The Italian Neutron Experimental Station (INES) at ISIS State of the Art and applications

Francesco Grazzi Consiglio Nazionale delle Ricerche Istituto dei Sistemi Complessi, Sezione di Firenze

Consiglio Nazionale delle Ricerche

Summary

INES timeline and people Neutron characteristics Time of flight diffraction **INES** characteristics **INES** features software available special devices **INES** applications metal characterization archaeometry A case study

Consiglio Nazionale delle Ricerche

INES timeline & people

2004: Project and components building
2005: Installation and calibration
2006: commissioning and first users
2007-2009: standard user program

Marco Zoppi: instrument responsible <u>Francesco Grazzi</u>: development and tests <u>Antonella Scherillo</u>: instrument scientist <u>Silvia Imberti, Laura Bartoli</u>: prev. instr. scient.

Consiglio Nazionale delle Ricerche

How are neutrons produced?

High energy protons

Target: Tungsten

- Protons disrupt the target atoms
- Broken in pieces:
 - producing light nuclides and neutrons
- 15-30 neutrons / event
 - very energetic neutrons

Consiglio Nazionale delle Ricerche

thermal neutrons

i.e. moderated using H-rich materials at room temperature

• energy: $E \cong kT \ (\cong 25 \text{ meV})$

• wavelength: $\lambda \approx 0.18$ nm

 thermal neutrons are a "gentle" probe for dense matter

ADVANTAGES:

- neutrons have the correct wavelength
- neutrons have a high penetration power
 DISADVANTAGE
- neutron experiments are EXPENSIVE

Neutrons versus X-rays (non-invasive, non-destructive techniques)

X-rays

Electron-interaction

Surface limited

neutrons

Nuclear-interaction

Bulk analysis

Punctual properties

Average properties

Especially on METALS Neutrons provide Quantitative multiphase bulk compositions

Consiglio Nazionale delle Ricerche

STFC campus (UK)

The CNR instrument: INES@ISIS

ToF neutron diffraction

Non destructive, non invasive characterization technique

- Sample characterization in terms of:
- crystal phase(s)
- texture
- residual stress

Measured Diffraction Pattern

The Italian Neutron Experimental Station (INES@ISIS)

INES diffractometer features

- water moderator
- primary flight path 22.804 m
- secondary flight path
 1.000 m
- 9 banks (144 ³He squashed detectors)
- λ range: 0.17 3.24 Å
- 20 range: 11.6°-170.6°
- d range: 0.1-16 Å
- Resolution: 0.1% 1%

Consiglio Nazionale delle Ricerche

INES beam characteristics

 Small penumbra • Regular square shape of the beam Beam size 38 mm x 38 mm - 11 12 10 13 50

Consiglio Nazionale delle Ricerche

How to perform a measurement

Collecting data for several hours...

4 positions sample changer

Laser pointer collinear with neutrons to know where to place the sample

Consiglio Nazionale delle Ricerche

Single axis goniometer to change the sample orientation with respect to beam and detectors

Consiglio Nazionale delle Ricerche

- 120 mm sample diameter
- Max weight allowable 1 kg.
- Stepping motor, 0.2° min. step
- Backlash avoid system
- External programmed and dynamic electric input
- Fast and easy insertion and removal (1 operator, no crane)

X-Y table to move large scale samples

Consiglio Nazionale delle Ricerche

Removable beam aligner to select gauge volumes to be analysed in the sample

Consiglio Nazionale delle Ricerche

Imaging and tomographic device

Neutron diffraction measurement on INES

Quantitative multiphase and peak shape analysis (1-8 hours)

Texture orientation and analysis (12-24 hours)

Consiglio Nazionale delle Ricerche

Measurements on standard

Copper and copper alloys: Calibration curves for annealed Cu-As (0-7% wt. As) Cu-Sn (0-14% wt. Sn) Cu-Zn (0-33% wt. Zn) Cu-Sb (0-11% wt. Sb) Cu-Ni (0-100% wt. Ni) The most common copper alloys of the ancient and historical times Consiglio Nazionale delle Ricerche

Calibration curves (Cu-Sn, Cu-Zn, Cu-As)

Importance of a good calibration

Quaternary alloy (Ghiberti):

Pb 1.32±0.06 Cu 82.8±0.2 Sn 3.07±0.09 Zn 12.8±0.2

Calculated (cal. curves): a=3.663±0.003

Measured:

a=3.662±0.002

Consiglio Nazionale delle Ricerche

Observation of two different compositions in as-cast samples

ESEM picture

INES diffraction pattern 2 lattice parameters: a₁=3.6619 (62% weight) a₂=3.6861 (38% weight) Consiglio Naxionale delle Ricerche

Quantitative analysis of historical samples Bronze celtic spiral fibula

50.0% bronze (a=3.667Å) (inner Sn wt 8.9%)
6.5% lead
28.2% cuprite (Cu2O)
3.4% tenorite (CuO)
8.2% nantokite (CuCl)
3.7% paratacamite (CuCl+H2O)

This sample has copper illness!!

A research application in archaeometry

Research project for non invasive characterization of Japanese artworks

Cooperation agreement between Stibbert Museum CNR-ISC

Characterization of steel and copper alloys metal artefacts

Characterization of Japanese pigments

Instrumentation and techniques

Time of Flight Neutron Diffraction: quantitative non invasive characterization of phase components, determination of working techniques (INES@ISIS)

SEM-EDX analysis: done on whole samples, non invasive characterization of surface treatments and composition of the metal alloys.

Vickers Micro-Hardness Measurements: Micro invasive characterization of carburization and thermal treatments of Japanese steel blades.

Raman, FORS, SEM-EDX: identification of Japanese pigments in ancient paper and silk paintings

Consiglio Nazionale delle Ricerche

Experiments performed

a) Characterization of four tsubas of a private collection through combined use of Time of Flight Neutron Diffraction and SEM-EDX

b) Quantitative characterization of seven blade fragments from a private collection through Neutron Diffraction, phase analysis and carbon content

c) Vickers Micro-Hardness Measurements of 100 Stibbert Museum blades on edge core and ridge and database built up

d) Characterization of 11 Stibbert Museum tsubas through Time of Flight Neutron Diffraction

e) Quantitative characterization of two whole long blades through neutron diffraction: phase analysis, carbon content and stress and strain map.

f) Build up of a Raman spectra database of 32 Japanese pigments and application to a 18th Century paper painting.

Consiglio Nazionale delle Ricerche

Japanese sword characterization

Sword hand guard (Tsuba)

Consiglio Nazionale delle Ricerche

Scientific analysis

Phase composition of the core
Working techniques
Garnish application and composition
SEM
EDX

SEM-EDX: detailed surface analysis of the whole sample (ESEM Quanta-200 FEI)

Neutron diffraction: quantitative bulk characterization of the whole sample through Rietveld Refinment - GSAS code (INES@ISIS)

Consiglio Nazionale delle Ricerche

Diffraction

Quantitative multiphase analysis

Sample			Phase (wt%)							
		ferrite	cementite	martensite		C (w	t%)			
<u>T1</u>		97.4	2.1	0.5	>	0.2	(steel)			
<u>T2</u>		100.0	0.0	0.0	>	0	(pure iron)			
<u>T3</u>		98.8	1.2	0.0	>	0.1	(wrought iron)			
	copper	alpha ph								
Т4		100.0%								
	E									

Carburized and tempered

T1 😥

Carburized

Consiglio Nazionale delle Ricerche

Steel sword fragments (Japanese Middle Ages) Historical remarks

The Japanese style swordsmaking is historically divided in four periods:

Koto (old sword) 987-1596

Shinto (new sword) 1596-1781

Shinshinto (new new sword) 1781-1876

Gendaito (modern era sword) 1876-now

In Koto age the best masterpieces in terms of materials and forging techniques were achieved

Historical remarks

In Koto age <u>five</u> forging traditions were born and cohesisted together

Different smelting and smiting procedures

Different forging techniques

Steel sword fragments (Japanese Middle Ages)

1 modern sword (1900)

Carbon content:

Consiglio Nazionale delle Ricerche

Different per different time and different forging tradition

Same for different places and time but same forging tradition

Experiment b) Neutron diffraction results of quantitative analysis

Object	Part	Ferrite	Cementite	Wuestite	Goethite	Iron	Carbon	Tradition	Phase distribution	
		(wt%)	(wt%)	(wt%)	(wt%)	(wt%)	(wt%)	or age	considerations	
Ll	blade	99,13	0,87			99,92	0,08	Condaito	Vonupoor carbon	
	tang	97,05	2,95			99,79	0,21	Genualio		
L2	blade	86,5	13,5			99,08	0,92	Shinto	High carbon:	
	tang	84,4	15,6			98,94	1,06	Shinto	evolution of L3	
T 3	blade	89,88	10,12			99,31	0,69	Koto	Original Bizen region, high carbon, higher	
13	tang	87,75	12,25			99,16	0,84	Bizen	than other blades of the same tradition	
τ.4	blade	99,3	0,7			99,94	0,06	Koto	Poor carbon same as L5 and L7: typical of	
	tang	98,11	1,89		0,68	99,86	0,14	Bizen	derivate Bizen schools?	
1.5	blade	97,8	2,2			99,84	0,16	Koto	Poor carbon same as L4 and	
Ц.Э	tang	99,04	0,96	0,28		99,92	0,08	Bizen	derivate Bizen schools?	
1.6	blade	94,03	5,97			99,58	0,42	Koto	Medium carbon	
T	tang	94,96	5,04		0,25	99,65	0,35	Mino	content	
L7	blade	98,72	1,28	0,57		99,90	0,10	Koto	Poor carbon same as L4 and 1.5: typical of	
	tang	98,99	1,01	0,25		99,91	0,09	Bizen	derivate Bizen schools?	
Consiglio Nazionale delle Ricerche										

40

Peak shape analysis for determination of stress levels

induced by forging, quenching and tempering

Ch	aracteristic	S	Analysis result				
Area	Blade position		Width category	Stress level and inner comparison			
Gendaito	1	tang	XXX	High stress same stress level			
from Mino	I	blade	XXX				
Shinto from	2	tang	XXX	Very high stress, blade much			
Bizen	2	blade	XXXXX	more stressed than tang			
Koto Bizen	Q	tang	XXXX	Very high stress, same stress			
from Bizen	0	blade	XXXX	level			
Koto Bizen not from Bizen region	Λ	tang	XX	Modium stross, samo stross lovol			
	4	blade	XX				
	5	tang	XX	Low-Medium stress, blade less			
	J	blade	Х	stressed than tang			
Kata Mina	e	tang	XXXXX	Very high stress, tang much more			
κοτο Ινιίπο	0	blade	XXX	stressed than blade			
Koto Bizen	7	tang	XX	Medium stress, same stress level			
Bizen region		blade	XX				

Consiglio Nazionale delle Ricerche

Quantitative phase analysis and strain distribution mapping on two Koto age blades Through neutron diffraction.

Searched phases: ferrite, cer

martensite,

wuestite,

hematite, iron phosphate, cementite, goethite, magnetite, fayalite, troilite.

Consiglio Nazionale delle Ricerche

Experiment e) Aims of the measurements (1)

Non invasive quantitative analysis:

Steel quality (quantification of ferrite, cementite, martensite in different parts)

Slag inclusions

Health status

Specials: I.e. is the Yamashiro tip (boshi) original?

Experiment e) Aims of the measurements (2)

Strain map

3

4.

- cross sections mapping
 - edge and ridge mapping
 - evidencing differences in forging methods
 - quantifying the curvature induced by quenching

Consiglio Nazionale delle Ricerche

Experiment e) Blade n.1: Yamashiro tradition

- Tachi blade
- Sue-Aoe school (end 15th Century)
- Bitchu province
- Low curvature
- Deeply shortened
- Many polishing

Blade n.2: Mino tradition

- Katana blade
- Kanesada school (half 16th Century)
- Mino province
- High curvature
- Original length
- Many polishing

Experiment e) Quantitative multiphase analysis results

Yamashiro Aoe blade

	Desition	Dotoilo	Steel phases and carbon (wt%)								
	POSILION	Details	ferrite	cementite	martensite	carbon					
	Boshi	Average	94.8	4.4	0.8	0.29					
	Monouchi	Average	96.9	2.8	0.3	0.19					
\mathbf{h}	Monouchi	Edge	91.3	7.4	1.2	0.50					
	Monouchi	Core	94.6	4.6	0.8	0.31					
4	Monouchi	Ridge	97.2	2.3	0.5	0.16					
	Nakago	Average	98.2	1.5	0.3	0.10					

Consiglio Nazionale delle Ricerche

Experiment e) Quantitative multiphase analysis results

Yamashiro Aoe blade

	Desition	Dotoilo	Slag inclusions, corrosions, etc. (wt%)										
	POSILION	Detalls	goethite		e	hematite	fayalite		e	troilite			
	Boshi	Average	nil			nil	nil			1.2			
	Monouchi	Average		0.4		nil		0.5		0.2			
	Monouchi	Edge		nil		nil		nil		2.0			
	Monouchi	Core		0.5		nil		nil		1.2			
	Monouchi Ridge		0.4			nil	0.5			nil			
	Nakago	Average		0.3		0.5	,	0.6		0.5			

Consiglio Nazionale delle Ricerche

Strain mapping

max

Consiglio Nazionale delle Ricerche

Gauge volumes: Axial, Normal: 2x2x2 mm³ Transversal: 2x2x10 mm³ Mapping

Experiment e)

min

INES access

The instrument is funded by CNR
Web submission of experimental proposals
2 deadlines to present proposals (april 16th, october 16th)
Proposals evaluated by an international panel of experts
Beam time is assigned
Experiments can be performed

Website to submit proposals:

http://www.isis.rl.ac.uk/applying/index.htm

INES website:

http://www.fi.isc.cnr.it/ines

Thank you

