Particle Production and Fragmentation at HERA

- HERA kinematics
- Charged particle production
- Strangeness production at high Q²
- Charm fragmentation into D*
- Summary

Grażyna Nowak IFJ PAN Kraków

representing the H1 and ZEUS Collaborations

e[±]p Collider HERA HERA I unpolarised e[±] beams 1992-2000 HERA II polarised e[±] beams 2002-2007

0.5 fb⁻¹ per experiment (H1 and ZEUS)

G. Nowak

HERA kinematics

$$Q^2 = -Q^2$$
 exchanged 4-momentum squared
 $s = (P + e)^2$ ep center of mass energy squared
 $W^2 = (P + q)^2$ hadronic final state mass squared
 $x_{Bj} = Q^2/2qP$ Bjorken scaling variable

non-perturbative process leading to hadrons: light, strange, heavy

in the hadronic final state

Two regimes: $Q^2 < 1 \text{ GeV}^2$ photoproduction (γp) $Q^2 > 1 \text{ GeV}^2$ Deep Inelastic Scattering (*DIS*)

LO QCD Models for DIS ep Interactions

Hadronisation of partons with Lund string model...

Particle Production and Fragmentation at HERA

BEACH 2010, Perugia

4

Transverse momenta of charged particles in DIS

5<Q²<100 GeV²

charged tracks in LAB; $p_T > 0.15$ GeV, $20^{\circ} < \theta < 155^{\circ}$

Expect discrimination between models:

low p_T region : sensitive to hadronization effects,

high p_T region: sensitive to parton dynamic

CCFM (CASCADE) is above the data

data well describe by **CDM** (DJANGOH) over the whole p_{τ}^* spectrum

DGLAP (RAPGAP) for $p_{\tau}^* > 1$ GeV below the data

 p_{T}^* distribution in 1.5< η^* <2.5 region

G. Nowak

5

η^* distributions of charged particles

low $p_{\tau}^* < 1$ Gev

high $p_{\tau}^* > 1$ GeV

low p_T^*

strong dependence on hadronization parameters

weak dependence on parton dynamics

high p_T^*

strong dependence on parton dynamics weak dependence on hadronization param.

 η^* distributions of charged particles in (x,Q²) bins

CDM (DJANGOH) in better agreement with data

Differences between models larger at low Q^2 and low x

Scaled momentum spectra of charged particles in dijet- γp and in DIS

jet formation = parton showering & hadronization

npQCD

fixed order in α_s calculations

or **resummation approach e.g. MLLA** (Modified Leading-Logarithmic Approximation)

pQCD

from partons to hadrons:

Local Parton Hadron Duality (**LPHD**) hypothesis: charged-hadron and parton distributions are related by a constant normalization scaling factor κ^{ch}

• κ^{ch} is process independent

Predictions:

- momentum spectra of partons in the cone around the initial parton, at scales above some minimum cutoff, Λ_{eff}
- shape of spectrum ~Gaussian

• Λ_{eff} process independent

Test MLLA+LPHD approach; Λ_{eff} , κ^{ch} universality

 Λ_{eff} , κ^{ch} measured in other processes

Prediction:

Scaled momentum distributions

 $\mathsf{E}_{\mathsf{jet}}$

 $x_p =$

2-jets events in photoproduction

Extraction of Λ_{eff}

- fit gaussian 1 around the arithmetic mean of the ξ distribution
- fit dependence of the peak position on energy scale

Λ_{eff} = 275±4(stat.)⁺⁴-8(syst.)MeV

no dependence on energy scale weak dependence on cone opening angle θ_c

data for different processes support the **universality of** Λ_{eff} parameter

Extraction of κ^{ch} from the fit to the shape of ξ distribution

 $\kappa^{ch} = 0.55 \quad 0.01(stat.)^{+0.03}_{-0.02}(syst.)^{+0.11}_{-0.09}$ (theo.)

from pp⁻ $\kappa^{ch} = 0.56 \quad 0.05(stat.) \quad 0.09(syst,)$ data support the **universality of** κ^{c} parameter

x_p distributions in DIS

10 < Q² < 40960 GeV²

MLLA+LPHD predictions

parameters from e^+e^- (LEP) low and high Q^2 – too many particles agreement at medium Q^2

observation of

comparison of *ep* data (ZEUS and H1) to *e*+*e*- results supports the concept of **quark fragmentation universality**

G. Nowak

Particle Production and Fragmentation at HERA

Hadronic final state charge asymmetry in high Q² DIS

Particle Production and Fragmentation at HERA

Strangeness Production in DIS ep Scattering

non-perturbative process: hadronisation

LUND string fragmentation model strangeness suppression factor

 $\lambda_s = P(s)/P(q)$

13

Particle Production and Fragmentation at HERA

 K_{s}^{0} differential prod. x-secs in LAB in Q^{2},η,p_{T}

Ratio of x- sections: $K^0_{\rm s}$ /charged hadrons

$${
m e}\,{
m p}
ightarrow{
m e}\,{
m K}_s^0\,{
m X}$$
 / ${
m e}\,{
m p}
ightarrow{
m e}\,{
m h}^{\pm}\,{
m X}$

h in the same kinematic region as K_{s}^{0}

- ratio rises strongly with p_T
- ~ constant as a function of Q^2 and η

LO Monte Carlos with $\lambda_s = 0.286$ describe the data

G. Nowak

Particle Production and Fragmentation at HERA

BEACH 2010, Perugia

Charm fragmentation into D*

Prod. of a charmed hadron = **perturbative production** of *c*-quark & non-perturbative transition of *c*-quark into a charmed had.

Transition process characterized by the transfer of the quark energy to a given hadron parametrized by fragmentation functions.

Parameters determined in e+e- experiments

check in *ep* experiments **universal**?

observables

$$e_{+e_{-}} \mathbf{Z} \sim \mathbf{E}_{D^{*}}/\mathbf{E}_{beam}$$

 $e_{p} \mathbf{Z}_{hem}$ and \mathbf{Z}_{jet}

wy of the equarly)

Jet method (ZEUS,H1)

E of the *c*-quark is approximated by *E* of the reconstructed D*jet $z_{jet} = (E + p_{\parallel})_{D^*} / (E + p)_{iet}$

Hemisphere method (H1)

E of the *c* quark is approx. by *E* of the reconstructed D* hemisphere z_{hem}=(E+p_{||})_{D*}/∑_{hem}(E+p)

Particle Production and Fragmentation at HERA

BEACH 2010, Perugia

16

Charm fragmentation in Photoproduction

 $Q^2 < 1 \text{ GeV}^2$, 130< $W_{\gamma p} < 280 \text{ GeV}$ at least one jet (reconstructed with k_T clustering algorithm) E_T (jet)>9 GeV , $|\eta^{\text{jet}}|<2.4$

 $D^* \rightarrow D^0 \pi_S \rightarrow K \pi \pi_S$ $p_T(D^*)>2 \text{ GeV},$ $|η(D^*)|<1.5$ associated with a jet

value of ϵ parameter extracted from fitting MC predictions to the data

 $\epsilon = 0.062 \ 0.007(\text{stat.})^{+0.008}_{-0.004}(\text{syst.})$

Consistent with the value 0.05 obtained from e+e- experiments

Comparison with Peterson fragmentation function (one free parameter ε) in PYTHIA

Charm fragmentation in Photoproduction

Comparison with NLO QCD calculations from Frixione-Mangano-Nason-Rudolfi (FMNR)

Particle Production and Fragmentation at HERA

BEACH 2010, Perugia

Charm fragmentation in DIS

2< Q² <100 GeV²

D^{*}→D⁰π_S→Kππ_S 1,5< p_T(D^{*}) < 15 GeV, $|η(D^*)|<1.5$ jets found by k_T cluster algorithm

<u>**D*** jet sample</u> jet containing the D* meson $E_T(jet)>3$ GeV

no D* jet sample

no such jet is allowed

0.4

0.2

0.6

0.8

Z_{hem} Kartvelishvili (α) Peterson (ε) **4.3**^{+0.5}-0.4 0.035+0.007 jet method (higher excited charm states included) -0.006 hemisp. meth. 4.4^{+0.6}-0.5 0.030+0.007 (from $e+e-\epsilon=0.04$ with the same setting) -0.006 fragmentation universality Both methods give consistent results in e+e- and ep processes 19

Charm fragmentation in DIS

Events without a D*jet with $E_T>3$ GeV \rightarrow investigation of charm fragmentation close to the kinematic threshold possible due to hemisphere method.

values of fitted parameters:

Kartvelishvili (α)Peterson (ε)10.3+1.90.006+0.003-1.60.006+0.003

significantly **different** from values obtained for the D*jet sample

No D*[±] jet sample 1/ס dס/dz _{hem} H1 Data 3.5 **RAPGAP** α = 10.3 + 1.9 **RAPGAP** α = 10.3 - 1.6 3 RAPGAP $\alpha = 4.4$ 2.5 2 1.5 artvelishvili F 1 0.5 1.5 R 0.5 0.4 0.6 0.2 0.8 **Z**_{hem}

Comparison with RAPGAP

(LO ME+DGLAP) simulations

The QCD model with the same value for the fragmentation function parameter is not able to describe charm fragmentation consistently in the full phase space down to the kinematic threshold

Studies also performed with CASCADE and NLO QCD – same conclusions

Summary

Charged particles production has been studied in photoproduction and DIS processes at HERA.

The production is sensitive to the fragmentation parameters.

The extracted parameters support the hypothesis of fragmentation universality between ep and e+e- porcesses.

Production of neutral strange mesons is well describe by LO Monte Carlos.

LO MC models and NLO calculations fail to provide a consistent description of charm fragmentation over the full space down to the kinematic threshold.

Back-up slides

Inclusive x-section

$$\sigma_{vis}$$
 = 531 ± 17(stat.)⁺³⁷₋₃₉(syst.) pb

 $\sigma(ep \rightarrow eK_{s}^{0}X)/\sigma(ep \rightarrow eX)$

density ~ 0.4

no dependence on Q^2 models predictions consistent with a small falling at higher x

Frames of reference

LAB frame

 η = -Intan(θ /2) θ with respect to proton direction η >0 proton direction

Breit frame:

photon and proton are moving collinearly photon has momentum *Q* but no energy, photon direction defines the negative z-axis

Hadronic Center of Mass

Particle Production and Fragmentation at HERA

BEACH 2010, Perugia

In the current region the contribution of *s* quark in enhanced and equals the heavy *cb* quarks contribution in the region of high x_p^{CBF}

ratios: MC/data of p_T^* distributions in (*x*, *Q*²) bins

strongest disagreement between both models (DGLAP, CDM) and the data at high $p_T^*(p_T^*>1 \text{ GeV})$ at low Q^2 and low x

 η^* distributions of charged particles in (x, Q^2) bins

Reasonable description of the data for all (Q^2, x) bins by models with different parton dynamics: DGLAP (RAPGAP) and CDM (DJANGOH) p_{T}^{*} < 1 GeV

- dominant contributions from light quarks (u,d)
- heavy quarks (c,b) as the second dominant contribution
- the fraction of s quarks increases at high p_T

K_{s}^{0} diff. x-sec in Breit frame in $p_{T}^{Breit}, x_{p}^{Breit}$

- s-quark from hard processes preferentially
- less sensitivity to λ_s with respect to the target hem. or laboratory frame

target region

- hadronization process predominantly
- more sensitivity to λ_{s}

CDM and MEPS with $\Lambda_s = 0.286$ better describe the differential x-sections

G. Nowak

Particle Production and Fragmentation at HERA

BEACH 2010, Perugia

Charm fragmentation in Photoproduction

photoproduction $Q^2 < 1 \text{ GeV}^2$, 130< $W_{\gamma p} < 280 \text{ GeV}$ at least one jet (reconstructed with k_T clustering algorithm) $E_T(jet) > 9 \text{ GeV}$ $|\eta^{jet}| < 2.4$ $D^* \rightarrow D^0 \pi_S \rightarrow K \pi \pi_S$

 $p_T(D^*)>2$ GeV, $|\eta(D^*)|<1.5$ associated with a jet

ZEUS

Charm fragmentation in DIS

$2 < Q^2 < 100 \text{ GeV}^2$

 $D^* \rightarrow D^0 \pi_s \rightarrow K \pi \pi_s$

 $1,5 < p_T(D^*) < 15 \text{ GeV},$ $|\eta(D^*)| < 1.5$

jets found by k_T cluster algorithm

<u>D* jet sample</u> jet containing the D* meson $E_T(jet)>3 \text{ GeV}$ N(D*)=1508 68(stat.)

no D* jet sample

N(D*)=1363 54(stat.)

Comparison with fragmentation models in PYTHIA

PYTHIA with symmetric Lund string fragmentation f.+ modif. for heavy quarks (Bowler f.) $r_Q = 1$ (default setting) gives a reasonable description deviation increases with decreasing value of r_Q PYTHIA with Peterson fragm. function

value of ε parameter extracted from fitting MC to the data

 $\epsilon = 0.062 \ 0.007(stat.) + 0.008 - 0.004 (syst.)$

Consistent with the value 0.05 obtained from e+e- experiments

G. Nowak

BEACH 2010, Perugia

Comparison with RAPGAP simulation

 $\begin{array}{c} \text{RAPGAP} \text{ (LO ME + DGLAP evolutions)} \\ \textbf{D}^{\star^{\pm}} \text{ jet sample} \\ \end{array} \\ \begin{array}{c} \textbf{D}^{\star^{\pm}} \text{ jet sample} \end{array}$ 1/ס dס/dz _{jet} 1/ס dס/dz _{hem} H1 Data H1 Data 3.5 3.5 RAPGAP $\alpha = 4.4 \pm 0.6$ RAPGAP α = 4.3 + 0.5 3 3 **RAPGAP** α = 4.3 - 0.4 **RAPGAP** α = 4.4 - 0.5 2.5 2.5 2 2 1.5 1.5 1 Kartvelishvili FF 0.5 jet method .5 hemisphere method 1.5 1.5 R ≌ MC/data= 1 0.5 0.2 0.5 0.4 0.8 0.6 0.4 0.2 0.6 0.8 Z_{jet} **Z**_{hem} Kartvelishvili (α) Peterson (ɛ) **4.3**^{+0.5}-0.4 0.035+0.007 jet method ALEPH setting (higher res. included) -0.006 4.4^{+0.6}-0.5 0.030+0.007 (from e+e- ε=0.04 **fragm.universality**) hemisp. meth. -0.006 **3.1**^{+0.3} jet method 0.061 + 0.011 default PYTHIA setting (w/o higher res.) -0.3 -0.009 **3.3**^{+0.4}-0.4 hemisp. meth 0.049 + 0.012 -0.010 Both methods give consistent results all settings reasonably describe the data Similar results obtained with CASCADE simulation (k_T factorization+CCFR evolution)

Jet sample

Comparison with NLO QCD calculations Jet sample

Predictions from: NLO QCD program HVQDIS with fixed flavour number scheme using the independent *c*-quark fragmentation into D* mesons

Data corrected to the parton level

Poor description if Peterson FF used

Good description of the data with Kartvelishvili parametrization α **3.8**^{+0.3}_{-0.3} jet method 3.3+0.4 hemisphere method

-0.4

Comparison with NLO QCD calculations no jet sample

Data corrected to the parton level Predictions from NLO QCD program HVQDIS

Events without a D*jet with $E_T>3$ GeV \rightarrow investigation of charm fragmentation close to the kinematic threshold possible due to hemisphere method.

The values for the best fits:

Kartvelishvili (param α)Peterson (param. ε) $6.1^{+0.9}_{-0.8}$ $0.007^{+0.001}_{-0.001}$

Predictions with fragmentation parameters obtained from D*jet sample are not able to describe the no D*jet data.

The same observation is true for the QCD models(RAPGAP,CASCADE): fragmentation parameters fitted to the D*jet sample differ significantly from those for the no D*jet sample

Hadronic final state charge asymmetry in high Q² DIS

100<Q²<8000 GeV² <u>pos - neg</u> Asymmetry pos + neg $0.02 < X_p < 0.05$ $0.05 < X_p < 0.1$ $0 < X_{p} < 0.02$ (0, م, 4(x, 0) (0, d 0.4 H1 Data Х,^д 0.4 at low Q^2 (low x_{Bi}) asymmetry ~ 0 CDM HERWIG 0.2 0.2 0 as Q^2 increases asymmetry develops at high x_p 10 10² 10 10² 10 10^{2} Q (GeV) Q (GeV) Q (GeV) at low x_{D} it remains ~ 0 $0.2 < X_p < 0.3$ $0.3 < X_p < 0.4$ $0.1 < X_p < 0.2$ (0, d^{0,4} (0, d %) A(x, b) A(x, (0,^{,d} 0.4 behaviour consistent with 0.2 0.2 0.2 expectations from charged asymmetry of valence quark 10² 10² 10² 10 10 10 in the proton Q (GeV) Q (GeV) Q (GeV) $0.4 < X_p < 0.5$ $0.5 < X_p < 0.7$ $0.7 < X_p < 1.0$ A(x_p,Q) A(x_p, Q) A(x_p, a) Monte Carlo models describe 0.5 0.5 0.5 the magnitude and evolution of the asymmetry 10^{2} 10^{2} 10 10 10^{2} 10 Q (GeV) Q (GeV) Q (GeV)

37