

Proposta di nuovo esperimento in CSN 2

VMB@CERN

VMB: Vacuum Magnetic Birefringence

Federico Della Valle

Dip. di Scienze Fisiche, della Terra e dell'Ambiente – Università di Siena

Pisa - 3 Luglio 2019

- Physics case
- Opto-polarimetric detection scheme
- The old PVLAS experimental set-up
- Latest results
- The VMB@CERN proposal
- VMB@CERN in figures

Light propagation in an external field

Magnetic field

- Experimental study of the structure and the nature of the quantum vacuum
- General method:
 - Perturb the vacuum with an external field
 - Probe the perturbed vacuum with a polarized light beam

Polarization anisotropy of the index of refraction of vacuum induced by an external magnetic field

$$\begin{split} \Delta \tilde{n}_{\rm vacuum} &= (n_{\parallel} - n_{\perp})_B + i(\kappa_{\parallel} - \kappa_{\perp})_B \\ n_{\rm media} &= \frac{c}{v_{\rm light}} \end{split} \qquad \begin{array}{c} {\rm Light} \\ {\rm beam} \end{array} \end{split}$$

Light by light scattering

H. Euler and B. Kockel (1935): an effective Lagrangian density describing electromagnetic interactions in the presence of the <u>virtual electron-positron sea</u> proposed a few years before by Dirac:

$$\mathcal{L}_{EK} = \frac{1}{2\mu_0} \left(\frac{E^2}{c^2} - B^2 \right) + \frac{A_e}{\mu_0} \left[\left(\frac{E^2}{c^2} - B^2 \right)^2 + 7 \left(\frac{\mathbf{E}}{c} \cdot \mathbf{B} \right)^2 \right] + \dots$$

$$A_e = \frac{2}{45\mu_0} \frac{\alpha^2 \hbar^3}{m_e^4 c^5} = 1.32 \times 10^{-24} \text{ T}^{-2}$$

H Euler and B Kockel, *Naturwissenschaften* 23, 246 (1935)
W Heisenberg and H Euler, *Z. Phys.* 98, 714 (1936)
H Euler, *Ann. Phys.* 26, 398 (1936)
V Weisskopf, *Mat.-Fis. Med. Dan. Vidensk. Selsk.* 14. 6 (1936)
See also: J. Schwinger, *Phys. Rev.*, 82, 664 (1951)

Non-linear behaviour of Electromagnetism in vacuum

Index of refraction

Linearly polarized light propagating through a transverse magnetic field

$$\mathbf{D} = \frac{\partial \mathcal{L}_{\text{EK}}}{\partial \mathbf{E}} \qquad \mathbf{D} = \epsilon_0 \mathbf{E} + \epsilon_0 A_e \left[4 \left(\frac{E^2}{c^2} - B^2 \right) \mathbf{E} + 14 \left(\mathbf{E} \cdot \mathbf{B} \right) \mathbf{B} \right] \\ \mathbf{H} = \frac{\partial \mathcal{L}_{\text{EK}}}{\partial \mathbf{B}} \qquad \mathbf{H} = \frac{\mathbf{B}}{\mu_0} + \frac{A_e}{\mu_0} \left[4 \left(\frac{E^2}{c^2} - B^2 \right) \mathbf{B} + 14 \left(\frac{\mathbf{E}}{c} \cdot \mathbf{B} \right) \frac{\mathbf{E}}{c} \right]$$

Light propagation is described by Maxwell's equations in media but these are <u>no longer linear</u> due to Euler-Kockel correction.

The superposition principle no longer holds.

$$\begin{aligned} \epsilon_{\parallel}^{(\text{EK})} &= 1 + 10A_e B_{\text{ext}}^2 & \epsilon_{\perp}^{(\text{EK})} = 1 - 4A_e B_{\text{ext}}^2 \\ \mu_{\parallel}^{(\text{EK})} &= 1 + 4A_e B_{\text{ext}}^2 & \mu_{\perp}^{(\text{EK})} = 1 + 12A_e B_{\text{ext}}^2 \\ n_{\parallel}^{(\text{EK})} &= 1 + 7A_e B_{\text{ext}}^2 & n_{\perp}^{(\text{EK})} = 1 + 4A_e B_{\text{ext}}^2 \end{aligned}$$

Magnetic birefringence of vacuum

The vacuum bestiary

Feynman, Schwinger, Tomonaga 1946-1951

Index of refraction: imaginary part

Unmeasurably small

Federico Della Valle - Pisa - 03/07/2019

Other QED tests:

- Microscopic tests
 - QED tests in bound systems Lamb shift, Delbrück scattering
 - QED tests with charged particles (g-2)
 - High energy light-by-light scattering (ATLAS) Nature Phys. 13, 852 (2017)
 - •
- Macroscopic tests
 - Casimir effect (photon zero point fluctuations)
 - MBV of magnetars (Mignani et al) MNRAS 465, 492 (2017)

Recent proposals:

- Refraction of light by light (Sarazin et al)
- Direct light-by-light scattering (King and Heinzl)
 - D Bernard et al, EPJD **10**, 141 (2000) Lündstrom, Tommasini...

QED laboratory tests with only photons in the initial and final states are still missing

Axion-like particles (ALP)

Extra Lagrangian density terms to include contributions from hypothetical **<u>neutral light particles weakly interacting with two photons</u>**

Maiani L, Petronzio R, Zavattini E, Phys. Lett B **173**, 359 (1986) Raffelt G and Stodolsky L, Phys. Rev. D **37**, 1237 (1988)

Federico Della Valle - Pisa - 03/07/2019

Linear birefringence

The index of refraction (real part) is different for two orthogonal directions

 $\Delta n = n_{\parallel} - n_{\perp} \neq 0$

• A linearly polarized light beam traversing a birefringent medium acquires an ellipticity ψ

$$\psi = \pm \frac{a}{b} = \pi \frac{L}{\lambda} \Delta n \sin 2\vartheta$$

QED vacuum magnetic birefringence $\mathcal{L} = 1.64 \text{ m}, \lambda = 1064 \text{ nm}, B = 2.5 \text{ T}$ $\Delta n_{\text{QED}} = 2.5 \times 10^{-23}$ $\psi_{\text{QED}} = 1.2 \times 10^{-16}$

Linear dichroism

The extinction coefficient is different for two orthogonal directions

 $\tilde{n} = n + i\kappa$ $\alpha = 4\pi \frac{\pi}{\lambda}$ Absorption coefficient $\Delta \kappa = \kappa_{\parallel} - \kappa_{\perp} \neq 0$ E'. A linearly polarised light beam traversing a $k_{\rm II}$ dichroic medium is rotated by an angle ε $\varepsilon = \pi \frac{L}{\lambda} \Delta \kappa \sin 2\vartheta$ \overline{k}_{\perp} QED vacuum magnetic photon splitting E. $L = 1.64 \text{ m}, \lambda = 1064 \text{ nm}, B = 2.5 \text{ T}$ $\Delta k_{\rm QED} = -5 \times 10^{-91}$ $\mathcal{E}_{QED} = -2 \times 10^{-83}$ Larger effects might come from axion-like particles

Volume 85B, number 1

PHYSICS LETTERS

30 July 1979

EXPERIMENTAL METHOD TO DETECT THE VACUUM BIREFRINGENCE INDUCED BY A MAGNETIC FIELD

E. IACOPINI and E. ZAVATTINI CERN, Geneva, Switzerland

In this letter a method of measuring the birefringence induced in vacuum by a magnetic field is described: this effect is evaluated using the non-linear Euler-Heisenberg-Weisskopf lagrangian. The optical apparatus discussed here may detect an induced ellipticity on a laser beam down to 10^{-11} .

Emilio Zavattini (1927 -2007)

- signal modulation; beat with a known effect for linearization
- high magnetic field B
- longest possible optical path L

Signal modulation

Periodic change of the effect: modulate either field intensity (BFRT) or field direction (PVLAS, Q & A). Add a modulated ellipticity: heterodyne detection Pulsed magnets: (BMV, OVAL) Beat with a static effect: homodyne detection

• High magnetic field B

Superconductive magnets: (BFRT, PVLAS LNL) Electromagnets: (BMV, OVAL) Dipole permanent magnets: (PVLAS Ferrara, Q & A) long duty cycle; high frequency rotation (PVLAS reached 23 Hz)

Longest possible optical path L

Multi-pass cavity: (BFRT) High-Q Fabry-Perot resonator: (BMV, OVAL, PVLAS, Q & A) largest optical path-length multiplication factor ≈ 5×10⁵ (PVLAS Ferrara)

BFRT: R Cameron et al, PRD 47, 3707 (1993) PVLAS LNL: E Zavattini et al, PRD 77, 032006 (2008) M Bregant et al, PRD 78, 032006 (2008) Q & A: H-H Mei et al, MPLA 25, 983 (2010) BMV: A Cadène et al, EPJD 68, 16 (2014) OVAL: X Fan et al, EPJD 71, 308 (2017) PVLAS Ferrara: F Della Valle et al, EPJC 76, 24 (2016) G Zavattini et al, EPJC 78, 585 (2018)

Signal modulated in time. Beat with a calibrated effect

- Signal linear in the ellipticity
- Smaller 1/f noise

Main frequency components at $V_{Mod} \pm V_{Signal}$ (and $2V_{Mod}$)

Signal frequency layout

Nearly static birefringences $\alpha_s(t)$ generate a 1/f noise centred at the carrier modulation frequency v_{Mod}

Federico Della Valle - Pisa - 03/07/2019

Fabry-Perot: resonant optical cavity increasing the effective optical path. Made of two mirror placed at a separation d which is an integer multiple of $\lambda/2$. The laser is frequency-locked to the cavity using a feedback circuit.

Timeline of vacuum birefringence

Axion-like particles

PVLAS is model independent

Armengaud et al, arXiv:1904.09155v1

The sensitivity problem

Intrinsic noise?

BFRT

ア

àm

20

Ď

66

ω

Sensitivity in optical path difference ΔD between two perpendicular polarizations

Federico Della Valle - Pisa - 03/07/2019

Intrinsic noise

- Ellipticity noise and Cotton-Mouton signals measured as a function of the finesse
- Controlled extra losses p $\approx 10^{-5}$ introduced in the cavity by clipping the beam
- Finesse range (F1 F6): 250'000 690'000

Noise and Cotton-Mouton $\Delta \mathcal{D}$ signals are independent of the finesse

- Increase the frequency of the signal by rotating faster
 - $S_{\Delta D} \propto
 u^{lpha}$ with lpha pprox -0.8
 - Maybe improve by a factor 2 with the PVLAS apparatus
- Increase the signal: B^2L of magnet
 - Only real option is to use superconducting static magnets
 - One LHC magnet has $B^2L = 1200 T^2m$. At present we have 10 T^2m .
 - Superconductor magnets cannot be modulated at \approx 10 Hz
- Change origin of modulation G Zavattini et al, EPJC 76, 294 (2016)
 - Rotate the polarization inside the field
 - ... But must be kept fixed on the mirrors.

Separate magnet from modulation

⁴⁵¹^{TATIS} C^R ³¹UN:S^{*} m_{CCXX}⁴,⁴

Polarization modulation scheme

- Insert two half wave plates co-rotating @ $\nu_{\rm w}$ with a fixed relative angle $\Delta\phi$
- Rotate polarization inside the magnetic field
- Fix polarization on mirrors to avoid mirror birefringence signal
 - Total losses $\leq 0.4\%$ (commercial). Maybe 10 times lower is possible
 - Maximum finesse ≈ 10000 (with ≤ 0.04% losses)

Signal and possible problems

$$I(t) = I_{\text{out}} \{ \eta(t)^2 + 2\eta(t) N [\psi_0 \sin(4\phi(t) + \alpha_1 \sin 2\phi(t) + \alpha_2 \sin(2\phi(t) + 2\Delta\phi)] \}$$

Signal appears a the 4^{th} harmonic of $V_{waveplate}$

Wave-plate defects $\alpha_{1,2}$ $\alpha_{1,2} = \alpha_{1,2}^{(0)} + \alpha_{1,2}^{(1)} \cos \phi + \alpha_{1,2}^{(2)} \cos 2\phi + \dots$

- $\alpha^{(0)}_{1,2} \approx 10^{-3}$ (manufacturer): appears @ 2nd harmonic
- $\alpha^{(1)}_{1,2} \approx 10^{-6}$ (wedge of wave-plate): appears @ 1st and 3rd harmonic
- $\alpha^{(2)}_{1,2} \implies$ appears @ 4th harmonic
- Condition is that $\alpha^{(2)}_{1,2} < \psi_0$ with $\psi_0 \approx 10^{-14}$. Must be tested.

VMB@CERN with 1 LHC magnet

$$\Delta D = 3A_e B^2 L = 4 \times 10^{-24} \left(\frac{B}{1 \text{ T}}\right)^2 \left(\frac{L}{1 \text{ m}}\right) \text{ m}$$

(shot)

- $S_{\Delta D}^{(\text{intrinsic})} = 2.6 \times 10^{-18} \left(\frac{\nu}{1 \text{ Hz}}\right)^{-0.77}$ m Intrinsic noise $\sqrt{\text{Hz}}$ •
- Shot-noise •

Signal

•

Maximum measurement time \bullet

$$S_{\Delta D}^{(\text{shot})} = \sqrt{\frac{e}{I_0 q}} \frac{\lambda}{\pi N} \frac{\mathrm{m}}{\sqrt{\mathrm{Hz}}}$$

$$T = \left(\frac{S_{\Delta D}}{\Delta D}\right)^2 \lesssim 10^6 \text{ s}$$

m

• LHC example:

$$B^{2}L = 1200 \text{ T}^{2}\text{m}$$

 $S_{\Delta D} = 10^{-18} \frac{\text{m}}{\sqrt{\text{Hz}}}$ @ 3 Hz

$$\Longrightarrow T = 12 \text{ h}$$

What sensitivity could be reached?

Updated graph from G. Zavattini et al. EPJC 76, 294 (2016)

Sensitivity in optical path difference ΔD between two perpendicular polarizations

An international collaboration

Letter of Intent to measure Vacuum Magnetic Birefringence: the VMB@CERN experiment

R. Ballou¹⁾, F. Della Valle²⁾, A. Ejlli³⁾, U. Gastaldi⁴⁾, H. Grote³⁾, Š. Kunc⁵⁾, K. Meissner⁶⁾, E. Milotti⁷⁾, W.-T. Ni⁸⁾, S.-s. Pan⁹⁾, R. Pengo¹⁰⁾, P. Pugnat¹¹⁾, G. Ruoso¹⁰⁾, A. Siemko¹²⁾, M. Šulc⁵⁾ and G. Zavattini^{13)*}

¹Institut Néel, CNRS and Université Grenoble Alpes, Grenoble, France
²INFN, Sez. di Pisa, and Dip. di Scienze Fisiche, della Terra e dell'Ambiente, Università di Siena, Siena (SI), Italy
³School of Physics and Astronomy, Cardiff University, Cardiff, UK
⁴INFN, Sez. di Ferrara, Ferrara (FE), Italy
⁵Technical University of Liberec, Czech Republic
⁶Institute of Theoretical Physics, University of Warsaw, Poland
⁷Dip. di Fisica, Università di Trieste and INFN, Sez. di Trieste, Trieste (TS), Italy
⁸Department of Physics, National Tsing Hua University, Hsinchu, Taiwan, ROC
⁹Center of Measurement Standards, Industrial Technological Research Institute, Hsinchu, Taiwan, ROC
¹⁰INFN, Lab. Naz. di Legnaro, Legnaro (PD), Italy
¹¹LNCMI, EMFL, CNRS and Université Grenoble Alpes, Grenoble, France
¹²CERN, Genève, Switzerland
¹³Dip. di Fisica e Scienze della Terra, Università di Ferrara and INFN, Sez. di Ferrara, Ferrara (FE), Italy

Abstract

Non linear electrodynamic effects have been predicted since the formulation of the Euler effective Lagrangian in 1935. These include processes such as light-by-light scattering, Delbrück scattering, g-2 and vacuum magnetic birefringence. This last effect deriving from quantum fluctuations appears at a macroscopic level. Although experimental efforts have been active for about 40 years (having begun at CERN in 1978) a direct laboratory observation of vacuum magnetic birefringence is still lacking: the predicted magnetic birefringence of vacuum is $\Delta n = 4.0 \times 10^{-24} @ 1 \text{ T}.$

Key ingredients of a polarimeter for detecting such a small birefringence are a long optical path within an intense magnetic field and a time dependent effect. To lengthen the optical path a Fabry-Perot interferometer is generally used. Interestingly, there is a difficulty in reaching the predicted shot noise limit of such polarimeters. The cavity mirrors generate a birefringence-dominated noise whose ellipticity is amplified by the cavity itself limiting the maximum finesse which can be used.

2020 e prima metà del 2021: 150 k€

Studio e realizzazione in laboratorio di un polarimetro in scala con 2 lamine co-rotanti

Seconda metà del 2021: 50 k€

Studio e realizzazione nel sito dell'esperimento di una cavità lunga 20 m (o 40 m)

2022-2024: 300 k€

Una volta sciolte le riserve, esperimento

COLLABORATORI PIUCCHEBENVENUTI

	10 Ricercatori – 3.9 FTE	
Ferrara:	M. Andreotti	20%
	P. Cardarelli	10%
	G. Di Domenico	o 50%
	G. Zavattini	70% Resp. Naz.
	U. Gastaldi	0% (età)
LNL:	R. Pengo	40%
	G. Ruoso	40%
Pisa (Siena):	F. Della Valle	100%
	C. Marinelli	40%
	E. Mariotti	20%
	Richieste finanziarie Pisa 22 k€	
Missioni	12 k€ (10 k€ missioni + 2 k€ conferenze)	
Consumo	10 K€	

Officina elettronica 1 mese uomo

Proposta di nuovo esperimento in CSN 2

VMB@CERN

VMB: Vacuum Magnetic Birefringence

Federico Della Valle

Dip. di Scienze Fisiche, della Terra e dell'Ambiente – Università di Siena

Pisa - 3 Luglio 2019