The KLOE-2 Experiment at DA Φ NE

The DA Φ NE phi-factory

 $\sqrt{s} = 1020 \text{ MeV}$ TRF = 2.7 ns, up to 120 bunches Topping-up injection Worked for KLOE (2000-2006):

> 15 mrad crossing angle Max peak lumi: 1.5 10³² cm⁻¹s⁻¹ Best daily int. lumi: 8.5 pb⁻¹

Upgraded in 2008 with crab-waist scheme (P.Raimondi) :

50 mrad crossing angle + sextupole focus

Worked for KLOE-2 (2014-2018): Max peak lumi: 2.4 10³² cm⁻¹s⁻¹ Best daily int. lumi: 11 pb⁻¹

KLOE and KLOE-2

KLOE pilot run in 1999. In the years 2000-2006 collected: $2.5 \text{ fb}^{-1} \text{ at } \sqrt{s} = M_{\phi}$ 250 pb-1 at $\sqrt{s} = 1000 \text{ MeV}$

KLOE detector upgraded in 2012-2013: Tracking and forward region.

KLOE-2 data taking campaign:Goal:november 2014-march 2018

Collected: 5.5 fb⁻¹ at $Vs=M_{\phi}$

KLOE + KLOE-2 data sample: ~ 8 fb⁻¹ \circledast 2.4 × 10¹⁰ ϕ 's produced ~ 8 x10⁹ K_SK_L pairs ~ 3 x10⁸ η 's \Rightarrow the largest sample ever collected at the ϕ (1020) peak in e⁺e⁻ collisions

The KLOE-1 detector

Large volume Drift Chamber (13K cells, He gas mixt.) :

4m- \emptyset , 3.75m-length, all-stereo $\sigma_p/p = 0.4 \%$ (tracks with $\theta > 45^\circ$) $\sigma_x^{hit} = 150 \ \mu m (xy), 2 \ mm (z)$ $\sigma_x^{vertex} \sim 1 \ mm \quad \sigma_{M\pi\pi} \sim 1 \ MeV$

Pb-SciFi Calorimeter (barrel + endcap, 15 X₀ depth, 98% solid angle coverage) :

Interaction region: Instrument quadrupoles, Al-Be spherical beam pipe

 $σ_E / E = 5.7\% / \sqrt{E(GeV)}$ $σ_T = 54 \text{ ps} / \sqrt{E(GeV)} \oplus 50 \text{ ps}$

PID capabilities mostly from TOF

The KLOE-2 Inner Tracker

The first cylindrical GEM detector ever built and operated:

4 coaxial layers of cylindrical triple GEMs 70 cm active length, 130-205 mm radia X-V stereo readout

2% X₀ total material budget

- Large GEM foils produced at CERN with single-mask technique.
- Wrapping and insertion technique developed at Frascati.
- 1600 HV channels, to reduce energy of discharges.
- Operated with Ar-Iso 90-10% gas mixture at a nominal gain of 12000
- 1k X-strips + 1M V-pads with <0.5% dead area

IT performance

Integrated DC+IT tracking

Start with DC reconstructed 500 tracks, add IT clusters and reconstruct IT+DC tracks 400

300

200

100

Improvement in vertex reconstruction for $\phi \rightarrow \pi^+\pi^-\pi^0$ and $K_S \rightarrow \pi^+\pi^-$

Further improvement with refined align & calib

- Use DAFNE magnets as a spectrometer to select FS e[±] momentum
- Kill background coming from ϕ decays and close kinematics

High Energy Tagger, 11m from IP. Low Energy Tagger inside KLOE detector

KLOE-2

e

High Energy Tagger (HET)

First bending dipoles of DAΦNE act as spectrometers for the scattered e⁺/e⁻ (420 < E < 495 MeV)
Strong correlation between E and trajectory
Scintillator hodoscope + PMTs, inserted in roman pots Pitch: 5 mm, ~ 11 m from IP
HET is acquired asynchronously w.r.t. the KLOE-2 DAQ (Xilinx Virtex 5 - FPGA)

Synchronization with the "Fiducial" signal from DAΦNE HET signals corresponding to 3 DAΦNE

revolutions are recorded for each KLOE trigger. Off-time hits used to evaluate background.

Search for $\gamma\gamma \rightarrow \pi^0$ production Single Arm and Double Arm (coincidence) event analysis in progress MultiVariate Analysis approach

Ricostruzione dei dati

Data reconstruction completed in February 2019 Average reconstruction rate ~20 pb⁻¹/day (4 fb⁻¹ in 10 months) Data Quality performed Feedback to a new release Final reconstruction campaign is starting: July 2019 Data preservation Test & official code implementation ongoing

Monte Carlo production rate ~15 pb⁻¹/day All ¢ decays produced along with Bhabha's sample MC data for 2.3 fb⁻¹ available

MC update in progress:

- Data/MC cross-check
- Fine tuning of the detector performance

New TAPE LIBRARY IBM TS4500 R2 Improved data-servers, new architecture with large disk array buffer, new GPFS protocol

Reconstruction summary

	Run I	Run II	Run III	Run IV
Total Lum	0.7 fb-1	1.4 fb-1	1.6 fb-1	1.3 fb-1
Recon Lum	0.03 fb-1	1.2 fb-1	1.6 fb-1	1.3 fb-1

Reconstruction rate

First (almost) full data processing completed in 10 months.

Second, final processing will start in autumn.

Output will be provided in root format and made available to the community for future analyses

KLOE-2 Physics

- KLOE-2 Coll., EPJC68(2010)619

http:// agenda.infn.it/event/kloe2ws
 Proceedings: EPJ WoC 166 (2018)

Kaon Physics:

- CPT and QM tests with kaon interferometry.
- Direct T and CPT tests with entanglement
- CP violation and CPT test: $K_S \rightarrow 3\pi^0$, $Im(\epsilon'/\epsilon)$
- CKM V_{us} : $K_{S}l3$ and A_{S} (CP and CPT test), $K_{\mu3}$ f.f., K_{l3} radiative corrections
- $\chi pT : K_S \rightarrow \gamma \gamma$.

Dark force searches:

- Uy associate production $e^+e^- \rightarrow U\gamma \rightarrow \pi\pi\gamma$, $\mu\mu\gamma$
- Higgsstrahlung: $e^+e^- \rightarrow Uh' \rightarrow \mu^+\mu^- + miss.$ energy
- Leptophobic B boson search: $\phi \rightarrow \eta B$, $B \rightarrow \pi^0 \gamma$, $\eta \rightarrow \gamma \gamma$; $\eta \rightarrow B\gamma$, $B \rightarrow \pi^0 \gamma$, $\eta \rightarrow \pi^0 \gamma \gamma$
- Search for U invisible decays

Light meson Physics:

- η decays, ω decays; Transition Form Factors.
- C,P,CP violation: improve limits on $\eta \rightarrow \gamma \gamma \gamma$, $\pi^+ \pi^-$, $\pi^0 \pi^0$, $\pi^0 \pi^0 \gamma$
- improve $\eta \to \pi^+ \pi^- e^+ e^-$; $\chi pT : \eta \to \pi^0 \gamma \gamma$
- Light scalar mesons: $f_0(500)$ in $\phi \rightarrow K_S K_S \gamma$
- $\gamma\gamma$ Physics: $\gamma\gamma \rightarrow \pi^0$ and π^0 TFF, $e^+e^- \rightarrow \pi^0\gamma\gamma_{\rm ISR}$ (π^0 TFF)
- search for axion-like particles

Hadronic cross section:

- ISR studies with 3π , 4π final states
- \mathbf{F}_{π} with increased statistics
- Measurement of a_{μ}^{HLO} in the space-like region using Bhabha process

Analisi in corso

$\gamma^*\gamma^* \rightarrow \pi^0$	KLOE-2 data
$K_s \rightarrow \pi ve K_L crash$	KLOE-2 data
$K_{S} \to \pi^{*}\pi^{*} K_{L} \to \pi^{*}\pi^{*}$	KLOE-2 data
K _s → 3πº(CP viol.)	KLOE-2 data / KLOE data NN studies
T/CPT test with $φ → K_s K_L → 3π^0 πνe$, ππ πνe	KLOE data: PhD thesis
K_s → πνe; K_s → πµν	KLOE data: PhD thesis
$K_{S} \rightarrow \pi^{+}\pi^{-}\pi^{0}$	KLOE data
B-boson search in φ → ηπ⁰γ	KLOE/KLOE-2 data
η→π⁰γγ χ-PT golden mode + B boson search	KLOE/KLOE-2 data
$\eta \rightarrow \pi^+\pi^-$ (P and CP viol.)	KLOE/KLOE-2 data
$e^+e^- \rightarrow \omega \gamma_{\text{ISR}}$	KLOE data

Neutral kaon tagging at KLOE

 K_S tagged by K_L interaction in EmC K_L velocity in ϕ rest frame $\beta^*= 0.218$ Efficiency ~ 30% (largely geometrical) K_S angular resolution: ~ 1° (0.3° in ϕ) K_S momentum resolution: ~ 2 MeV

 K_L tagged by $K_S \rightarrow \pi^+\pi^-$ vertex at IP Efficiency ~ 70% (mainly geometrical) K_L angular resolution: ~ 1° K_L momentum resolution: ~ 2 MeV

Direct tests of CPT and T in neutral kaons transitions

$$\begin{aligned} |i\rangle &= \frac{1}{\sqrt{2}} \Big[\left| K^{0}(\vec{p}) \right\rangle \left| \overline{K}^{0}(-\vec{p}) \right\rangle - \left| \overline{K}^{0}(\vec{p}) \right\rangle \left| K^{0}(-\vec{p}) \right\rangle \Big] \\ &= \frac{1}{\sqrt{2}} \Big[\left| K_{+}(\vec{p}) \right\rangle \left| K_{-}(-\vec{p}) \right\rangle - \left| K_{-}(\vec{p}) \right\rangle \left| K_{+}(-\vec{p}) \right\rangle \Big] \end{aligned}$$

EPR correlations in neutral kaon system are used to study transitions of orthogonal CP eigenstates K_{\pm} :

Entanglement: prepare the state **Decay:** filters the measurement

List of CP/CPT tests with neutral kaons at KLOE

Mode	Test	Param.	KLOE measurement
$K_L \rightarrow \pi^+\pi^-$	СР	BR	$(1.963 \pm 0.012 \pm 0.017) \times 10^{-3}$
К _S →3π ⁰	СР	BR	< 2.6 × 10 ⁻⁸
K _S →πe∨	СР	As	$(1.5 \pm 10) \times 10^{-3}$
K _S →πe∨	CPT	Re(x_)	$(-0.8 \pm 2.5) \times 10^{-3}$
K _S →πe∨	CPT	Re(y)	$(0.4 \pm 2.5) \times 10^{-3}$
All K _{S,L} BRs, η's etc	СР	Re(ɛ)	$(159.6 \pm 1.3) \times 10^{-5}$
(unitarity)	CPT	Im(ô)	$(0.4 \pm 2.1) \times 10^{-5}$
$\mathrm{K}_{\mathrm{S}}\mathrm{K}_{\mathrm{L}}{\rightarrow}\pi^{+}\pi^{-},\pi^{+}\pi^{-}$	CPT & QM	α	$(-10 \pm 37) \times 10^{-17} \text{ GeV}$
$\mathbf{K}_{\mathbf{S}}\mathbf{K}_{\mathbf{L}}{\rightarrow}\pi^{*}\pi^{-},\pi^{*}\pi^{-}$	CPT & QM	β	$(1.8 \pm 3.6) \times 10^{-19} \text{ GeV}$
$K_S K_L \rightarrow \pi^+\pi^-, \pi^+\pi^-$	CPT & QM	γ	$(0.4 \pm 4.6) \times 10^{-21} \text{ GeV}$
			compl. pos. hyp.
			$(0.7 \pm 1.2) \times 10^{-21} \text{ GeV}$
$K_S K_L \rightarrow \pi^+\pi^-, \pi^+\pi^-$	CPT & QM	Re(w)	$(-1.6 \pm 2.6) \times 10^{-4}$
$K_S K_L \rightarrow \pi^+\pi^-, \pi^+\pi^-$	CPT & QM	$Im(\omega)$	$(-1.7 \pm 3.4) \times 10^{-4}$
$K_S^{}K_L^{} \rightarrow \pi^+\pi^-, \pi^+\pi^-$	CPT & Lorentz	∆a ₀	$(-6.2 \pm 8.8) \times 10^{-18} \text{ GeV}$
$\overline{K_S}K_L \rightarrow \pi^+\pi^-, \pi^+\pi^-$	CPT & Lorentz	∆a _z	$(-0.7 \pm 1.0) \times 10^{-18} \text{ GeV}$
$K_S K_L {\rightarrow} \pi^+ \pi^-, \pi^+ \pi^-$	CPT & Lorentz	∆a _x	$(3.3 \pm 2.2) \times 10^{-18} \text{ GeV}$
$K_S K_L \rightarrow \pi^+\pi^-, \pi^+\pi^-$	CPT & Lorentz	∆a _y	$(-0.7 \pm 2.0) \times 10^{-18} \text{ GeV}$

K_s semileptonic charge asimmetry

$$A_{S,L} = \frac{\Gamma(K_{S,L} \to \pi^- e^+ \nu) - \Gamma(K_{S,L} \to \pi^+ e^- \overline{\nu})}{\Gamma(K_{S,L} \to \pi^- e^+ \nu) + \Gamma(K_{S,L} \to \pi^+ e^- \overline{\nu})} = 2\Re\varepsilon \pm 2\Re\delta - 2\Re y \pm 2\Re x_-$$

 $A_{S,L}{\neq}0$ signals CP violation $A_{S}{\neq}A_{L}$ signals CPT violation

$$A_{r} = (3.322 \pm 0.058 \pm 0.047) \times 10^{-3}$$

KTEV PRL88,181601(2002)

$$A_{\rm S} = (1.5 \pm 9.6 \pm 2.9) \times 10^{-3}$$

KLOE PLB 636(2006) 173 with 410 pb⁻¹

New measurement using 1.7 pb⁻¹ sample of KLOE data. Combination with previous yelds: $A_8 = (-3.8 \pm 5.0 \pm 2.6) \times 10^{-3} \text{ JHEP 09 (2018)21}$

CPTV in $\Delta S = \Delta Q \quad \Delta S \neq \Delta Q$ decays

PID thanks to excellent TOF resolution! Signal extracted by fit to M²(e) distribution

Error still statistics dominated: analysis will be extended to KLOE-2 data sample

K_s semileptonic charge asimmetry /2

(A_S+A_L) => improvement of CPT test (Im^δ) using Bell-Steinberger relationship

 $K_s \rightarrow \pi e \nu$ Branching ratio

Precision measurement of V_{us} From K_{Se3} the largest contribution to the uncertainty [old KLOE meas. Br(KSe3) = (7.046 ± 0.091)x10⁻⁴]

New analysis scheme based on BDT selection and TOF identification. 49647 events in 1.6 fb-1 Systematics are being studied

 $K_s \rightarrow \pi \mu \nu$ Branching ratio

First measurement of Br(Ksµ3)

7223 events in 1.6 fb-1

Expected Br(K_{Su3}) = (4.69 ± 0.05) x 10⁻⁴

Uncertainty of the preliminary measurement 2.5 % stat ± 3.1 % syst

Control of the systematics being finalized

Lepton universality test and improvement of V_{us} precision

Search for K_S \rightarrow \pi^0 \pi^0 \pi^0

 $3\pi^0$ is a pure CP=-1 state: observation of $K_S \rightarrow 3\pi^0$ is an unambiguous sign of CP violation in mixing and/or in decay. SM prediction: $BR(K_S \rightarrow 3\pi^0) = 1.9 \cdot 10^{-9}$

SIGNAL

Best upper limit by KLOE with 1.7 fb⁻¹ BR(K_s \rightarrow 3 π ⁰)< 2.6 × 10⁻⁸ @ 90% CL

Signature: "K_L crash" (K_L in the calorimeter) + 6 prompt photons Analysis: γ counting and kinematic fit in the $2\pi^0$ and $3\pi^0$ hypotheses Main bckg: K_S $\rightarrow 2\pi^0$ (4 prompt photons), also used as normalization

KLOE-2 analysis: selection criteria hardened to face the larger machine bckg: ~ **10x better bckg rejection**

 $K_{\rm S} \rightarrow 2\pi^0 + \text{accidental/splitted clusters}$ $K_{\rm L} \rightarrow 3\pi^0, K_{\rm S} \rightarrow \pi^+ \pi^- (\text{, sake } K_{\rm L}\text{-crash}^")$

BACKGROUND

@KLOE-2, using old analysis scheme on 300 pb⁻¹ data sample, 1 signal event selected ($\epsilon_{3\pi} \sim 19 \%$) $\Rightarrow Br(K_S \rightarrow 3\pi^0) \leq 2.5 \times 10^{-7} @90\% CL$ (preliminary) Full KLOE-2 statistics + optimized analysis can reach $\leq 10^{-8}$

 $K_s \rightarrow 3\pi^0 \rightarrow 6\gamma$

Search for U-boson in $\mu^+\mu^-\gamma$ / $\pi^+\pi^-\gamma$

Dark mediators (U-boson) at GeV scale searched in KLOE data at $\sqrt{s} \sim 1$ GeV. 1/s cross section scaling makes a factor ~100 advantage in integrated L wrt to B factories

η <mark>decays</mark>

The light quark masses: study of $\eta \rightarrow \pi^+\pi^-\pi^0$ decay \Rightarrow Isospin violation e.m. strongly suppressed, induced dominantly by the strong interaction associated with the u-d quark mass difference Dalitz plot fitted with: $|A(X,Y)|^2 \propto 1 + aY + bY^2 + cX + dX^2 + eXY + fY^3 + \dots$

c and *e* parameters are C violating: measurement consistent with zero.

JHEP 05(2016)019

Search for the P,CP violating $\eta \rightarrow \pi^+\pi^-$ decay

Old KLOE result using a 350 pb⁻¹ sample. BR(η→π⁺π⁻)<1.3 x 10⁻⁵ @ 90% c.l. PLB 606 (2005) 276

L~1.7 fb-1 analysis in progress: Preliminary UL at 6.3 x 10⁻⁶ @90% c.l.

Plan to include all KLOE-2 sample.

Precision measurement of $\Gamma(\pi^0 \rightarrow \gamma \gamma)$

 $W_{\gamma\gamma}$ (MeV)

1000

- Theory: $\Gamma(\pi^0 \rightarrow \gamma \gamma) = (8.09 \pm 0.11) \text{ eV} \Rightarrow 1.4\% \text{ uncert.}$ [Kampf-Moussallam PRD79(2009)076005] Expt.: $\Gamma(\pi^0 \rightarrow \gamma \gamma) = (7.82 \pm 0.14 \pm 0.17) \text{ eV} \Rightarrow 2.8\% \text{ uncert. PrimEx [PRL106(2011)162303]:}$ PrimExII preliminary: (7.74±0.06±0.12) eV [Hadron 2017] (1.7%)
- Transition form factor $\mathcal{F}_{\pi\gamma\gamma}$ *(q²,0) at space-like q² $(|q^2| < 0.1 \, \text{GeV}^2)$

Constraints to the HLbL contribution to $(g-2)_{u}$

unexplored q² region measure the slope at $q^2 \rightarrow 0$

Summary

The KLOE-2 experiment at the upgraded DAFNE successfully completed its data taking campaign collecting L=5.5 fb⁻¹ by the end of March 2018.

KLOE data analysis is still providing important results on tests of fundamental discrete symmetries, kaon physics, decay dynamics of light mesons, Transition Form Factors, and searches for New Physics in the Dark Sector.

The KLOE+KLOE-2 data sample (~ 8 fb⁻¹) is worldwide unique for typology and statistical relevance. A lot of physics information has still to be mined in it.

Analysis is ongoing and will both improve KLOE results and produce new ones. A data preservation strategy is also being pursued.