

Tecniche di analisi con fasci ionici per i beni culturali

Pamela Bonanni, Silvia Calusi, Lorenzo Giuntini, Novella Grassi, Pier Andrea Mandò, <u>Mirko Massi</u>, Alessandro Migliori

LABEC, Laboratorio di tecniche nucleari per i beni culturali Dipartimento di Fisica dell'Università di Firenze Sezione INFN di Firenze

http://labec.fi.infn.it massi@fi.infn.it

"Piccolo" acceleratore di ioni (energia dell'ordine dei MeV)

L'acceleratore Tandetron del LABEC

1 - sorgente e trasporto a bassa energia

3 - trasporto alta energia verso i canali di misura į,

<u>Una caratteristica essenziale per le</u> <u>analisi nel campo dei beni culturali</u>

Vantaggi fascio esterno

- facilità nel maneggiare e muovere il "bersaglio"
- analisi di oggetti di qualunque dimensione
- prelievi non necessari
- riscaldamento trascurabile

nessun danno termico

nessun problema di disidratazione

Rivelazione e analisi in energia

spectral analysis

INEN

particle accelerator

hydrogen or helium ion beam

object to analyse

Principio dell'analisi PIXE (Particle Induced X-ray Emission)

le differenze delle energie degli elettroni nei diversi livelli, cioè le energie dei raggi X, sono caratteristiche della specie atomica da cui sono emessi

→ la rivelazione e classificazione delle energie X permette di identificare e quantificare i differenti elementi presenti nel campione-bersaglio del fascio

Energie dei raggi X caratteristici

INFN

sezioni d'urto <u>di produzione X</u> (serie K) $\sigma_{Z,E0}$ sezioni d'urto <u>di produzione X</u> (serie L)

LABEC Set-up PIXE a due rivelatori in esterno

BIG ottimizzato per elementi con Z medio / medio-alto

 SMALL ottimizzato per elementi con Z medio
/ medio-basso

> Nota: il flusso di He davanti allo riduce l'assorbimento per gli X di bassa energia

elementi rivelabili: a partire dal Na
sensibilità: fino alle ppm

Limitazioni della tecnica PIXE

 nessuna informazione sulle componenti organiche ("cieca" agli elementi sotto il Na)

 nessuna informazione <u>diretta</u> sui legami chimici

però.... ipotesi stechiometriche grazie alla quantitatività e multielementalità

 nessuna informazione <u>immediata</u> sulla stratigrafia e la distribuzione in profondità degli elementi però.... PIXE differenziale

1 - Principio dell'analisi PIGE (Particle Induced γ-ray Emission)

- per gli elementi più leggeri, le particelle del fascio possono avvicinarsi di più al nucleobersaglio (repulsione Coulombiana più debole)
- le forze nucleari possono entrare in gioco
- il nucleo bersaglio può essere eccitato
- la diseccitazione del nucleo ha luogo immediatamente tramite emissione di raggi gamma

IN FIN **LABBEC** Laboratorio di Tecnicha Nucleon per i Beni Coluvali - Frereze

2 - Principio dell'analisi PIGE

 i livelli di energia dei nuclei sono caratteristici di ogni isotopo

- le energie dei raggi gamma sono caratteristiche dell'isotopo emettitore
- rivelare e classificare le energie dei gamma emessi permette di identificare e (in alcuni casi) quantificare gli isotopi a basso Z nel campione-bersaglio

Reaction	E^{γ} (keV)
$^{23}Na(p, p^{\gamma})^{23}Na$	441

Na (441. keV

Confronto

PIXE-PIGE (sodio)

Principio della tecnica IL

Si rivela la luminescenza (UV, <u>visibile</u> and IR) indotta dagli ioni in materiali isolanti o semiconduttori

Informazioni sulla struttura cristallina

Informazioni su difetti nel cristallo, presenza di impurezze

Sintesi caratteristiche tecniche IBA

Tecnica	Oggetto della rivelazione	Principali caratteristiche
PIXE	Raggi X	Elementi con Z>10; alta sensibilità
PIGE	Raggi y	Elementi a Z basso
IL	Luce	Informazioni sulla struttura, solo per alcuni materiali; alta sensibilità

INFN

simile alle lenti convergenti in ottica e ai sistemi di focheggiamento dei fasci elettronici!

Lente di focheggiamento

eam

INFN

05

 Mappatura elementale grazie a sistemi di scansione
Analisi in scansione su aree selezionate deflettendo il fascio o spostando il campione

Durante la scansione, ogni volta che viene
rivelato un "evento" (raggio X, raggio γ...) il software
acquisisce:

-la posizione (x,y), punto di origine della radiazione

-l'energia E della radiazione,

che caratterizza l'elemento Dalle terne (E,x,y) si può così ricostruire come sono distribuiti i vari elementi all'interno dell'area scandita

<u>sistema di</u> <u>deflessione</u> <u>del fascio</u>

eam

INFN

• Lente di focheggiamento

PIXE-BS-PIGE-IL detection setup

Tipicamente campioni eterogenei con disomogeneità su scala di 100 μm e inferiore difficilmente identificabili otticamente

Rischi della misura puntuale:

•mescolare informazioni provenienti da materiali differenti

includere nell'area analizzata zone
"anomale", non rappresentative

Le mappe di distribuzione elementale consentono una facile, affidabile ("vedo" col fascio) e riproducibile identificazione delle zone di interesse e guidano l'analisi sia durante che dopo la misura

Analisi a scansione su manoscritti antichi (inchiostro metallo-gallico)

le mappe evidenziano un contributo dovuto alla scritta sul retro del foglio
da una misura puntuale nella parte superiore si otterrebbe un errata stima del contributo della carta

Foto con retroilluminazione

Villa Adriana Edificio con tre esedre vitrea di Villa Adriana

Confronto **PIXE-PIGE** permette di evidenziare differenze di composizione fra **superficie** e **bulk**

Sodio spessore sondato in vetro:

PIXE → pochi micron dalla superficie
PIGE → qualche decina di micron

Tessere di pasta Villa Adriana Edificio con tre esedre **vitrea di Villa Adriana**

Confronto **PIXE-PIGE** permette di evidenziare differenze di composizione fra **superficie** e **bulk**

Sodio spessore sondato in vetro:

PIXE → pochi micron dalla superficie
PIGE → qualche decina di micron

Torino, Museo Civico di Palazzo Madama

Indagine sull'<u>insolita</u> superficie a macchie

della veste: spot scuri dell'ordine di qualche decimo di millimetro, ben visibili dopo l'assottigliamento delle vernici

Imaging composizionale con PIXE a scansione, per la prima volta su un dipinto "vero" (misure svolte alla facility di microfascio esterno)

Forse un effetto di restringimento della lacca...

Esempi di mappe elementali

Cu, Ag e Au caratterizzano il nastro metallico
Fe e Ca corrispondono ai lacci in seta di fissaggio

Analisi quantitativa sul nastro metallico

and fo

Ag

di Au dovute a

1) Selezione delle zone perpendicolari al fascio (per evitare effetti dovuti a una differente geometria di misura) 2) Si trova che in differenti zone della stessa mappa: lega Ag/Cu coperta Ag/Cu costante • fluttuazioni in Au/ da Au (fluttuazioni Ag e Au/Cu differente logorio)

• Spessore lega: ~ 7 μ m (~95% Ag + ~5% Cu) • Spessore Au: ~ 50 nm

Disegni a punta metallica

PAOLO ÚCCELLO - STUDIO DI CAVALIERE Uffizi, Gabinetto Disegni e Stampe Punta metallica, carta preparata a bianco di piombo e terra verde

PISANELLO PROFILO DI DONNA, LOUVRE punta metallica su carta preparata bianca

FILIPPINO LIPPI - STUDIO Firenze, Opificio delle Pietre Dure punta metallica + carta preparata

Filippino Lippi, disegno, tecnica sconosciuta

Cu

Studio PIXE-PIGE-IL sui lapislazzuli In collaborazione con la sezione di Torino (exp. FARE)

Caratterizzazione dei lapislazzuli per:

- conservazione di opere d'arte
- l'identificazione della provenienza della pietra usata nell'opera e ricostruzione delle rotte commerciali

Manca studio sistematico e approfondito della pietra grezza, in particolare sulla provenienza

Origine dei lapislazzuli

1. Sar-e-Sang, in Afghanistan: la principale sorgente di lapislazzuli per Europa e Asia per più di 6000 anni

Antiche miniere anche in:

- 2. Monti del Pamir (Lyadzhuar Dara, Tajikistan)
- 3. Pakistan (Chagai Hills)
- 4. Siberia (Irkutsk, vicino al lago Baikal)
- 5. Egitto (posizione ignota, monte Sinai?)
- 6. Chile (Flor de los Andes, Coquimbo)
- (Miniere moderne anche in Canada, USA, Italy)

Lapislazzuli

Minerale principale (che dà il colore): lazurite (<u>Na</u>,Ca)8 (AlSiO4)6 (<u>S</u>O4,S,Cl)2

minerali accessori più comuni: sodalite Na8 (AlSiO4)6 Cl2 calcite CaCO3 pirite FeS2 diopside CaMgSi2O6 wollastonite CaSiO3 feldspato KAlSi308 flogopite KMg3(AlSi3O10)(F,OH)

Lazurite e pirite incluse in calcite

Fasi della costruzione del database I.Selezione campioni di rocce di origine certificata: preparazione in sezioni sottili (~50 μ m), per separare il contributo dei differenti minerali (Museo di Storia Naturale di Firenze) II. Studio sistematico con tecniche d'analisi più facilmente utilizzabili (principalmente cold-CL e SEM-EDS-CL): individuazione delle fasi e misura spettro CL • studio di correlazione con le differenti origini • selezione di campioni e aree da analizzare con PIXE-PIGE-IL in base allo studio di correlazione (Torino) III. Analisi PIXE-PIGE-IL su campioni e aree selezionate: confronto con i risultati delle altre tecniche ed eventuale individuazione di markers di provenienza

(Firenze-Torino)

2-Luminescenza della diopside nel lapislazzuli del Pamir: possibile marker

L'emissione a 690 nm negli spettri CL e IL è stata osservata solo nei campioni del Pamir e <u>potrebbe</u> rappresentare un criterio di attribuzione della provenienza

3 - Cl nella lazurite del lapislazzuli siberiano <u>non</u> rappresenta un marker (diversamente da come proposto in lavori precedenti)

4 - Ba e Sr possibili *marker* del lapislazzuli siberiano (come proposto in lavori precedenti)

contenuto medio di Bario

siberiani: superiore all'1% altra provenienza: minore dell'MDL

contenuto medio di Stronzio siberiani: nel range delle 1000 ppm altra provenienza: dell'ordine di 100 ppm

Analisi IBA dei pezzi della "Collezione Medicea di Petre Lavorate" (XVI secolo) (microfascio esterno del LABEC)

Disco con stella

Cofanetto

Vasetto rotondo

Obiettivi:

deteminare i minerali presenti nella pietra di lapislazzuli utilizzata
individuare la provenienza del lapislazzuli

Caratteristiche dei lapislazzuli della "Collezione Medicea di Pietre Lavorate"

<u>campione</u>	minerali accessori individuati
disco	lazurite, feldspato, pirite, diopside, flogopite
cofanetto	lazurite, pirite, diopside, flogopite
vasetto	lazurite, diopside, pirite, flogopite, inclusioni di Fe

- non rivelata wollastonite \rightarrow esclusa origine cilena
- non rivelata banda a 690 nm con IL
 - → non <u>dovrebbe</u> provenire dal Pamir
 - basse concentrazioni di Ba e Sr
 - → non dovrebbe provenire dalla Siberia

Probabilmente il lapislazzuli è afghano, ma non si può escludere l'origine pakistana il lavoro prosegue...

Grazie per l'attenzione!

http://labec.fi.infn.it