F.Petrucci Dipartimento di Fisica e INFN - Ferrara

Applicazioni della radiografia digitale per imaging di dipinti

Torino, 25 Novembre 2009

La scoperta dei raggi X: 8 Novembre 1895

Roentgen, premio Nobel per la Fisica nel 1901

La prima "roentgengrafia"

Radiografia della mano della signora Roentgen (22 dicembre 1895): questa fu la prima "roentgengrafia" e fu pubblicata sul New York Times il 16 gennaio del 1896.

Il tubo a raggi X

In un tubo radiogeno, elettroni emessi da un catodo riscaldato vengono accelerati da una tensione positiva di alcune migliaia di Volt (kV) verso un anodo di metallo (Cu, Mo, W).

Il tubo a raggi X

I fotoni X sono emessi per radiazione di frenamento (bremsstrahlung) dagli elettroni bruscamente decelerati dall'anodo. Al caratteristico spettro continuo di bremsstrahlung dei raggi X prodotti da un tubo radiogeno si sovrappongono le righe di fluorescenza del materiale che costituisce l'anodo.

tubo a 30 kV anodo di Molibdeno

La radiografia tradizionale

Raffaello Madonna del Cardellino Firenze, Galleria Palatina

Foto in luce visibile

Radiografia E.Di.Tech., Firenze

Raffaello **Madonna dell'Impannata** 1513-14 Olio su tavola, 158 x 125 cm

Galleria Palatina (Palazzo Pitti), Firenze Radiografia E.Di.Tech., Firenze

Taddeo di Bartolo (inizio XV sec.) Vergine annunziata Tempera su tavola Avignone, Museo del Petit Palais

da: M.Hours La vie mysterieuse des chefs d'ouvre Ed. Louvre, Paris

Scuola senese XV sec. Madonna con bambino

Tempera su tavola Parigi, Louvre

Falso!

L'interazione con la materia provoca un'attenuazione del fascio di raggi X.

Raggi X monoenergetici seguono una legge di attenuazione esponenziale rispetto allo spessore del materiale attraversato

Attenuazione dei raggi X nella materia

materiali diversi attenuano diversamente i raggi X

.... e naturalmente raggi X più energetici sono meno attenuati

da: Ascani Orsini, Gilardoni, Mucchi X-Rays in Art Ed. Gilardoni, Mandello Lario (CO)

la trasparenza di un fiore radiografato a 5 kV...

...e a 20 kV

Attenuazione dei raggi X nella materia

Legge di Beer-Lambert per fotoni monocromatici e materiali omogenei:

$$I = I_0 e^{-\mu s}$$

dove:

 $\boldsymbol{\cdot}$ \boldsymbol{I}_0 è l'intensità iniziale del fascio di raggi X o γ

• I è l'intensità del fascio dopo l'attraversamento dello spessore di materiale preso in considerazione

- µ è il coefficiente di attenuazione lineare del materiale
- s è lo spessore del materiale considerato.

Assorbimento dei raggi X nella materia

XCOM: Photon Cross Sections Database NIST Standard Reference Database 8

http:// physics.nist.gov/ PhysRefData/Xcom/ Text/XCOM.html

Coefficiente di assorbimento di massa per il piombo.

da: M.Hours La vie mysterieuse des chefs d'ouvre Ed. Louvre, Paris Quali caratteristiche del dipinto danno luogo all'immagine radiografica?

spessore

numero atomico

densità

Neri di Bicci, 1460-70

Incoronazione della Vergine e Santi

tempera e oro su tavola

in restauro presso l'Università Internazionale dell'Arte di Firenze

150 cm

151 cm

come si esegue la radiografia tradizionale di un dipinto

Colore, composizione chimica e assorbimento ai raggi X dei più importanti pigmenti (vedere tab. II/4). I colori compositi si ottengono mescolando i pigmenti base.

Colore	Denominazione	Composizione chimica	Assorbimento ai raggi X
Bianco	Bianco d'argento	Carbonato di argento e di piombo	molto alto
	Bianco di piombo	Carbonato di piombo	molto alto
	Bianco di zinco	Ossido di zinco	alto
	Bianco di China	Ossido di zinco	alto
	Bianco di calce	Carbonato di calcio	medio
Giallo e Arancio	Giallo cromo (chiaro, scuro, arancio)	Cromato di piombo	molto alto
	Giallo di cadmio (chiaro, medio, scuro, arancio)	Solfuro di cadmio	alto
	Giallo di zinco	Cromato di zinco	alto
	Giallo aurora	Solfuro di cadmio	alto
	Giallo ocra (dorato, trasparente, bruno, di montagna, Siena crudo, Siena bruciato)	Ossido di ferro, allumina	medio-alto
	Gommagutta	Resina di Cambogia (organica)	basso
	Giallo di Napoli	Antimonio di piombo	molto alto
	Massicotto	Ossido di piombo	molto alto
	Giallo di Marte	Ossido di ferro	medio
	Lacca gialla di guado	Organica	basso
Rosso	Rosso di Saturno o minio	Ossido di piombo	molto alto
	Vermiglione-cinabro	Solfuro di mercurio	molto alto
	Rosso di Venezia	Ossido di ferro	medio
	Lacca carminata	Organica	basso
	Lacca di garanza rosa, bruna, porpora	Organica	basso
	Terra rossa cruda e bruciata	Ossido di ferro - allumina	medio-alto
	Bruno di Firenze	Cianuro di rame	alto
Bruno	Bruno di Marte	Ossido di ferro	medio
	Bruno di Prussia	Cianuro di ferro	medio
	Seppia, inchiostro di mollusco	Organica	basso
	Bistro fuliggine	Organica	basso
	Bitume, asfalto	Organica	basso
Azzurro	Bleu ceruleo	Stannato di cobalto	alto
	Bleu di cobalto	Alluminato di cobalto	medio
	Oltremare chiaro	Solfuro di sodio	medio
	Bleu di Prussia	Cianuro di ferro	medio-alto
	Indaco vegetale	Organica	basso
Violetto	Violetto di cobalto	Fosfato di cobalto	medio
	Violetto di Marte	Ossido di ferro	medio-alto
	Violetto minerale	Fosfato di manganese	medio
Verde -	Verde Verona	Arseniato di rame	alto
	Verde cromo	Ossido di cromo	medio
	Verde di cobalto	Ossido di zinco e cobalto	alto
	Lacca verde	Organica	basso .
Grigio e Nero	Nero d'avorio	Fosfato di calclo e organica	medio .
	Nero di ferro	Ossido di ferro	medio-alto
	Nero di vite	Organica	basso
	Nero fumo di lampada	Organica	basso
	Nero di carbone	Organica	basso
Tutti i colori	Acritici	Organica	basso

GILARDONI - X-RAYS IN ART

Anonimo XVII sec. Maddalena penitente Coll.privata

Foto in luce visibile prima del recente restauro

Figura 5.12: foto in luce visibile del dipinto prima del recente restauro. Sono visibili sul collo

Foto in luce visibile durante la fase di asportazione della vernice ingiallita

The second state of the second of the second state of the second s

Foto in luce visibile dopo l'asportazione della vernice ingiallita

Figura 5.14: foto in luce visibile del dipinto a pulitura terminata.

Radiografia X

Radiografia digitale di opere di grandi dimensioni

Radiografia digitale di opere di grandi dimensioni

Struttura Scansione dell'opera grazie alla traslazione XZ del tubo radiogeno e del rivelatore

Dimensioni struttura 2.56 x 2.26 x 1.00 m

Dimensioni massime del dipinto: 2.50 m × 1.50 m

Rivelatore

Flat panel CCD Hamamatsu C7930DK

Dimensioni CCD 220.8 x 176 mm

Dimensioni pixel $50 \times 50 \mu m$

Acquisizione con frame grabber National Instruments PCI 1424, 12 bit/pixel

Anonimo Maddalena penitente olio su tela, XVIIsec.

Rixce visibile

Anonimo "Paesaggio" Olio su tavola, XX sec. Collezione privata

Ractio/gisifialedigitale

Crocifisso ligneo processionale XVIII sec. coll.privata

Particolare in Radiografia digitale

Pezzo da radiografare

Studio topografico di un flauto rinascimentale con la radiografia digitale

Immagine con quote (mm)

Si sono misurate le dimensioni reali del flauto manipolando le immagini, con un'accuratezza del rilievo topografico pari a 70 micrometri(1 pixel)
Si sono individuate varie irregolarita' nel legno e/o parti stuccate a causa del cattivo stato di conservazione dell'oggetto o di cambiamenti fatti alla sua struttura originaria nel corso del tempo

Radiografia Differenziale al K-edge

Viene sfruttata la grande variazione del coefficiente di assorbimento nell'intorno del K_edge di un elemento

Viene utilizzata una radiazione X monocromatica per realizzare la radiografia del dipinto a due differenti energie Processando le immagini ottenute con appositi algoritmi si ottiene una mappatura, pixel per pixel, della densità superficiale dell'elemento cercato, componente di un pigmento

Bianco di Zinco (ZnO)

Element	K (KeV)	Pigments
29 (Cu)	8.9789	Azurite, red enamel, green enamel, Malachite green Viridian green, verdigris
30 (Zn)	9.6586	Zinc white, Cadmium yellow, Cobalt green, Zinc green
33 (As)	11.8667	Realgar, Cobalt violet, Viridian green
38 (Sr)	16.1046	Strontium yellow
42 (Mo)	19.9995	Chrome orange
48 (Cd)	26.7112	Cadmium orange, cadmium yellow, cadmium red, cadmium green, yellow enamel

Setup sperimentale

Cristallo di grafite a mosaico

Il cristallo a mosaico non è un monocristallo: si ottiene un flusso di fotoni più intenso ma una distribuzione non monocromatica

Mietitura a Montfoucault Copia da Pissarro, olio su tela, 1980

Buectizogi satolize diffælizezaticale

Distribuzione degli elementi g/cm²

Tutti gli elementi

O Zinco

Anonimo, XX sec. Paesaggio di Mare Olio su tavola

Ringraziamenti a:

prof. Raffaela Rimaboschi, società Artconservation - Firenze e Unife Fondazione dell'Università Internazionale dell'Arte di Firenze, per la diagnostica del Neri di Bicci

dott.ssa Maria Pia Morigi, Dipartimento di Fisica dell'Università di Bologna, per le slides introduttive

dott.ssa Fauzia Albertin, Dipartimento di Fisica dell'Università di Ferrara dott.ssa Micol Ricca, Tecnologie per i Beni Culturali Unife