tree-level processes

Possible solutions:

1. +24% NP effect in ϵ_K
Recent theoretical improvements in ϵ_K expose some tensions in the UT analysis [Lunghi & Soni, Buras & Guadagnoli]

Look at ϵ_K, $S_{\psi K_S} (\sin 2\beta)$, $\Delta M_d / \Delta M_s$ in the $R_b - \gamma$ plane

R_b, γ can be obtained from tree-level processes

Possible solutions:

1. +24% NP effect in ϵ_K
2. -6.5° NP phase in B_d mixing

Altmannshofer et al. ’09
UT tensions

- Recent theoretical improvements in ϵ_K expose some tensions in the UT analysis [Lunghi & Soni, Buras & Guadagnoli]

- Look at ϵ_K, $S_{\psi K_S}$ ($\sin 2\beta$), $\Delta M_d/\Delta M_s$ in the $R_b-\gamma$ plane

- R_b, γ can be obtained from tree-level processes

Possible solutions:

1. +24% NP effect in ϵ_K
2. -6.5° NP phase in B_d mixing
3. -22% NP effect in $\Delta M_d/\Delta M_s$ (requiring $\alpha \sim 74^\circ$)

Altmannshofer et al. ’09
\[\sin 2\beta_{\text{eff}} \] tensions

- In the SM, mixing-induced CP asymmetries in \(B_d \to \psi K_S, \phi K_S, \eta' K_S \) all \(\approx \sin 2\beta \)
- \(B_d \to \psi K_S \) dominated by tree level, \(\phi K_S \) and \(\eta' K_S \) are loop-induced

Data indicate \(S_{\phi K_S} < S_{\eta' K_S} < S_{\psi K_S} \)

\[\sin(2\beta_{\text{eff}}) \equiv \sin(2\phi_{1\text{eff}}) \]

[adapted from HFAG]

New physics in the decay amplitudes?

Can only be resolved at SuperB
CPV in B_s mixing

\[S_{\psi\phi} = \sin(2|\beta_s| - 2\phi_{B_s}) \]

\[A_{SL}^q \equiv \frac{\Gamma(\bar{B}_q \to l^+ X) - \Gamma(B_q \to l^- X)}{\Gamma(\bar{B}_q \to l^+ X) + \Gamma(B_q \to l^- X)} \]

New Physics in the B_s mixing phase?
Motivation:

- **Baryogenesis** requires extra sources of CPV
- The QCD $\bar{\theta}$-term $\mathcal{L}_{CP} = \bar{\theta} \frac{\alpha_s}{8\pi} G \tilde{G}$ is a CPV source beyond the CKM
- Most UV completion of the SM have many CPV sources
Where to look for **New Physics** at the low energy?

- **Processes very suppressed or even forbidden** in the SM
 - FCNC processes ($\mu \rightarrow e\gamma, \tau \rightarrow \mu\gamma, B_{s,d}^0 \rightarrow \mu^+\mu^-, K \rightarrow \pi\nu\bar{\nu}$)
 - CPV effects in the electron/neutron EDMs, $d_e, n...$
 - FCNC & CPV in $B_{s,d}$ decay/mixing & D mixing amplitudes

- **Processes predicted with high precision** in the SM
 - EWPO as $\Delta\rho, (g - 2)_\mu....$
 - LU in $R_{M}^{e/\mu} = \Gamma(K(\pi) \rightarrow e\nu)/\Gamma(K(\pi) \rightarrow \mu\nu)$
Flavour Matrix

<table>
<thead>
<tr>
<th>ELECT ROWEAK STRUCTURE</th>
<th>FLAVOUR COUPLING</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔF=2 box</td>
<td></td>
</tr>
<tr>
<td>4-quark ops.</td>
<td></td>
</tr>
<tr>
<td>gluon penguin</td>
<td>$A_{CP}(B_d \to \phi K)$</td>
</tr>
<tr>
<td>$[\Gamma, \Delta \Gamma_{CP}](B \to X_s \gamma)$</td>
<td></td>
</tr>
<tr>
<td>$[\Gamma, \Delta \Gamma_{CP}](B \to X_s \Gamma)$</td>
<td></td>
</tr>
<tr>
<td>$A_{FB}(B \to X_s \Gamma)$</td>
<td></td>
</tr>
<tr>
<td>$[\Gamma, \Delta \Gamma_{CP}](B \to X_s \Gamma)$</td>
<td></td>
</tr>
<tr>
<td>$A_{FB}(B \to \rho/\pi \Gamma)$</td>
<td></td>
</tr>
<tr>
<td>$[\Gamma, \Delta \Gamma_{CP}](B \to \rho/\pi \Gamma)$</td>
<td></td>
</tr>
<tr>
<td>$A_{FB}(B \to \rho/\pi \Gamma)$</td>
<td></td>
</tr>
<tr>
<td>$[\Gamma, \Delta \Gamma_{CP}](B \to \rho/\pi \Gamma)$</td>
<td></td>
</tr>
<tr>
<td>$A_{FB}(B \to \rho/\pi \Gamma)$</td>
<td></td>
</tr>
<tr>
<td>$[\Gamma, \Delta \Gamma_{CP}](B \to \rho/\pi \Gamma)$</td>
<td></td>
</tr>
<tr>
<td>$A_{FB}(B \to \rho/\pi \Gamma)$</td>
<td></td>
</tr>
<tr>
<td>$[\Gamma, \Delta \Gamma_{CP}](B \to \rho/\pi \Gamma)$</td>
<td></td>
</tr>
<tr>
<td>$A_{FB}(B \to \rho/\pi \Gamma)$</td>
<td></td>
</tr>
<tr>
<td>$[\Gamma, \Delta \Gamma_{CP}](B \to \rho/\pi \Gamma)$</td>
<td></td>
</tr>
<tr>
<td>$A_{FB}(B \to \rho/\pi \Gamma)$</td>
<td></td>
</tr>
<tr>
<td>$[\Gamma, \Delta \Gamma_{CP}](B \to \rho/\pi \Gamma)$</td>
<td></td>
</tr>
<tr>
<td>$A_{FB}(B \to \rho/\pi \Gamma)$</td>
<td></td>
</tr>
<tr>
<td>$[\Gamma, \Delta \Gamma_{CP}](B \to \rho/\pi \Gamma)$</td>
<td></td>
</tr>
<tr>
<td>$A_{FB}(B \to \rho/\pi \Gamma)$</td>
<td></td>
</tr>
<tr>
<td>$[\Gamma, \Delta \Gamma_{CP}](B \to \rho/\pi \Gamma)$</td>
<td></td>
</tr>
<tr>
<td>$A_{FB}(B \to \rho/\pi \Gamma)$</td>
<td></td>
</tr>
<tr>
<td>$[\Gamma, \Delta \Gamma_{CP}](B \to \rho/\pi \Gamma)$</td>
<td></td>
</tr>
<tr>
<td>$A_{FB}(B \to \rho/\pi \Gamma)$</td>
<td></td>
</tr>
<tr>
<td>$[\Gamma, \Delta \Gamma_{CP}](B \to \rho/\pi \Gamma)$</td>
<td></td>
</tr>
<tr>
<td>$A_{FB}(B \to \rho/\pi \Gamma)$</td>
<td></td>
</tr>
<tr>
<td>$[\Gamma, \Delta \Gamma_{CP}](B \to \rho/\pi \Gamma)$</td>
<td></td>
</tr>
<tr>
<td>$A_{FB}(B \to \rho/\pi \Gamma)$</td>
<td></td>
</tr>
</tbody>
</table>
SM vs. SUSY flavour problems

Flavour violation is highly non-generic already in the SM!

The two problems should be related!

Minimal Flavour Violation (MFV)

- Yukawa couplings are the only sources of flavour violation
- Effective theory
- Pragmatic approach
- Pessimistic phenomenology

Flavour Models

- Flavour structure of Yukawa couplings and soft terms generated by spontaneous breaking of a flavour symmetry
- Ambitious approach
- Diverse phenomenology
Minimal Flavour Violation

- SM without Yukawa interactions: $SU(3)^5$ global flavour symmetry

$$SU(3)_u \otimes SU(3)_d \otimes SU(3)_Q \otimes SU(3)_e \otimes SU(3)_L$$

- Yukawa interactions break this symmetry

- Proposal for any New Physics model:

 Yukawa structures as the only sources of flavour violation

 \Downarrow

 Minimal Flavour Violation

 MFV allows for new “flavour blind” CPV phases!

Altmannshofer, Buras and P.P., ’08
Flavor blind MSSM \approx MFV + CPV

- CP violating $\Delta F = 0$ and $\Delta F = 1$ dipole amplitudes can be strongly modified
- $S_{\phi K_S}$ and S_{η', K_S} can simultaneously be brought in agreement with the data
- Sizeable and correlated effects in $A_{CP}^{b\to s\nu}$ \approx 1% -- 6%
- Lower bounds on the electron and neutron EDMs at the level of $d_{e,n} \gtrsim 10^{-26}$ ecm
- Large and correlated effects in the CP asymmetries in $B \to K^* \mu^+ \mu^-$ (WA, Ball, Bharucha, Buras, Straub, Wick)

- The leading NP contributions to $\Delta F = 2$ amplitudes are not sensitive to the new phases of the FBMSSM
- CP violation in meson mixing is SM like
- i.e. small effects in $S_{\psi\phi}$, $S_{\psi K_S}$ and ϵ_K
- In particular: $0.03 < S_{\psi\phi} < 0.05$

A combined study of all these observables and their correlations constitutes a very powerful test of the FBMSSM
Phenomenology of the flavor blind MSSM

1. Kaon mixing
 - The mixing amplitude M_{12}^K has no sensitivity to the new flavor blind phases.
 - Still, $\epsilon_K \propto \text{Im}(M_{12}^K)$ can get a positive NP contribution up to 15%.
 - But only for a very light SUSY spectrum: $\mu, m_{\tilde{t}_1} \approx 200\text{GeV}$.

2. B_d and B_s mixing
 - Leading NP contributions to $M_{12}^{d,s}$ are insensitive to the new phases of a FBMSSM. (at least for moderate $\tan \beta$...)
 - For large $\tan \beta$, the constraint from $b \rightarrow s\gamma$ does not allow for sizeable effects.
 - $S_{\psi K_S}$ and $S_{\psi \phi}$ are SM like ($S_{\psi \phi} \approx 0.03 - 0.05$).
Main idea: hierarchies in Yukawa couplings generated by spontaneous breakdown of flavour symmetry (horizontal symmetry, family symmetry)

- Generalization of the Froggat-Nielsen mechanism
- Yukawa hierarchies explained by different powers of small ϵ:

$$ Y_{ij} \propto \left(\frac{\langle \phi \rangle}{M} \right)^{(a_i + b_j)} = \epsilon^{(a_i + b_j)} $$

- Possible to relate Yukawa matrices and sfermion mass matrices/trilinear couplings

SUSY flavour models can explain the origin of the hierarchies in the Yukawa couplings and solve the SUSY flavour problem

- Many different viable models exist, with abelian or non-abelian flavour symmetries
Abelian vs. non-Abelian flavour models

Abelian vs. Non-abelian

- In most non-abelian models, 1st & 2nd generation sfermions are approximately degenerate
 - Suppressed contributions to $1 \leftrightarrow 2$ transitions, in particular $D^0 - \bar{D}^0$ mixing
- In abelian models, sfermions of different generations need not be degenerate
 - $O(1)$ 1-2 mass splitting leads to $O(\lambda) (\delta_{u}^{LL})_{12}$ in the SCKM basis
 - Large effects in $D^0 - \bar{D}^0$ mixing

Chirality structure of flavour violating terms

- Different flavour symmetries lead to different patterns of flavour violation
- Mass insertions: $M_d^2 = \text{diag} (\tilde{m}^2) + \tilde{m}^2 \begin{pmatrix} \delta_{d}^{LL} & \delta_{d}^{LR} \\ \delta_{d}^{RL} & \delta_{d}^{RR} \end{pmatrix}$
- $\delta^{LL}, \delta^{RR}, \delta^{LR}$ fixed by the flavour symmetry (up to $O(1)$ factors)
Examples of flavour models

4 representative flavour models with different chirality structures in the \tilde{d} sector:

<table>
<thead>
<tr>
<th>Model</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC model</td>
<td>[Agashe, Carone]</td>
</tr>
<tr>
<td>$U(1)$</td>
<td>Large, $O(1)$ RR mass insertions</td>
</tr>
<tr>
<td>AKM model</td>
<td>[Antusch, King, Malinsky]</td>
</tr>
<tr>
<td>$SU(3)$</td>
<td>Only CKM-like RR mass insertions</td>
</tr>
<tr>
<td>RVV model</td>
<td>[Ross, Vetasco-Sevilla, Vives]</td>
</tr>
<tr>
<td>$SU(3)$</td>
<td>CKM-like LL & RR mass insertions</td>
</tr>
<tr>
<td>δLL model</td>
<td>[e.g. Hall, Murayama]</td>
</tr>
<tr>
<td>$(S_3)^3$</td>
<td>Only CKM-like LL mass insertions</td>
</tr>
</tbody>
</table>

\[
\delta_d^{LL} \sim \begin{pmatrix}
\lambda^2 & 0 & 0 \\
0 & \lambda^2 & 0 \\
0 & 0 & \lambda^2
\end{pmatrix} \quad \delta_d^{RR} \sim \begin{pmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{pmatrix}
\]

\[
\delta_d^{LL} \sim \begin{pmatrix}
\lambda^3 & 0 & 0 \\
0 & \lambda^2 & 0 \\
0 & 0 & \lambda^2
\end{pmatrix} \quad \delta_d^{RR} \sim \begin{pmatrix}
\lambda^3 & \lambda^3 & \lambda^3 \\
\lambda^3 & \lambda^2 & \lambda^2 \\
\lambda^3 & \lambda^2 & \lambda^2
\end{pmatrix}
\]

\[
\delta_d^{LL} \sim \begin{pmatrix}
\lambda^5 & 0 & 0 \\
\lambda^5 & \lambda^2 & 0 \\
\lambda^5 & \lambda^2 & \lambda^2
\end{pmatrix} \quad \delta_d^{RR} \sim \begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
\]

Altmannshofer et al. ’09
\(Br(B_s \rightarrow \mu^+\mu^-) \) vs. \(S_{\psi\phi} \)

- Both observables can deviate significantly from the SM in all 3 models
- Large \(S_{\psi\phi} \) \(\Rightarrow \) large \(Br(B_s \rightarrow \mu^+\mu^-) \) in the AC and AKM models
- Correlation arises from dominance of Higgs penguin contributions

AC

![AC Diagram]

AKM

![AKM Diagram]

RVV

![RVV Diagram]

- **Orange points**: UT tension solved through contribution to \(\Delta M_d / \Delta M_s \)
- **Blue points**: UT tension solved through contribution to \(\epsilon_K \)
- **Scan ranges**: \(m_0 < 2 \text{ TeV}, M_{1/2} < 1 \text{ TeV}, |A_0| < 3m_0, 5 < \tan \beta < 55, O(1) \) parameters varied within \([1/2, 2]\)
$S_\phi K_S$ vs. $S_\psi \phi$

- In the AC model, both $S_\phi K_S$ and $S_\psi \phi$ can have large effects, but a simultaneous enhancement of $S_\psi \phi$ and suppression of $S_\phi K_S$ (as indicated by the data) is impossible.
- $S_\phi K_S$ nearly SM-like in AKM and RVV models.

AC

AKM

RVV

- **Orange points**: UT tension solved through contribution to $\Delta M_d/\Delta M_s$.
- **Blue points**: UT tension solved through contribution to ϵ_K.
- **Scan ranges**: $m_0 < 2$ TeV, $M_{1/2} < 1$ TeV, $|A_0| < 3m_0$, $5 < \tan \beta < 55$, $O(1)$ parameters varied within $[\frac{1}{2}, 2]$.
Model with purely left-handed currents

Pattern of NP effects in the δLL model:

- No large effects in $S_{\psi \phi}$
- Large, correlated effects in $S_{\phi K_S}$, $S_{\eta' K_S}$, $A_{CP}(b \to s \gamma)$, $\langle A_{7,8} \rangle$
- $\langle A_{7,8} \rangle$: T-odd CP asymmetries in $B \to K^* \ell^+ \ell^-$

- Scan ranges: $m_0 < 2$ TeV, $M_{1/2} < 1$ TeV, $|A_0| < 3m_0$, $5 < \tan \beta < 55$, $O(1)$ parameters varied within $[\frac{1}{2}, 2]$
$Br(B_s \rightarrow \mu^+ \mu^-)$ vs. $Br(B_d \rightarrow \mu^+ \mu^-)$

Abelian (AC)

Non abelian (RVV)

$Br(B_s \rightarrow \mu^+ \mu^-)/Br(B_d \rightarrow \mu^+ \mu^-) = |V_{ts}/V_{td}|^2$ in MFV models
CPV in D-physics

\[\langle D^0 | H_{\text{eff}} | \bar{D}^0 \rangle = M_{12} - \frac{i}{2} \Gamma_{12}, \quad |D_{1,2}\rangle = p|D^0\rangle \pm q|\bar{D}^0\rangle \]

\[\frac{q}{p} = \sqrt{\frac{M_{12}^* - \frac{i}{2} \Gamma_{12}^*}{M_{12} - \frac{i}{2} \Gamma_{12}}} , \quad \phi = \text{Arg}(q/p) \]

\[x = \frac{\Delta M_D}{\Gamma} = 2\tau \text{Re} \left[\frac{q}{p} (M_{12} - \frac{i}{2} \Gamma_{12}) \right] \]

\[y = \frac{\Delta \Gamma}{2\Gamma} = -2\tau \text{Im} \left[\frac{q}{p} (M_{12} - \frac{i}{2} \Gamma_{12}) \right] \]

\[S_f = 2\Delta Y_f = \frac{1}{\Gamma_D} \left(\hat{\Gamma}_{D^0 \to f} - \hat{\Gamma}_{\bar{D}^0 \to f} \right) \]

\[\eta_{f}^{\text{CP}} S_f = x \left(\frac{|q|}{|p|} + \frac{|p|}{|q|} \right) \sin \phi - y \left(\frac{|q|}{|p|} - \frac{|p|}{|q|} \right) \cos \phi \]

\[a_{SL} = \frac{\Gamma(D^0 \to K^+\ell^-\nu) - \Gamma(\bar{D}^0 \to K^-\ell^+\nu)}{\Gamma(D^0 \to K^+\ell^-\nu) + \Gamma(\bar{D}^0 \to K^-\ell^+\nu)} = \frac{|q|^4 - |p|^4}{|q|^4 + |p|^4} \]
CPV in D-physics vs. neutron EDM in SUSY

FIG. 3: Correlations between d_n and S_f (left), d_n and a_{SL} (middle) and a_{SL} and S_f (right) in SUSY alignment models. Gray points satisfy the constraints (8)-(10) while blue points further satisfy the constraint (11) from ϕ. Dashed lines stand for the allowed range (18) for S_f.

FIG. 2: Examples of relevant Feynman diagrams contributing (a) to $D^0 - \bar{D}^0$ mixing and (b) to the up quark (C)EDM in SUSY alignment models.
DNA-Flavour Test

<table>
<thead>
<tr>
<th></th>
<th>GMSSM</th>
<th>AC</th>
<th>RVV2</th>
<th>AKM</th>
<th>δLL</th>
<th>FBMSSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S_{\phi K_s}$</td>
<td>★★★★</td>
<td>★★★★</td>
<td>★★</td>
<td></td>
<td>★★★</td>
<td>★★★★</td>
</tr>
<tr>
<td>$A_{CP} (B \to X_s \gamma)$</td>
<td>★★★★</td>
<td></td>
<td>★★</td>
<td></td>
<td>★★★</td>
<td>★★★★</td>
</tr>
<tr>
<td>$B \to K^{(*)} \nu \bar{\nu}$</td>
<td>★★</td>
<td>★★★★</td>
<td></td>
<td></td>
<td>★★★</td>
<td>★★★★</td>
</tr>
<tr>
<td>$\tau \to \mu \gamma$</td>
<td>★★★★</td>
<td>★★★★</td>
<td>★★★★</td>
<td></td>
<td>★★★</td>
<td>★★★★</td>
</tr>
<tr>
<td>$D^0 - \bar{D}^0$</td>
<td>★★★★</td>
<td>★★★★</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A_{7,8} (B \to K^+ \mu^+ \mu^-)$</td>
<td>★★★★</td>
<td></td>
<td>★★★★</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A_9 (B \to K^+ \mu^+ \mu^-)$</td>
<td>★★★★</td>
<td></td>
<td>★★★★</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$S_{\psi \phi}$</td>
<td>★★★★</td>
<td>★★★★</td>
<td>★★★★</td>
<td></td>
<td>★★★</td>
<td>★★★★</td>
</tr>
<tr>
<td>$B_s \to \mu^+ \mu^-$</td>
<td>★★★★</td>
<td>★★★★</td>
<td>★★★★</td>
<td></td>
<td>★★★</td>
<td>★★★★</td>
</tr>
</tbody>
</table>

- ϵ_K
- $K^+ \to \pi^+ \nu \bar{\nu}$
- $K_L \to \pi^0 \nu \bar{\nu}$
- $\mu \to e \gamma$
- $\mu + N \to e + N$
- d_n
- d_e
- $(g - 2)_\mu$

Altmannshofer et al. ’09
Isidori’s view

Flavour physics in the LHC era

LHC [high p_T]

A unique effort toward the high-energy frontier

[to determine the energy scale of NP]

Flavour physics

- Improved CKM fits
- Rare B decays
- CPV in the Bs system
- Universality tests in B & K
- Rare K decays
- LFV in μ & τ decays
- EDMs
- $g-2$

A collective effort toward the high-intensity frontier

[to determine the flavour structure of NP]
Masiero’s view

DM - FLAVOR
for DISCOVERY
and/or FUND. TH.
RECONSTRUCTION

A MAJOR LEAP AHEAD IS NEEDED

LHC

NEW PHYSICS AT THE ELW SCALE

DARK MATTER

m_x, n_x, \sigma_x, ... LINKED TO COSMOLOGICAL EVOLUTION

"LOW ENERGY" PRECISION PHYSICS

FCNC, CP \neq, (g-2), (\beta\beta)_{0\gamma\gamma}

Possible interplay with dynamical DE