USO COMBINATO DEI SISTEMI PORTATILI PIXE-ALFA E XRD PER LA DETERMINAZIONE QUANTITATIVA, NON DISTRUTTIVA, DI PIGMENTI.

G. Pappalardo^{1,3}, L. Pappalardo^{1,2}, F. Rizzo^{1,3}, F.P. Romano^{1,2}

- LANDIS, Laboratori Nazionali del Sud, Catania
 IBAM, CNR, Catania
- 3. Dipart. Fis. E Astronom,, Università di Catania, Catania

PIXE – Particle Induced X-ray Emission

 $\mathbf{O} = \mathcal{N}(\mathbf{INI}) \quad \mathbf{V} = \mathcal{N}(\mathbf{IO})$

X' rivelati = f(X, Assorb, $\Delta\Omega$)

PIXE – ANALISI QUANTITATIVA

TARGHETTE SPESSE

X' rivelati = f(X, Assorb, $\Delta\Omega$, Auto-Ass.+altri effetti)

Auto-assorbimento dipende dalle concentrazioni che si vogliono determinare

AUTO ASSORBIMENTO

- 1) Tutto quello che rivelo nello spettro è tutto quello contenuto nel campione (Elementi Visibili)
- 2) Quello che rivelo nello spettro è solo parte di quello che è contenuto nel campione (Elementi Invisibili)

ENTRAMBI I CASI VENGONO RISOLTI PER MEZZO DI PROCEDURE DI ITERAZIONE

Nel Caso 2 è necessario che gli elementi invisibili (tipicamente Ossigeno, Carbonio o altri radicali) siano legati stechiometricamente agli elementi visibili

IL SOFTWARE GUPIX (PRODOTTO DALL'UNIVERSITA' DI GUELPH, CANADA) PERMETTE IL CALCOLO DELLE CONCENTRAZIONI

PROBLEMA PRINCIPALE: COME STABILIRE QUALI ELEMENTI INVISIBILI, LEGATI STECHIOMETRICAMENTE AI VISIBILI, SONO PRESENTI ?

Occorre servirsi di altri metodi di analisi di composti (per es. Raman o XRD)

PROCEDURA

APPLICAZIONI AD AFFRESCHI DI EPOCA ROMANA

E' INDISPENSABILE OPERARE CON STRUMENTAZIONE PORTATILE!

The PIXE-alpha spectrometer He FLUX

THE DETECTOR

- •Peltier cooled
- •Si drift
- •10 mm²
- •Resolution of 146 eV at 5.9 KeV
- •8 µm Be window
- •Produced by KEVEK and assembled by EIS

Inhibition of the presence of air gases, in particular of Ar ($k\alpha$ =2.95 keV)

Better definition of the low atomic number elements, such as Na

Energy spectrum of a lapislazzuli.

Specie atomiche (molto ingrandite)

QUANTITATIVE ANALYSIS

Performed by GUPIX 2003 CODE.

(Maxwell J., Teesdale A., Campbell J. L, 2003), in the "Matrix Calculation" Mode

PIXE-alpha spectrum obtained from the petrological standard SCO-1

	Na ₂ O	MgO	Al ₂ O ₃	SiO ₂	P ₂ O ₅	K ₂ O	CaO	TiO ₂	Fe(III) tot
EIS	0.8 ± 0.2	$\textbf{2.8} \pm \textbf{0.4}$	16.2 ±2.2	64.7 ±6	0.3 ±0.2	3.5 ±0.4	2.8±0.5	0.7 ±0.1	5.5 ±1.6
Ref.	0.9	2.72	13.67	62.78	0.21	2.77	2.62	0.63	5.14

Comparison between the results of the PIXE-alpha analysis and the certified data of the SCO-1 reference standard. Values are in %.

PIXE- α analysis of the red and black pigments on a Castellucciano vase, at the Archaeological Museum of Licata. The high value of the Mn/Fe (0.91) ratio in vases of Serraferlicchio style is compatible with the artificial addeed of manganese powder to the "Terra d'Ombra".

Sigla	Al	Si	K	Ti	Ca	Mn	Fe	S	Cl	Mn/Fe
Camp1 (lic3) - black	138	798	173	46	827	190	208	1115	95	0.91
" (lic4) - red	65	664	209	7	757	3	252	965	94	0.01
Camp2 (lic5) - black	182	1305	211	9	775	145	490	729	129	0.29
" (lic6) - red	335	2286	445	10	730	5	379	841	142	0.013
Camp3 (lic7) - white	234	1453	184	7	695	11	55	366	19	0.2
" (lic8) - black	218	1364	152	16	564	48	125	199	64	0.38
Camp4 (lic9) - black	220	1298	249	21	330	186	294	316	206	0.63
Camp5 (lic10)-white	502	3597	199	23	575	4	200	84	34	0.02
" (lic11) - red	353	3019	233	70	412	14	726	131	55	0.019

Black pigment analysis on Local pottery

*Maniatis et Al. 1993 - New evidence for the nature of the attic black gloss. Archaeometry 35, pp.23-24

Comparison between the compositions, in %, of black "gloss" on attic pottery coming from different areas and the compositions of black pigments on "local" and "ionic" pottery coming from the Votive Deposit of S.Francesco in Catania.

VASE A (18713)

PIT 1

VASE B

Pit 6

				PIX	E-alpha r	esults (va						
	Na2O	MgO	AI2O3	SiO2	P2O5	SO3	CIO	K2O	CaO	TiO2	MnO	Fe2O3
PIT1 🔥	3.1 ± 1.7	6.9 ± 0.7	11.7 ± 0.8	31.2 ± 1	0	16.5 ± 0.9	0.91 ± 0.2	2.3 ± 0.3	16.4 ± 1	1.1 ± 0.55	0	9.5 ± 2
PIT2 A	n.d.	6 ± 0.9	11.4 ± 0.9	35.1 ± 1.4	n.d.	17 ± 1	n.d.	1.4 ± 0.35	14.5 ± 1	1.3 ±0.5	0	8.5 ± 2.1
PIT3	n.d.	5 ± 0.7	13.8 ± 0.7	36.3 ± 1	0.9 ± 0.36	13.3 ± 0.6	n.d.	4.8 ± 0.4	12.11 ± 0.7	n.d,.	3.2 ± 0.89	7.2 ± 1.8
PIT4 R	n.d.	2.8 ± 0.5	5.8 ± 0.5	13.5 ± 0.5	n.d.	37.9 ± 1.1	0.4 ± 0.1	0.8 ± 0.2	26.2 ± 1	0	0	6 ± 1.5
PIT5	0	4.2 ± 0.6	10.2 ± 0.7	25.8 ± 0.7	1.6 ± 0.5	25.1 ± 0.7	0.5 ± 0.1	2.4 ± 0.3	19.1 ± 0.8	0.7 ±0.3	2.7 ± 0.8	5.4 ± 1.6
PIT6 C	0	7.6 ± 0.6	21.5 ± 0.8	43 ± 0.8	1.2 ± 0.4	3 ± 0.3	0	4.6 ± 0.3	2.9 ± 0.4	n.d.	2.7 ± 0.9	11.8 ± 1.8

Inv. 1548

Inv. 1551

Inv. 1562

Ben1 700 -Si 600 500 -400 **400** 300 Al 200 Mg 100 -Au Ca Fe m. ~ 0 + 0 5 10 Energy (KeV)

Inv. No 1551

Inv. No 1548

Inv.No 1562

PIXE results, performed by GUPIX 2003 CODE

(Maxwell J., Teesdale A., Campbell J. L, 2003), in the "Matrix Calculation" Mode (Values are in %)

	Na2O	MgO	AI2O3	SiO2	CaO	MnO	FeO	NiO		Au2O3		
BEN I - 1551	1.45	15.141	21.37	40.85	4.52	0.37	13.9	3	1.74	0		
				-	-	-						
BEN 2 - 1548	Na2O	MgO	AI2O3	SiO2	CaO	MnO	FeO	NiO	0.00	Au2O3		
	1.85	3.18	19.61	32.85	5.93	1.58	24.6	5	2.22	5.88		
	Na20	MaO	AI203	Si02	CaO	MnO	FeO	NiO		Au203		
BEN 3 - 1562	3.69	4	18.91	33.5	7.16	0.31	28.3	3	0	3.2		
								-		•		
									Fe ₂ A	$J_{2}(SiO_{1})_{2}$		
									Λ Imanding type			
								L	AIIII	allullic-ty	pe	
					•							
	Stechio	metric	formula	a of Gr	anate	BEN	1	BEN	12	BEN	3	
AL (%)			13.3		1	2		10	1(0		
$\frac{1}{2} \left(\frac{1}{2} \right)$			20.4			2		10				
51 (%)			20.1			2	20		16	16	0	
							1					

LA NUOVA VERSIONE DEL SISTEMA XRD

SORGENTE X: Tubo microfocus da 10 Watt con anodo di Fe accoppiato ad un'ottica policapillare parallelizzante. Lo spot del fascio è pari a 0.6 cm.

DETECTOR: rivelatore Si-PIN da 25 mm²/500 µm e risoluzione in energia pari a 190 eV @ 5.9 keV

theta (degree)

CALCITE - SISTEMA XRD ASSING

Risultati:

Risoluzione angolare
 migliore del 40% rispetto la
 versione commerciale

 Intensità dei picchi di diffrazione un fattore 4-5 maggiore operando alle stesse condizioni sperimentali

> Tempi ridotti da 3 ore a circa 45 minuti.

Aff17

Theta (degrees)

Fresco samples	Colour	CaCO₃ (%)	Al ₂ O ₃ (%)	SiO ₂ (%)	HgS (%)	Fe ₂ O ₃ (%)	CuO(%)	Others* (%)	C.F.	Pigm ents **
Aff2	Bright red	60.2 ± 1.8	0.7 ± 0.2	2.0 ± 0.3	32.9 ± 3.3	nd	n.d	3.9	1.00	Cinnabar (32.9 %)
Aff10	Red	75.2 ± 1.8	3.5 ± 0.3	10.9 ± 0.4	2.8 ± 0.4	3.6 ± 0.8	n.d	negligible	1.00	Cinnabar (2.8 %) Red earth (Hematite 3.6%)
Aff12	White	90.4 ± 1.9	1.6 ± 0.2	3.3±0.2	nd	nd	n.d	4.3	1.02	Calcite (90%)
Aff15	Brown	53.3 ± 1.6	3.5 ± 0.7	11.7 ± 0.6	nd	28.3 ± 1.0	n.d	4.2	1.01	Red ochre (Hematite 28.3%)
Aff5	Yello w	58.8 ±3.5	6.9±1.2	13.2 ± 1.3	n.d.	FeO(OH) 4.2 ± 2.0	n.d.	16.84	1.04	Yellow ochre (Goethite 4.2%)
Aff17	Blue	56±1	6.8±0.4	29±0.6	nd	1.6±0.3	2.6±0.4	4.0	1.01	Egyptian blue (13 %), Calcite

Others* (Na, Mg, Al, P, S, Cl, K and O)

** Only the main components are reported. Calcite and quartz are to be considered as pigments and /or as plaster components.

ESEMPIO DI APPLICAZIONE QUALITATIVE IN SITU

Caratterizzazione di un frammento delle pitture murali del Palazzo di Nestore (Pylos, Grecia)

min. angle = 12 degree max. angle = 67 degree step angle = 0.05 degree acquistion time/step = 5 sec.

GRAZIE PER L'ATTENZIONE