Production and polarization of the Λ and ¯Λ hyperons in DIS at COMPASS

V. Alexakhin

on behalf of the COMPASS collaboration

IX International Conference on Hyperons, Charm and Beauty Hadrons

Joint Institute for Nuclear Research
Dubna

22 June 2010
Outline

- Longitudinal polarization of Λ and $\bar{\Lambda}$ hyperons in DIS (averaged on target polarization). \(^1\)

- Dependence of Λ and $\bar{\Lambda}$ longitudinal polarization on the target polarization.

- Yield of heavy hyperons and antihyperons in DIS

\(^1\) COMPASS Collab. EPJC 64 (2009) 171-179
Longitudinal polarization of Λ and $\bar{\Lambda}$ in the current fragmentation region (CFR, $x_F > 0$) semi-inclusive DIS is sensitive to:

- $s(x), \bar{s}(x)$
- polarization of strange quarks Δs (via target polarisation dependence)

\[
\Delta s = \int dx \left[s_{\uparrow}(x) - s_{\downarrow}(x) + \bar{s}_{\uparrow}(x) - \bar{s}_{\downarrow}(x) \right]
\]
Year 2003:
\[P_b = -0.76 \pm 0.04 \]

Year 2004:
\[P_b = -0.80 \pm 0.04 \]

160 GeV \(\mu^+ \) beam

2.8 \(\cdot \) \(10^8 \) \(\mu \)/spill (4.8 s/16.8 s)

\(Q^2 > 1 \) (GeV/c\(^2\)): 31.2 \(\cdot \) \(10^6 \) events
Polarized target

- target material: 6LiD
- polarisation: $> 50\%$
- dilution factor: ~ 0.4
- Dynamic Nuclear Polarization
- solenoid field: 2.5 T
 acceptance: 70 mrad
- 3He/4He: $T_{min} \approx 50$ mK
- two 60 cm long target cells with opposite polarisation
- regular polarisation reversal by field rotation
Event selection

- Primary vertex inside the target cells
- Secondary vertex: 5 cm downstream of the last target cell
- The χ^2 value of the secondary vertex is $\chi^2 < 2$
- $p_T > 23 \text{ MeV}/c$ - to reject $e^+ e^-$ pairs from the γ conversion
- $p_\pm > 1 \text{GeV}/c$
- The DIS cuts $Q^2 > 1 \text{(GeV}/c)^2$ and $0.2 < y < 0.9$
- Collinearity cut $\theta_{\text{coll}} < 0.01 \text{ rad}$
- $0.05 < x_F < 0.5$
<table>
<thead>
<tr>
<th>Experiment</th>
<th>Λ</th>
<th>$\bar{\Lambda}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>E665</td>
<td>750</td>
<td>650</td>
</tr>
<tr>
<td>NOMAD</td>
<td>8087</td>
<td>649</td>
</tr>
<tr>
<td>HERMES</td>
<td>7300</td>
<td>1687</td>
</tr>
<tr>
<td>RHIC</td>
<td>13000</td>
<td>10000</td>
</tr>
<tr>
<td>COMPASS (polarisation analysis)</td>
<td>70000</td>
<td>42000</td>
</tr>
<tr>
<td>COMPASS (heavy hyperon analysis)</td>
<td>100000</td>
<td>60000</td>
</tr>
</tbody>
</table>

COMPASS has the largest number of Λ and $\bar{\Lambda}$.
Invariant mass example: year 2004, Λ and $\bar{\Lambda}$

Λ, 2004 DATA

\[N(\Lambda) = 45576 \]
\[\sigma = 2.2 \text{ MeV/c}^2 \]

COMPASS PRELIMINARY

$\bar{\Lambda}$, 2004 DATA

\[N(\bar{\Lambda}) = 27399 \]
\[\sigma = 2.2 \text{ MeV/c}^2 \]

COMPASS PRELIMINARY

Sideband subtraction method was used to obtain $\cos \theta$ angular distribution.

Bands regions: $(-5; -3)$, $(-1.5; 1.5)$, $(3; 5) \sigma$ from mass peak.
Longitudinal Λ ($\bar{\Lambda}$) polarisation

$-1 < \cos \theta < 0.6$

\[
\frac{1}{N_{tot}} \frac{dN}{d\cos \theta} = \frac{1}{2} \left(1 + \alpha P_L \cos \theta \right)
\]

P_L - longitudinal polarisation of hyperon.

$\alpha = +(-)0.642 \pm 0.013 - \Lambda$ ($\bar{\Lambda}$) decay parameter.

By definition longitudinal spin transfer is:

\[
D_{LL} = \frac{P_L}{(P_b D(y))},
\]

Depolarisation factor

\[
D(y) = \frac{1-(1-y)^2}{1+(1-y)^2}
\]
Example of angular distribution fits

Angular dependencies for \(\Lambda, \bar{\Lambda} \)

- 2004 year events
- \(-1 < \cos \theta < 0.6\)
Spin transfer to Λ and $\bar{\Lambda}$: x_{Bj}

$D_{LL}^\Lambda > D_{LL}^{\bar{\Lambda}}$

Theory predictions:
SU(6), CTEQ5

Λ – solid line
$\bar{\Lambda}$ – dashed line

$D_{LL}^\Lambda = -0.012 \pm 0.047 \pm 0.024$

$D_{LL}^{\bar{\Lambda}} = 0.249 \pm 0.056 \pm 0.049$

Spin transfer to Λ and $\bar{\Lambda}$: x_F

$D_{LL}^\Lambda = -0.012 \pm 0.047 \pm 0.024$

$D_{LL}^{\bar{\Lambda}} = 0.249 \pm 0.056 \pm 0.049$

- $D_{LL}^{\bar{\Lambda}} > D_{LL}^\Lambda$
- theory predictions: SU(6), CTEQ5
- Λ – solid line
- $\bar{\Lambda}$ – dashed line
Comparison with theory ($\bar{\Lambda}$): CTEQ5 and GRV98

Spin transfer to $\bar{\Lambda}$ for different choices of PDFs
- CTEQ5 – solid line
- GRV98 – dashed line
- $D_{LL}(\bar{s}) = 0$
- BJ and SU(6) models – 2 lower lines
- Data for $\bar{\Lambda}$ are sensitive to the $\bar{s}(x)$ distribution
Dependence on the target polarisation $\Delta P/P$

Dependence on pol. PDFs

\[\Delta P/P = \frac{P_- - P_+}{(P_- + P_+)/2}, \quad \text{on y axis} \]

\[\Delta P/P \text{ changes a sign in } x_{Bj} \text{ region} \]

A. Kotzinian, talk at DIS09, arXiv:0907.3270
Dependence on the target polarisation

No significant dependence is found.

Averaged over full kinematics:

\[\Delta P^\Lambda = P^\Lambda_+ - P^\Lambda_- = -0.01 \pm 0.04 \]

\[\Delta P^{\bar\Lambda} = P^{\bar\Lambda}_+ - P^{\bar\Lambda}_- = +0.01 \pm 0.05 \]
To determine to what extent the yields of heavy hyperons and antihyperons are different.

To check the hypothesis that polarization of Λ and $\bar{\Lambda}$ are different due to different contribution of indirect Λ and indirect $\bar{\Lambda}$.

Yields of heavy hyperons and antihyperons

Decay of heavy strange hyperons is one of possible sources of Λ ($\bar{\Lambda}$) production.

\[
\begin{align*}
\mu^+ + d &\rightarrow \mu^+ + \Lambda (\bar{\Lambda}) + X \quad (1) \\
\mu^+ + d &\rightarrow \mu^+ + \Sigma^+(1385) + X \quad (2) \\
\mu^+ + d &\rightarrow \mu^+ + \Sigma^-(1385) + X \quad (3) \\
\mu^+ + d &\rightarrow \mu^+ + \Sigma^0(1385) + X \quad (4) \\
\mu^+ + d &\rightarrow \mu^+ + \Xi^-(1321) + X \quad (5)
\end{align*}
\]

V. Alexakhin \hspace{1cm} Λ and $\bar{\Lambda}$ in DIS
Distributions of $p\pi^-$ and $\bar{p}\pi^+$ invariant mass for experimental data

To determine the $\Lambda\pi$ invariant mass, the events with an invariant mass of $p\pi^-$ within a $\pm 2\sigma$ interval from the mean value of the Λ ($\bar{\Lambda}$) peak are taken.

- $0.05 < x_F < 1.0$ (no cut on x_F max)
- $-1 < \cos \theta < 1$ (all range)
Distributions of $\Lambda\pi^\pm$ and $\bar{\Lambda}\pi^\pm$ invariant mass for experimental data

$N(\Sigma^+) = 3631 \pm 333$

$N(\Sigma^-) = 2173 \pm 222$

$N(\Sigma^-) = 2970 \pm 490$

$N(\bar{\Sigma}^+) = 1889 \pm 265$
Yields of heavy (anti-)hyperons

The relative yields of heavy (anti-)hyperons production in DIS were measured at COMPASS spectrometer:

\[R^+ = \Sigma^+(1385)/\Lambda = 0.055 \pm 0.005 \pm 0.0045 \]
\[\bar{R}^- = \Sigma^-(1385)/\bar{\Lambda} = 0.047 \pm 0.006 \pm 0.0053 \]
\[R^- = \Sigma^-(1385)/\Lambda = 0.056 \pm 0.009 \pm 0.0074 \]
\[\bar{R}^+ = \Sigma^+(1385)/\bar{\Lambda} = 0.039 \pm 0.006 \pm 0.0064 \]

- Systematic errors include background shape and selection cuts variation.
- Results are used for event generator tuning.
The yield of the heavy hyperons in DIS was measured by the NOMAD collaboration in neutrino DIS.

<table>
<thead>
<tr>
<th>Ratios</th>
<th>Present data</th>
<th>NOMAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Sigma^+(1385)/\Lambda$</td>
<td>$0.055 \pm 0.005 \pm 0.0045$</td>
<td>0.058 ± 0.011</td>
</tr>
<tr>
<td>$\Sigma^-(1385)/\bar{\Lambda}$</td>
<td>$0.047 \pm 0.006 \pm 0.0053$</td>
<td>$-$</td>
</tr>
<tr>
<td>$\Sigma^-(1385)/\Lambda$</td>
<td>$0.056 \pm 0.009 \pm 0.0074$</td>
<td>0.026 ± 0.009</td>
</tr>
<tr>
<td>$\Sigma^+(1385)/\bar{\Lambda}$</td>
<td>$0.039 \pm 0.006 \pm 0.0064$</td>
<td>$-$</td>
</tr>
</tbody>
</table>
The presented data are the most precise measurements to date of the longitudinal spin transfer to Λ and $\bar{\Lambda}$ in DIS.

\[
D_{LL}^{\Lambda} = 0 : -0.012 \pm 0.047 \pm 0.024 \\
D_{LL}^{\bar{\Lambda}} \neq 0 : 0.249 \pm 0.056 \pm 0.049
\]

$D_{LL}^{\Lambda} \neq D_{LL}^{\bar{\Lambda}}$

First measurement of the $\Lambda(\bar{\Lambda})$ polarization for different target polarization. No significant dependence is found.

Comparison with theory:
Spin transfer to $\bar{\Lambda}$ is sensitive to $\bar{s}(x)$

The yields of heavy (anti-)hyperons in DIS were measured.

The relative yields of indirect Λ and $\bar{\Lambda}$ production are similar
Backup slides
Polarization of Λ from quark fragmentation

Λ polarization from struck quark fragmentation in parton model:

$$P_\Lambda = \frac{\sum_q e_q^2 \left[P_b D(y)q(x) + P_T \Delta q(x) \right] \Delta D_q^\Lambda(z)}{\sum_q e_q^2 \left[q(x) + P_b P_T D(y)\Delta q(x) \right] D_q^\Lambda(z)}$$

- $P_b D(y)q(x)$ – spin transfer from polarized muon
- $P_T \Delta q(x)$ – spin transfer from polarized quark

Fitting procedure

These distributions have been fitted by a sum of Breit-Wigner convoluted with gaussian

\[R(x) = \frac{\Gamma}{2 \cdot \pi} \cdot \int \frac{Ndt}{(t-M)^2+(\frac{\Gamma}{2})^2} \cdot \frac{1}{\sqrt{2 \cdot \pi}} \cdot e^{-0.5\left(\frac{t-x}{\sigma}\right)^2} \]

and the background function

\[B(x) = A \cdot (x - M_l)^B \cdot e^{-C \cdot (x - M_l)^D} \]

Fit parameters:
- N - total numbers
- M - mass of resonance (fixed)
- \(\Gamma \) - width of resonance (fixed)
- \(\sigma \) - width of Gaussian
- A - amplitude of background
- B, C, D - free parameters
- Ml - reaction threshold mass (1.254 GeV mass of \(\Lambda \pm \pi \))
Estimation of the systematic effects

- **Selection cut:**
 To estimate the systematic error connected with the particular choice of the selection cut of the Λ ($\bar{\Lambda}$) sample we change the width of the central band from $\pm 2\sigma$ to $\pm 2.5\sigma$ and $\pm 1.5\sigma$.

Contribution of cut variation to the systematic error was found to be negligible.

- **Background shape:**
 To estimate this effect we evaluate the background using mixed event method, in which the shape of the background distribution in the $\Lambda\pi$ invariant mass was determined combining Λ and π from different events of the same topology.

Systematic error due to background shape is comparable with statistic error.
Yields of heavy (anti-)hyperons

Table: The ratios of the hyperon yields for the events with and without the DIS cuts

<table>
<thead>
<tr>
<th>Hyperon</th>
<th>Ratio without cut</th>
<th>Ratio with DIS cut</th>
</tr>
</thead>
<tbody>
<tr>
<td>Σ^+/Λ</td>
<td>1.03 ± 0.08</td>
<td></td>
</tr>
<tr>
<td>$\bar{\Sigma}^-/\bar{\Lambda}$</td>
<td>0.97 ± 0.11</td>
<td></td>
</tr>
<tr>
<td>Σ^-/Λ</td>
<td>1.03 ± 0.16</td>
<td></td>
</tr>
<tr>
<td>$\bar{\Sigma}^+/\bar{\Lambda}$</td>
<td>0.97 ± 0.13</td>
<td></td>
</tr>
</tbody>
</table>