## Preventivi 2020: CMS





#### G. Bagliesi 04/07/2019

- Situazione CMS
- Fisica
  - attività a Pisa (flash)
- Upgrade tracker (fase II)
  - Inner pixel
  - Outer Tracker
- Tier2: stato e richieste
- Responsabilità 2019-20
- Anagrafica 2020
- Sommario richieste

### **Publication and Analysis Status**

| Show all  | ow all Total |      | ica     | Standard Mod    | lel | Supersymmetry        | Higgs | Top Physics      |
|-----------|--------------|------|---------|-----------------|-----|----------------------|-------|------------------|
| Heavy Ion | B Phy        | sics | For     | ward Physics    | B   | eyond 2 Generations  | Detec | ctor Performance |
|           |              | 88   | 6 colli | idar data nanar |     | mitted as of 2019-06 | -18   |                  |



## One of our recent papers on the title page of EPJC

Combined measurements of Higgs boson couplings in proton-proton collisions at  $\sqrt{s} = 13 \text{ TeV}$ , *EPJC* 79 (2019) 421



#### Submitted 900th paper on May 17<sup>th</sup> !

2

#### Analysis approval status

- 57 pre-approved approved
- 37 in ready-for-CWR FR
- 36 in journal review
- 9 accepted

| Submissions | CMS | ATLAS | LHCb | ALICE |
|-------------|-----|-------|------|-------|
| 2019        | 39  | 43    | 28   | 21    |
| 2018        | 141 | 103   | 42   |       |
| 2017        | 132 | 105   |      | 31    |

# **2019 production timelines**



### **Conditions in 2021**

### WLCG requested a statement on the maximum luminosity deliverable in 2021, to plan computing resources

The answer is 42 (!)

Indeed, these numbers are strongly opinion dependent, depending on commissioning time of the whole LHC and injector chain and also on the choice on the energy

some mentioned 7fb<sup>-1</sup> as a limit

But 42 fb<sup>-1</sup> with an availability of 50% can be used for contingency planning (not as a promise in any way)

### Various options (nothing new):

Plan A 2×7 = 14 TeV in 2021, up to several months more training while starting up injectors

Plan B 2×6.5 = 13 TeV in 2021, then 14 TeV



### fraction of HLT runtime ported to GPUs



| Element                       | Time 🕴   | Fraction 🕴 |
|-------------------------------|----------|------------|
| hltEcalUncalibRecHit          | 20.7 ms  | 4.8 %      |
| hltHbhePhase1Reco             | 62.7 ms  | 14.7 %     |
| hltPixelLayerQuadruplets      | 0.1 ms   | 0.0 %      |
| hltPixelLayerTriplets         | 0.1 ms   | 0.0 %      |
| hltPixelTracks                | 0.7 ms   | 0.2 %      |
| hltPixelTracksHitDoublets     | 2.6 ms   | 0.6 %      |
| hltPixelTracksHitQuadruplets  | 4.8 ms   | 1.1 %      |
| hltPixelVertices              | 0.1 ms   | 0.0 %      |
| hltSiPixelClusters            | 10.2 ms  | 2.4 %      |
| hltSiPixelClustersCache       | 4.3 ms   | 1.0 %      |
| hltSiPixelDigis               | 5.7 ms   | 1.3 %      |
| hltSiPixelRecHits             | 9.3 ms   | 22%        |
| selected                      | 121.3 ms | 28.5 %     |
| Showing 1 to 12 of 12 entries |          | $\smile$   |

- Almost 30% of the HLT could run on GPUs today
- Porting to GPUs 40% of the HLT by Run 3 is a realistic goal

Tracker: Project **Patatrack** demonstrated that GPU can do 'pixel tracking' : very promising solution for HLT reconstruction at run 3 allowing better Physics performance and shorter reconstruction time.

### **Processing of special datasets**

### Important efforts for this year involving the DPGs, POGs and PAGs

- Big thanks to PPD and Offline & Computing!
- Processing of the BPH parked data in progress
  First checks of the processed data match expectations

The large collection of unbiased B decays opens many other possibilities such as rare  $B_s$  decays, R(D\*), FV decays to leptons, CPV, ...

Processing of the heavy ion data collected in 2018 is ongoing
Next major HIN conference: Quark Matter (November)





#### CMS Preliminary, 2018 p-p (13TeV)

### **Situazione tracker**

### Tracciatore di CMS durante shutdown

### • Preparazione per Run 3:

- Prevista luminosità di picco ~2-2.2\*10<sup>34</sup>cm<sup>-2</sup>s<sup>-1</sup>
  - Fino a ~60-70 interazioni simultanee
- Luminosità integrata ~250-300 fb<sup>-1</sup> (+ 190 fb<sup>-1</sup> Run 1+2)

### Manutenzione e miglioramenti rivelatore a pixel

- Sostituzione strato più interno (layer 1)
  - Sensori non irraggiati, nuovi chip di lettura
    - Nuovi chip già disponibili
- Sostituzione convertitori DCDC: eliminate causa rotture
  - Nuovo chip già disponibile
- Alimentatori (ČAEN) modificati per raggiungere 800V

#### Tracciatore a strisce: mantenuto freddo (circa 0 C) per evitare effetti negativi radiazione accumulate





Estrazione rivelatore a pixel barriere contro umidità tracciatore a strip nello sfondo

### Sequenza lavori su rivelatore a pixel



### Costruzione moduli e integrazione sulla meccanica: Agosto 2019 – Marzo 2020



Assemblaggio convertitori DCDC e installazione: Settembre 2019 – Maggio 2020





Integrazione delle nuove componenti test e re-installazione in CMS: Marzo 2020- Ottobre 2020

## Piani per LS2

- Sostituzione layer piu' interno rivelatore a pixel
  - Nuovi chip di lettura: minor rumore, minore inefficienza dinamica, eliminata sorgente di SEU che necessitano spegnimento/accendimento
- Sostituzione convertitori DCDC del rivelatore a pixel
- Potenziamento alimentatori rivelatori a pixel (CAEN) per raggiungere 800V
  - Per evitare la necessita' di sostituire il layer piu' interno per una terza volta prima della fine di Run 3
- Preparazione per ridurre ulteriormente la temperatura del rivelatore a Strip a -25C durante Run 3
  - Mantenimento della temperatura dei sensori del rivelatore a Strip sotto a 0 C durante l'upgrade di HCAL per evitare reverse annealing

### Altre attività legate al tracciatore

### • Aggiornamento sistema di protezione del tracciatore (DSS)

• Intervento coordinato da P.G. Verdini

 Ri-organizzazione architettura e software sistema di controllo e monitoraggio del tracciatore (DCS)

• Intervento coordinato da P.G. Verdini

### Aggiornamento calibrazioni e allineamento del tracciatore per nuova campagna di ricostruzione e simulazione dati Run 2

• Effetti radiazione costringono ad aggiornare decine di volte per anno le calibrazioni e l'allineamento

## Analisi a Pisa e laureandi+dottorandi

Informazione minimale:

altre attività non citate qui sono in corso di completamento o in fase iniziale di sviluppo

- VBF H->mumu (Azzurri, Mandorli, Negin, Rizzi)
- B-tagging con tecniche di deep learning (Giannini, Rizzi)
- tau -tagging con tecniche di deep learning (K. Androsov)
- X->HH->bbbb (**Rizzi** + FNAL)
- X->HH->bbtautau (Androsov, Bagliesi, Ciocci, Di Domenico, Grippo, + LLR)
  - Notevole miglioramento di S/B grazie al lavoro del gruppo di Pisa
- VBF H->bb, VH->bb (Azzurri, Rizzi, Giannini + varie istituzioni esterne)
  - observation a 5 sigma (contributo fondamentale pisano)
- EW (VBF) Z+jj, W+jj (Azzurri + varie istituzioni esterne)
- Misura massa del W (Bertacchi, Bianchini, Manca, Rolandi + CERN)
  - Ruolo leader nell'analisi del gruppo pisano
- CP Violating phase phi\_s con Bs->Jpsi Phi (G. Fedi, F. Ligabue, F. Palla + Padova + Rochester + Madras)
- Fase2 activities, test beam analysis (S. Parolia)

Perfezionandi/dottorandi: L. Giannini, , V. Bertacchi, E. Manca, G. Mandorli, S. Negin, M.R. Di Domenico, S. Parolia

## **Dettaglio attivita' post-doc CMS**

- K. Androsov
  - $\circ$  Borsa INFN calcolo scientifico CMS: ML per tau-tag, analisi hh $\rightarrow$  bbtautau, tau Trigger
- G. Fedi
  - Ass. Ric. UniPI: Conv. BPH Spectr.&Prop. (L3), analisi CP-viol nel B<sub>s</sub>, Track trigger
- M.T. Grippo
  - Ass. Ric. UniPI: analisi hh→ bbtautau, pixel R&D, HLT tau trigger
- S. Chowdhury
  - Assegno SNS: Massa del W, tracker POG



Sito WEB: http://cms.pi.infn.it

Elenco tesi: https://goo.gl/0nf0T8

#### Fisica del bosone di Higgs (contatti: Paolo Azzurri, Giuseppe Bagliesi, Agnese Ciocci, Andrea Rizzi)

- Studio del bosone di Higgs in stati finali b-bbar ad LHC con l'esperimento CMS
- Studio del bosone di Higgs in stati finali tau+tau- ad LHC con l'esperimento CMS
- Studio della produzione di coppie di bosoni di Higgs in stati finali con b e/o tau ad LHC con l'esperimento CMS
- Studio della produzione di coppie di bosoni di Higgs in stati finali con W e tau ad LHC con l'esperimento CMS
- Ricerca del bosone di Higgs in stati finali mu+mu- ad LHC con l'esperimento CMS
- Studio della fisica dell'Higgs negli scenari di upgrade dell'esperimento CMS ad LHC
- Fisica Elettrodebole (contatti: Paolo Azzurri, Gigi Rolandi)
  - Fusione elettrodebole di bosoni Z o W ad LHC con l'esperimento CMS
  - Misura di precisione della massa del bosone W con l'esperimento CMS
- Fisica delle interazioni forti (QCD) (contatti: Paolo Azzurri, Andrea Rizzi)
  - Identificazione di quark e gluoni con l'esperimento CMS
  - Identificazione di quark b con l'esperimento CMS
- Fisica del quark-b (contatto: Fabrizio Palla, Franco Ligabue)
  - Misura della violazione di CP nel canale Bs->Jpsi Phi con il nuovo rivelatore di vertice di CMS
  - Misura della vita media del Bs con l'esperimento CMS
  - Misura della sezione d'urto del Bs con l'esperimento CMS

## CMS tesi II

#### • Fisica del quark-top (contatto: Roberto Tenchini)

- Misura della produzione di quark top e loro decadimento in tau con l'esperimento CMS: test di universalita' leptonica.
- Misura di produzione di top singolo in canale s con l'esperimento CMS
- Misura di produzione associata di top singolo e bosone di Higgs con l'esperimento CMS

- Fisica oltre il Modello Standard (contatto: Fabrizio Palla)
  - Violazione dell'universalita' leptonica con R(Jpsi)

- Rivelatori, Elettronica e Computing (contatti: <u>Giuseppe Bagliesi</u>, <u>Tommaso Boccali</u>, <u>Agnese Ciocci</u>, <u>Roberto Dell'Orso</u>, <u>Alberto Messineo</u>, <u>Fabrizio Palla</u>, <u>Andrea Rizzi</u>)
  - Sviluppo di sensori innovativi per l'upgrade del rivelatore a Pixel dell'esperimento CMS ad LHC
  - Sviluppo di un trigger di traccia di primo livello per CMS a HL-LHC
  - Tecniche di deep-machine learning nelle analisi dati dell'esperimento CMS ad LHC
  - Test del chip di readout per l'upgrade del rivelatore a pixel di CMS a HL-LHC
  - Simulazione di dispositivi opto-elettronici radiation-hard per HL-LHC e collisori futuri

## **Upgrade fase II**

### **FASE 2 upgrade overview**

Technical proposal CERN-LHCC-2015-010 https://cds.cern.ch/record/2020886 Scope Document CERN-LHCC-2015-019 https://cds.cern.ch/record/2055167/files/LHCC-G-165.pdf

#### L1-Trigger/HLT/DAQ

https://cds.cern.ch/record/2283192 https://cds.cern.ch/record/2283193

- Tracks in L1-Trigger at 40 MHz
- PFlow-like selection 750 kHz output
- HLT output 7.5 kHz

#### Calorimeter Endcap

https://cds.cern.ch/record/2293646

- 3D showers and precise timing
- Si, Scint+SiPM in Pb/W-SS

#### Tracker https://cds.cern.ch/record/2272264

- Si-Strip and Pixels increased granularity
- Design for tracking in L1-Trigger
- Extended coverage to  $\eta$  = 3.8

#### **Barrel Calorimeters**

#### https://cds.cern.ch/record/2283187

- / ECAL crystal granularity readout at 40 MHz with precise timing for  $e/\gamma$  at 30 GeV
- ECAL and HCAL new Back-End boards

#### Muon systems

#### ttps://cds.cern.ch/record/2283189

- DT & CSC new FE/BE readout
  RPC back-end electronics
  New GEM/RPC 1.6 < ŋ < 2.4</li>
- Extended coverage to η ≈ 3

Beam Radiation Instr. and Luminosity, and Common Systems and Infrastructure https://cds.cern.ch/record/2020886

#### MIP Timing Detector https://cds.cern.ch/record/2296612

Precision timing with:

- Barrel layer: Crystals + SiPMs
- Endcap layer: Low Gain Avalanche Diodes

## Tracker upgrade timescale

| Calendar Yea | r     |      | 20       | 16 | 1   |   | 2017 | Ň.,     | 1     | 2       | 018  | 1 | 201 | 19                                        | 1   | 2020 | D   | 1 | 202 | 21 | 1   |        | 2022    |       | 1      | 20      | 23     | 1  | 1.1 | 2024 |   | ġ  | 202   | 5 |       |      | 2026 |    |
|--------------|-------|------|----------|----|-----|---|------|---------|-------|---------|------|---|-----|-------------------------------------------|-----|------|-----|---|-----|----|-----|--------|---------|-------|--------|---------|--------|----|-----|------|---|----|-------|---|-------|------|------|----|
|              |       |      |          |    | i   |   |      |         | i     |         | 1    | i |     |                                           | 1.  |      |     | i |     |    | - i |        |         |       | i      |         |        | i. |     |      | 1 |    |       |   | - i   |      |      | 1. |
| Long Shutdow | vns   |      |          |    | - i |   |      |         | 1     |         |      |   |     |                                           | LS2 |      |     |   |     |    | 1   |        |         |       | i      |         |        |    |     |      |   | 21 | 3     |   |       |      |      |    |
|              |       |      |          |    | 1   |   |      |         | 1     |         |      |   |     |                                           |     | 1.00 |     | 1 |     |    | 1   |        |         |       | 1      |         |        |    |     |      |   |    |       |   |       |      |      |    |
| Tracker      | Outer | Deci | 7n - D   |    |     |   | Er   | ngineer | ing - | Prototy | ping |   |     |                                           |     |      | EDR |   |     |    | Pre | -produ | ction - | Produ | uction | - Integ | ration |    |     |      |   |    | Float |   | Inst. | Comm |      |    |
|              | Pixel | Desi | 511 - Di |    |     | Ħ | Er   | ngineer | ing - | Prototy | ping |   |     | Pre-production - Production - Integration |     |      |     |   | Flo | at | Ins | st Co  | omm.    |       |        |         |        |    |     |      |   |    |       |   |       |      |      |    |

N.B: Coinvolgimento italiano in Outer e Inner Tracker

## **Italy and Tracker Upgrade**



Italian commitment for Phase II upgrade (under advanced discussion within CMS):

- First two layers of modules TBPX + fraction of TEPX
- Tilted TBPS
- Pixel barrel support and mechanics
- Tracker safety system
- L1 Track Trigger
- RD53 CHIP development

### **INFN Inner Tracker Pixel construction plan**

|   |                      | 1                       | NFN I | NNER TRACKER Pixel Mo            | dule | Construction and Inte | egration plan   |                    |
|---|----------------------|-------------------------|-------|----------------------------------|------|-----------------------|-----------------|--------------------|
|   | Parts Qualification  | Bare Module Assembly    |       | Bare Module Qualification        |      | Module Construction   | Module Burn in  | Module Integration |
|   |                      |                         |       |                                  |      |                       |                 |                    |
|   |                      |                         | _     |                                  |      |                       |                 |                    |
| ( | Silicon Sensors      | Si Sensors and RO Chips |       | <b>Bare Module Qualification</b> |      |                       |                 |                    |
|   | Pisa                 | Assembly-BumbBonding    |       |                                  |      |                       |                 |                    |
|   |                      | Company                 |       | Pisa                             |      | Module assembly,      |                 |                    |
|   | ReadOut Chips        |                         |       |                                  |      | wire bonding and      |                 |                    |
|   | Torino & Pavia       |                         |       |                                  |      | module qualification  |                 |                    |
|   | HDI H <b>ybrid</b> s |                         |       |                                  |      | Firenze               | Module burn in  |                    |
|   | Bari & Pavia         |                         |       |                                  |      |                       | and Calibration | Module Integration |
|   |                      |                         |       |                                  |      |                       | Torino          | and testing        |
| ( | Mechanics Support    |                         |       |                                  |      |                       |                 | Torino             |
|   | Pisa & Torino +pe    | rugia                   |       |                                  |      |                       |                 |                    |
|   |                      |                         |       |                                  |      |                       |                 |                    |

- **108 mod 1x2 ROC L1 BPIX (3D possibly)**
- 1020 mod 1x2 ROC L2 Bpix (252) + R1&R2 EPL (768) Struttura meccanica completa Pixel Barrel dis

Financial Contribution ≅5 MCHF 20% of Total Pixel Cost



## Pixel Upgrade Projects Phase-II activities

## CMS upgrade phase I meccanica Pixel TBPX

Impegno ufficiale italiano e in particolare di Pisa



**Upgrade - Inner Tracker Barrel Pixel Detector** 

- 4 layers (r = 30.0-61.5-104.5-146.5 mm)
- lungh. tot. = +-200.7 mm
- 2 tipi di moduli:
  - 324 moduli (1x2 chips) ✓ layer 1 e 2 (36 rods)
  - 432 moduli (2x2 chips)
    - ✓ layer 3 e 4 (48 rods)







Struttura divisa in 4 settori: forward/backward - left/right

Coinvolgimento: A. Basti, F. Bosi, F. Raffaelli, A. Moggi, M. Massa, R. Dell'Orso

## Schedule: strutture meccaniche TBPX

- 3° Technical review dicembre 2018 al CERN
- 4° Technical review aprile 2019 al CERN
- <u>CMS Inner Tracker Workshop 11-13 novembre 2019 a Pisa</u>

IT engineering design review Module preproduction Module production Portcards prototypes design and production Production of portcards and e-links

#### IT MECHANICAL STRUCTURES

TBPX structures Ladders prototyping and tests Design of TBPX half-layers Design external cylinders TBPX half-layer Z+ prototyping External cylinder Z+ prototyping Design of TBPX layer gluing tools Fabrication of TBPX layer gluing tools Design of TBPX layer support tools Fabrication of TBPX layer support tools Fabrication of TBPX half-layers Fabrication of external cylinders 25% of TBPX structers fabricated (LM ?) Coupling & Insertion tests

Construction of IT support tube Insertion/integration tests



### **Realizzazione prototipi**

- 1. Prototipo ladder layer 4
- 2. Prototipo settore layer 4 CO2, Tfluido -35°C, 3 ladders, 1 cooling loop
- 3. **Prototipo External cylinder** Giá realizzato mockup 3D printer
- 4. Prototipo half layer 4 Z+ Diametro 147 mm, lunghezza 210 mm, 14 ladders, 4 cooling loops
- 5. Prototipo ladder layer 1
- 6. Prototipo half layer 1 Z+







# **Pixel Phase II: 2019 ongoing activities and results**

All sensors were bump-bonded to RD53A and mounted on RICE cards

Pixel prototypes: 50 μm X 50 μm cell size, with different bias technology Planar and 3D





Image of a 3D prototype

- Results on laboratory qualification and dedicated beam test (Desy and FNAL) on virgin and irradiated detectors
  - target levels for pixel phase II layers:  $5 \times 10^{15} n_{eq} \text{ cm}^{-2}$  planar, and  $1 \times 10^{16} n_{eq} \text{ cm}^{-2}$  3D columnar
  - Pisa started to actively collaborate to both items: laboratory test stand set-up and running + beam test analysis, PhD student involved

### **Beam test results on Planar and 3D**

### Start to focus on design rules: planar bias tecnology





### **Beam test results on Planar and 3D**

Start to focus on design rules: 3D detectors



### **Pixel devices production: multi-chip modules**

21,10 mm

56

#### First prototype assembly of Pseudo-Quad: Layer 4 with RD53a ROC

Design made by Pisa-Firenze and FBK Production Over , good quality even being first design attempt

#### First prototype of 3D RD53a detectors processed by FBK with Stepper lithography

Design made by Pisa-Firenze-TIFPA Process: running now in FBK

#### 2019-2020 activity: assembly and testing of prototypes



# Pixel Phase II: activity in Clean-room (2019-2020)

#### **Qualification test stand**

Refurbishing of probe station, budget 2019 activities already started (PA200) can extend to first part of 2020 (PA 150 project)

Setting-up of x-ray qualification facility, order/budget this year

should be delivered within first half of 2020

CO<sub>2</sub> cooling system (MARTA), available now, ready for procurement should be delivered in second half 2020

### **Prototypes design**

Ladder equipped by Pseudo-quad detectors, mechanics structure designed and cooling pipes TFD simulation and comparative tests on prototypes (using existing CO<sub>2</sub> system) Jigs for assembly procedure (challenging and "new")

#### **Prototypes qualification**

Test of prototypes at different assembly stage: wafers, Bare modules, single prototype and chain-on ladder of Pseudo-quads ligs for single prototype qualification

### Setting-up of Pixel production chain

Clean room equipment should be ready in 2021 for pre-production setting-up of production chain and procedures starts in 2020.

Fisici con specifiche responsabilita gia definite : Androsov, Bagliesi, Ciocci, Dell'Orso, Messineo, Venturi,..... Ingegneri: Basti, Bosi, Massa, Moggi, Raffaelli Personale tecnico: Balestri,Ceccanti, Mammini, Petragnagni, Profeti, Ragonesi, Soldani

Stima personale tecnico necessario per le varie attivita': 3 FTE

### **INFN Outer Tracker construction plan**

| INFI                         | NOUTER TRACKER Module Co | nstruction and Integration | on plan            |
|------------------------------|--------------------------|----------------------------|--------------------|
| Parts Qualification          | Module Construction      | Module Burn in             | Module Integration |
|                              |                          |                            |                    |
| Silicon Sensors              |                          |                            |                    |
| Perugia                      |                          |                            |                    |
| Front- End Hybrids           | Module assembly,         |                            |                    |
| Catania                      | wire bonding and         |                            |                    |
|                              | module qualification     |                            |                    |
| Power & Opto Service Hybrids |                          |                            |                    |
| Genova                       | Bari and Perugia         |                            |                    |
| MapSA Assembly-BumpBonding   |                          |                            |                    |
| Company                      |                          |                            |                    |
|                              |                          | Module burn in             |                    |
| Module Mechanics             |                          | and Calibration            | Module Integration |
| Company                      |                          | Pisa                       | and Testing        |
|                              |                          |                            | Pisa               |
| Mechanics Disks Support      |                          |                            |                    |
| CERN                         |                          |                            |                    |

- Module burn-in and calibration (1956 PS modules)
- Module integration on rings and testing (72 rings)

Financial Contribution ≅10 MCHF 10% of Total Tracker Cost

## **Preparatione burn-in per moduli TBPS**

- Chiller: already procured (Julabo A80)
  - Slightly better specs than the one proposed in FNAL (Julabo FP51)
    - Min temperature -80
    - Power at -40: 1KW (vs 260W of the FP51)
  - Could safely handle more than 10 modules

### • Passive box:

- FNAL design suggest to use a commercial freezer to just exploit the passive components (i.e. insulation) and suggest a model to buy
- Need to find a similar model on the local market
  - Main constrain is the internal width (> 45cm for the FNAL/Princeton mechanics to fit)

## Outer Tracker: To-do 2019

### • Test the Julabo

- Can we control it from ethernet?
- Test thermal cycles on bypass?
  - Specs are different than FP51 so we may need to gain some local experience with it
- Find and procure a suitable freezer enclosure
  - Locate optimal position for feed-through holes
- Update the mechanic design to our freezer size and possibly increase to 8x2 modules
- Build the mechanical structure

## Spese previste 2019-20

- Julabo A80 -> 27kEUR (gia' comprato)
- Spese (assorbibili nei consumi di CMS)
  - Freezer: ~500-1000EUR
  - FNAL board: 1000 EUR
  - Other electronic parts : <500 EUR ??
  - Materiali per lavorazioni officina / struttura meccanica:
    - 4 piastre scambiatore alluminio con tubo di rame affogato ~ 100-200 EUR l'una
    - Lastre alluminio
    - … altre voci da definire…
    - Si spera che la somma sia meno dei 10k proposti da Princeton

### **RD 53**

## **RD53A demonstrator**



• Apr. 13, 2018: First bump-bonded chip test

Chip doc on CDS: http://cds.cern.ch/record/2287593

R. Beccherle, F. Morsani, G. Magazzù, K. Androsov, S. Poulios, F. Palla

MPA

MPW together with

CMS tracker chips

RD53A

## Nuovo chip RD53B

- Dedicated meeting LHCC, experiments, RD53
  - Convergence on how to make final chips: Same design/architecture (RD53B) mapped into two differently sized chips.
- Different pixel geometries for ATLAS and CMS requires different size of the chip.
- One common design team : Two submissions of the RD53B design framework with different matrix sizes
- All common and specific requirements implemented in a unique architecture
  - no difference in the chip bottom or in the core design

## **RD53B common design team (as RD53A)**

Collaboration board chair:

#### Interface to experiments: Co-spokespersons

Lino Demaria, Torino

#### Jorgen Christiansen, CERN (CMS), Maurice Garcia-Sciveres, LBNL (ATLAS)

• General organization, Funding, Specifications,

#### **Experiment observers**

Duccio Abbaneo, CERN (CMS), Kevin Einsweiler, LBNL (ATLAS)

| Floorplan/integration:       1 FTE         Digital:       6 FTE         Digital:       6 FTE         Digital:       5 FTE         Support       5 FTE         Analog/Egital isolation, Integration,<br>Verification       5 FTE         Analog 5 Fs with biasing:       2 FTE         Luigi Galoni, Bari; Ennio Monteil,<br>Torino; Amanda Krieger, LBNL       - Framework, Hig generation/ import MC, Reference<br>model / score board, Monitoring/verification tools,<br>Readout rate estimations, Behavioural pike (hip,<br>SEU injection.       - Pikel array logic:<br>Sara Marconi, CERN; Andrea Paterno, Torino<br>- FE interface, Latency buffer, Core/column bus       - Shunt-LDO integration, On-chip power<br>distribution, Optimization for serial<br>power Verification         Monitoring:       1 FTE         Mohsine Menouni, CPPM;<br>Francesco De Canio, Bergamo,<br>IP designers       - Configuration, CeRN; Herve Grabas, Santa Cruz;<br>Attig Rehman, Bergen<br>SEU: Rafael Girona, Seville<br>Mixed signal: Luca Pacher, Torino;<br>Analog isolation, simulation model,<br>Abstract, Integration, Verification       - Sara Marconi, CERN; Herve Grabas, Santa Cruz;<br>Attig Rehman, Bergen<br>SEU: Rafael Girona, Seville<br>Mixed signal: Luca Pacher, Torino;<br>Aikaterini Papadopoulou, LBNL, Oliver Lemaire, LAL       - Functional, SEU, Interfaces, specifications         PAD frame: | RD53 design fram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ework for final pixel chips: Flavio Loddo, Bar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | i; Tomas Hemperek, Bonn <sup>~13</sup> FTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Diff. IO: Gianluca Traversi, Bergamo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Floorplan/integration:       1 FTE         Flavio Loddo, Bari       EVE         • Pixel array, Bump pad, EOC, Power distribution, Bias distribution, Analog/digital isolation, Integration, Verification         Analog FEs with biasing:       2 FTE         Luigi Gaioni, Bari; Ennio Monteil, Torino; Amanda Krieger, LBNL       9 Specification/performance, Interface, Analog isolation, simulation model, Abstract, Integration, Verification         Monitoring:       1 FTE         Mohsine Menouni, CPPM;       Francesco De Canio, Bergamo, IP designers         • Specification/performance, Interface, Analog isolation, simulation model, Abstract, Integration, Verification         PAD frame:       1 FTE         Hans Krueger, Bonn       CDR/PLL: Piotr Rymaszewski, Bonn         High speed dry: Konstantinos       Moustakas, Tianyang Wang, Bonn | <ul> <li>Digital: 6FTE</li> <li>Tomasz Hemperek, Bonn; Luca Pacher, Torino</li> <li>Simulation Framework:<br/>Sara Marconi, CERN; Herve Grabas, Santa Cruz <ul> <li>Framework, Hit generation/ import MC, Reference<br/>model / score board, Monitoring/verification tools,<br/>Readout rate estimations, Behavioural pixel chip,<br/>SEU injection.</li> </ul> </li> <li>Pixel array logic:<br/>Sara Marconi, CERN; Andrea Paterno, Torino <ul> <li>FE interface, Latency buffer, Core/column bus</li> </ul> </li> <li>Digital chip bottom:<br/>Koberto Beccherle, Pisa; Trancesco Crescioli,<br/>LPNHE; Andrea di Salvo, Torino</li> <li>Configuration, Control interface, Readout data<br/>format/protocol, Compression</li> </ul> <li>Verification:<br/>Sara Marconi, CERN; Herve Grabas, Santa Cruz;<br/>Attiq Rehman, Bergen<br/>SEU: Rafael Girona, Seville<br/>SET: Fernando Munoz Chavero, Seville<br/>Mixed signal: Luca Pacher, Torino;<br/>Aikaterini Papadopoulou, LBNL, Oliver Lemaire, LAL <ul> <li>Functional, SEU, Interfaces, specifications</li> </ul> </li> <li>Library cells:<br/>DICE: Denis Fougeron, Mohsine Menouni, CPPM<br/>Compact latch: Dario Gnani, LBNL<br/>Timing characterization : Sandeep Miryala, FNL</li> | Serial Power:       1.5 FTE         SLDO: Michael Karagounis,       Andreas Stiller, Dortmund.         Bandgap: Gianluca Traversi,       Francesco De Canio, Bergamo         Verification: Alvaro Luengo, Aragon;       Stella Orfanelli, CERN         • Shunt-LDO integration, On-chip power       distribution, Optimization for serial         powering, System level power aspects,       Power Verification         Design for testability:       0.5 FTE         Giusieppe De Robertis, Bari       • Scan path, BIST, production test patterns,         Fault simulation, bump bonding testing         IPs:       Current DAC: Bari         Voltage DAC: Prague       ADC, mux, temp: CPMM         Power on reset: Seville       Ring osc: LAL         Analog buffer: RAL       Support and services:         Tools, design kit: Wojciech Bialas, CERN       Repositories: Flavio Loddo, Bari;         Tomasz Hemperek, Bonn       Radiation model: Mohsine Menouni. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Diff. IO: Gianluca Traversi, Bergamo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

#### Testing: Timon Heim, LBNL

#### 3 FTE in RD53 + ATLAS/CMS group

YARR system: Timon Heim, LBNL BDAQ53 system: Marco Vogt, Michael Daas, Hans Krueger, Tomasz Hemperek, Bonn Radiation test: Luis Miguel Jara Casas, CERN Plus many ATLAS/CMS groups not formally part of RD53

#### **Pixel sensor and bump-bonding:** Fabian Huegging, Bonn (ATLAS), Georg Steinbrueck, Hamburg (CMS)

#### Names in bold: Member of RD53 management board

## **RD53B - Time schedule**

|         |                                             |    | 2018 2019 |       |      |         | 202           | 20      |          |           |         |        |
|---------|---------------------------------------------|----|-----------|-------|------|---------|---------------|---------|----------|-----------|---------|--------|
|         |                                             | Q2 | Q3        | Q4    | Q1   | Q2      | Q3            | Q4      | Q1       | Q2        | Q3      | Q4     |
|         | Development of new or<br>improved IP blocks |    |           |       |      |         |               |         |          |           |         |        |
| ш       | Submissions of test chips                   |    |           |       |      |         |               |         |          |           |         |        |
| 3D53    | Qualification of test chips                 |    | Nov       | ampar | 2019 |         |               |         |          |           |         |        |
|         | Choice of Front-End                         |    |           |       | 2018 |         |               |         |          |           |         |        |
|         | Common verifications                        |    |           |       |      |         |               |         |          |           |         |        |
| S       | Assembly of full chip                       |    |           |       |      | June 2  | 2019          |         |          |           |         |        |
| ATLA    | ATLAS-specific verifications                |    |           |       |      | Sub mis | ssion E       | )ecembe | er 2019  |           |         |        |
| \$<br>} | Test                                        |    |           |       |      | Chi     | p ready       | for mod | dule pro | ototyping |         |        |
|         | Assembly of full chip                       |    |           |       |      |         |               |         |          |           |         |        |
| CMS     | CMS-specific verifications                  |    |           |       |      |         | December 2019 |         |          |           |         |        |
| -       | Test                                        |    |           |       |      |         | S             | ubmissi | on       | June 2    | 020     |        |
|         |                                             |    |           |       |      |         |               | Chip r  | eady fo  | r module  | e proto | typing |



### Introduction

### Tracker Data Processing Systems interface the Phase-2 Tracker with CMS

→ DPS WG organizes development of the three Ph2 backend systems & related infrastructure



### Hardware & Infrastructure Firmware

### Serenity Status

- 15 v1.1 boards produced, awaiting additional FPGA daughter-cards
- Well tested, thermal performance optimised, mature f/w & s/w for dev
- To-do : lpGBT validation, long term aging studies of interposer tech, v1.2?

### Apollo service/command modules

- Docking successful
- Power, IPMC, Zynq working in shelf
- Fireflies powered, prelim i2c testing complete
- VU7P & KU15P both programmed and running test f/w





[ Cornell U., Boston U. ]

### Contributo di Pisa

### Test alla TIF dei prototipi

Responsabilità: UK + Pisa (F. Palla e G. Fedi)

### Serenity ATCA board

Studio del cooling e prototipizzazione dell'heat-sink della parte di FPGA (2x100 W) e della parte di connettività ottica (72 connettori Fireflies)



G. Fedi, P.G. Verdini

### **TIF Integration**

### **B186/TIF Integration**

### Current setup

- 2 TIF blue racks
  - one for 2019 test-stand
  - o one for long-term rack layout evaluation
- Brand new dual-star Schroff ATCA shelf w/ shelf manager
- 2kW temporary 48V PS, 9kW brand new 48V PS (under eval)
- F125 Ethernet Hubs
- Vadatech uTCA crate
- PC blade for system control/access
- PC blade for firmware building
- 1 Serenity v1 card

### Next h/w to arrive:

- FC7 with TCDS mezzanines (this week)
- Apollo v1 (July)
- Serenity v1.1 (July)
- DTH-P1 (tbc)





[Imperial, Pisa, Northwestern, RAL]

### Attività 2020

### Continuazione del test alla TIF

Sistema completo, inclusivo dell'algoritmo di trigger con simulazione di tutto il rivelatore

### Costruzione e validazione dei prototipi

Pisa:

- dissipatori FPGA e ottica della board,
- Contributo allo studio della meccanica della board
- Interfaccia con la ditta di produzione (Somacis nelle Marche) per i test di validazione della board

# Personale coinvolto: F. Palla, G. Fedi, P.G. Verdini, M. Piendibene, F. Bosi (+S. Donato??)

| Development and checkout of prototype boards                       | Oct 2017 | Jul 2019 |   |
|--------------------------------------------------------------------|----------|----------|---|
| Development of OT BE specifications                                | Mar 2018 | Jan 2020 |   |
| Operation of integrated test system for prototype board validation | Jul 2019 | May 2020 |   |
| Prototype board readout of proto-modules                           | Jul 2019 | May 2020 |   |
| OT DP system specs defined                                         | Jan 2020 | Jan 2020 |   |
| OT DP prototype boards validated                                   | May 2020 | May 2020 | _ |
| Development and checkout of pre-production boards                  | May 2020 | Jan 2022 |   |

### Pisa: riepilogo impegno Tracker Upgrade

- Inner Tracker (pixel) (2018-25)
  - Pixel R&D (2017-20)
  - Silicon sensor qualification (2021-24)
  - Bare Modules testing (2022-24)
    - 108 mod 1x2 ROC L1 BPIX
    - 1020 mod 1x2 ROC L2 Bpix (252) + R1&R2 EPIX (768) (da definire)
  - Struttura meccanica (x tutto inner tracker barrel) (2018-23)
- Outer Tracker (PS) (2018-24)
  - Module burn-in and calibration (1956 PS modules) (2020-23)
  - Module integration on rings and testing (72 rings) (2023-24)
- L1 Track Trigger electronics (2018-23)
  - Sviluppo FW
  - Test delle boards di trigger
    - Richiede laboratorio "grigio" con crate ATCA
- RD53 chip development
- Safety system & DCS (Detector Control System)
  - Sviluppo prevalentemente al CERN

### **Personale upgrade production (draft documento CTS) 2018-25**

|                       | Profile  | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | 2025 | ToT | Task         |
|-----------------------|----------|------|------|------|------|------|------|------|------|-----|--------------|
| PISA                  |          |      |      |      |      |      |      |      |      |     |              |
| Azzurri Paolo         | RI       | 0.05 | 0.05 | 0.1  | 0.2  | 0.3  | 0.3  | 0.3  |      | 1.3 | OT 7         |
| Bagliesi Giuseppe     | PR       | 0.2  | 0.2  | 0.3  | 0.3  | 0.4  | 0.4  | 0.4  | 0.4  | 2.6 | OT 6,7       |
| Bianchini Lorenzo     | RI       | 0.1  | 0.1  | 0.2  | 0.3  | 0.3  | 0.3  | 0.3  | 0.3  | 1.9 | OT 7         |
| Boccali Tommaso       | RI       | 0.05 | 0.05 | 0.3  | 0.4  | 0.4  | 0.4  | 0.4  | 0.4  | 2.4 | OT 6,7,9     |
| Ciocci Maria Agnese   | PA       | 0.1  | 0.2  | 0.3  | 0.4  | 0.4  | 0.4  | 0.4  | 0.4  | 2.6 | IT 1         |
| Dell'Orso Roberto     | PR       | 0.3  | 0.3  | 0.4  | 0.4  | 0.4  | 0.4  | 0.4  | 0.4  | 3.0 | IT 1, 8, 16  |
| Giassi Alessandro     | RI       | 0.2  | 0.2  | 0.3  | 0.4  | 0.4  | 0.4  | 0.4  | 0.4  | 2.7 | OT 7         |
| Ligabue Franco        | RU       | 0.1  | 0.2  | 0.3  | 0.4  | 0.4  | 0.4  | 0.4  | 0.4  | 2.6 | OT 7         |
| Messineo Alberto      | PA       | 0.3  | 0.3  | 0.4  | 0.4  | 0.4  | 0.4  | 0.4  | 0.4  | 3.0 | IT 1, 16     |
| Palla Fabrizio        | DR       | 0.25 | 0.3  | 0.3  | 0.3  | 0.4  | 0.4  | 0.4  | 0.4  | 2.8 | OT 10        |
| Rizzi Andrea          | PA       | 0.15 | 0.25 | 0.3  | 0.4  | 0.4  | 0.4  | 0.4  | 0.4  | 2.7 | OT 6,7,9     |
| Rolandi Luigi         | PO       | 0.05 | 0.05 | 0.1  | 0.1  | 0.1  |      |      |      | 0.4 | OT 7         |
| Spagnolo Paolo        | RI       | 0.1  | 0.2  | 0.2  | 0.2  | 0.2  | 0.3  | 0.3  | 0.3  | 1.8 | IT 1         |
| Tenchini Roberto      | DR       | 0.2  | 0.2  | 0.3  | 0.3  | 0.4  | 0.4  | 0.4  | 0.4  | 2.6 | OT 7         |
| Venturi Andrea        | PR       | 0.2  | 0.2  | 0.3  | 0.3  | 0.4  | 0.5  | 0.8  | 0.8  | 3.5 | OT 6,7       |
| Verdini Piero Giorgio | PR       | 0.3  | 0.3  | 0.4  | 0.4  | 0.4  | 0.4  | 0.4  | 0.4  | 3.0 | OT 11; IT 11 |
| Basti Andrea          | TE mecc  | 0.3  | 0.4  | 0.4  | 0.4  | 0.4  | 0.4  | 0.4  | 0.4  | 3.1 | IT 8; OT 8   |
| Beccherle Roberto     | TE ele   | 0.75 | 1    | 1    | 0.7  | 0.5  | 0.3  | 0.2  | 0.1  | 4.6 | IT 2         |
| Magazzu' Guido        | PT ele   | 0.3  | 0.3  | 0.3  | 0.4  | 0.4  | 0.5  | 0.5  | 0.2  | 2.9 | OT 10        |
| Moggi Andrea          | TE mecc  | 0.4  | 0.4  | 0.4  | 0.4  | 0.4  | 0.4  | 0.4  | 0.4  | 3.2 | IT 8; OT 8   |
| Piendibene Marco      | TE ele   | 0.1  | 0.3  | 0.3  | 0.4  | 0.4  | 0.45 | 0.5  | 0.2  | 2.7 | OT 10        |
| Raffaelli Fabrizio    | DT mecc  | 0.3  | 0.3  | 0.3  | 0.3  | 0.3  | 0.3  | 0.3  | 0.3  | 2.4 | IT 8; OT 8   |
| Tecnico 1             | Tec      |      |      |      | 0.6  | 0.6  | 0.6  |      |      | 1.8 | IT 1         |
| Tecnico 2             | Tec      |      |      |      | 0.6  | 0.6  | 0.6  |      |      | 1.8 | IT 16        |
| Tecnico 3             | Tec      |      |      |      | 0.6  | 0.6  | 0.6  |      |      | 1.8 | OT 6         |
| Tecnico 4             | Tec      |      |      |      |      | 0.8  | 0.8  | 0.8  |      | 2.4 | OT 7         |
| Post Doc 1            | AdR      | 0.3  | 0.3  | 0.5  | 0.5  | 0.5  | 0.5  | 0.5  | 0.5  | 3.6 | tbd          |
| Post Doc 2            | AdR      | 0.3  | 0.3  | 0.5  | 0.5  | 0.5  | 0.5  | 0.5  | 0.5  | 3.6 | tbd          |
| Dottorando 1          | PhD      |      | 0.3  | 0.3  | 0.3  | 0.3  | 0.3  | 0.3  | 0.3  | 2.1 | tbd          |
| Dottorando 2          | PhD      |      | 0.3  | 0.3  | 0.3  | 0.3  | 0.3  | 0.3  | 0.3  | 2.1 | tbd          |
| Dottorando 3          | PhD      |      | 0.3  | 0.3  | 0.3  | 0.3  | 0.3  | 0.3  | 0.3  | 2.1 | tbd          |
| request to INFN       | AdR      |      |      | 0.5  | 1    | 1    | 0.5  |      |      | 3.0 | OT 10        |
| request to INFN       | AdR      |      |      |      | 1    | 1    |      |      |      | 2.0 | IT 1         |
| request to INFN       | AdR      |      |      |      |      |      |      | 1    | 1    | 2.0 | OT 9         |
| request to INFN       | AdR      |      |      |      | 1    | 1    | 1    |      |      | 3.0 | OT 6         |
| request to INFN       | AdR      |      |      |      |      | 1    | 1    | 1    |      | 3.0 | OT 7         |
| request to INFN       | AT       |      |      | 1    | 1    | 1    |      |      |      | 3.0 | IT 8         |
| request to INFN       | AT       |      |      |      | 1    | 1    | 1    |      |      | 3.0 | IT 16        |
| TOTAL                 | FTE/year | 5.4  | 7.3  | 10.6 | 16.5 | 18.6 | 16.2 | 13.1 | 10.3 |     |              |

| TASK                   | #  |
|------------------------|----|
| Sensor Quality Control | 1  |
| ASIC's Quality Control | 2  |
| FE Hybrid Quality Cont | 3  |
| On-Detector Service El | 4  |
| Module Production      | 5  |
| Module Burn-in         | 6  |
| Integration of sub-ass | 7  |
| Mechanics              | 8  |
| DAQ software           | 9  |
| L1 track finder        | 10 |
| Safety System          | 11 |
| Power system           | 12 |
| Power cables           | 13 |
| Commissioning          | 14 |
| Installation           | 15 |
| Bump bonding quality   | 16 |

| Profile                 | Label |
|-------------------------|-------|
| Ricercatore INFN        | RI    |
| Ricercatore CNR         | RC    |
| Ricercatore Universitar | RU    |
| Primo Ricercatore INF   | PR    |
| Professore Associato    | PA    |
| Dirigente Ricercatore   | DR    |
| Tecnologo               | TE    |
| Primo Tecnologo         | PT    |
| Dirigente Tecnologo     | DT    |
| Tecnico                 | Tec   |
| Assegno Tecnologico     | AT    |
| Assegno di Ricerca      | AdR   |

## **Richieste strumentazione/infrastrutture**

#### Infrastructures requested to INFN

The infrastructures requested to INFN for the CMS Tracker upgrade are listed in Figure 30 are intended to either complement or renovate the equipment of the participating institutes; despite most of them are explicitly thought in terms of Tracker activities, it is largely foreseeable a future usage.

| Description                      | Location | Comments and Motivations                                     | Task<br>associated | Cost<br>[ke] | INFN<br>Contrib<br>. [kE] | Year |
|----------------------------------|----------|--------------------------------------------------------------|--------------------|--------------|---------------------------|------|
| Wire bonding machine             | BARI     | Replacement of old machine. Already bought                   | OT 5               | 150          | 100                       | 2017 |
| Wire bonding pull tester         | BARI     | New for wire bonding testing                                 | OT 5               | 8,5          | 8,5                       | 2018 |
| Upgrade for Module assembly      | BARI     | Glue dispenser robot with volumetric control                 | OT 5               | 26           | 26                        | 2019 |
| Climatic chamber                 | CATANIA  | For OT hybrid burn-in                                        | OT 3               | 40           | 40                        | 2019 |
| Wire bonding machine             | FIRENZE  | Replacement of old machine                                   | IT 5               | 192          | 112                       | 2017 |
| Probe station                    | FIRENZE  | Silicon sensor receptiom test                                | IT 5               | 100          | 50                        | 2019 |
| Wire bonding machine             | PERUGIA  | Replacement of old machine                                   | OT 5               | 150          | 150                       | 2018 |
| 3D Measuring machine             | PERUGIA  | Update of machine for module survey                          | OT 5               | 20           | 20                        | 2018 |
| 8" Probe station                 | PERUGIA  | Replacement of old machine for sensor QA                     | OT 1               | 250          | 250                       | 2018 |
| Upgrade for Module assembly      | PERUGIA  | Glue dispenser robot with volumetric control                 | OT 5               | 26           | 26                        | 2019 |
| Probe station maintenance        | PISA     | Pixel Silicon sensor Qualification center                    | IT 1               | 35           | 35                        | 2018 |
| X-ray test station               | PISA     | For diagnostic of bump-bonding connection<br>and calibration | OT 7               | 50           | 50                        | 2018 |
| Termo-camera                     | PISA     | Verification during OT module assemb ly                      | OT 7               | 27           | 27                        | 2018 |
| Cold Box                         | PISA     | Burn-in of OT modules                                        | OT 7               | 25           | 20                        | 2019 |
| 3D Measuring machine             | PISA     | Module integration on OT rings                               | OT 7               | 60           | 35                        | 2018 |
| Stocking of mechanical structure | PISA     | To store and manipulate OT rings                             | OT 7               | 30           | 30                        | 2019 |
| Climatic chamber                 | PISA     | For testing of sub-assembly of OT rings                      | OT 7               | 112          | 112                       | 2018 |
| 12" probe station                | TORINO   | New for wafer level testing of IT ASIC                       | IT 2               | 480          | 200                       | 2018 |
| Cold box                         | TORINO   | Burn-in of IT modules                                        | IT 7               | 25           | 20                        | 2019 |
| X-ray test station               | TORINO   | For diagnostic and final calibration of IT modules           | IT 7               | 50           | 50                        | 2018 |

#### N.B. Espansione camere pulite finanziata e in corso

## **Tier2 Pisa: stato e richieste**

## Richieste 2020 Tier2

- Italia: 13% di CMS
- 1 TBN = 140€
- 1 HS06 = 10€
- Si aggiunge un "gettone" del 20%\*Assegnaz.(2018) per le CPU di LNL, Pisa, Roma per recuperare extra-costo acquisto CPU

N.B. incontro con referee e' stato a Napoli 12 e 13 giugno, numeri provvisori Recupero gia' nel 2020 d-pledge 2019 che era stato ritardato al 2021

| Recup.<br>pledge | Fraz.<br>pledge<br>PON                  |                                       |                                      |                     |                              |                          |               |                 |               |                 |                                          |         |         |               |
|------------------|-----------------------------------------|---------------------------------------|--------------------------------------|---------------------|------------------------------|--------------------------|---------------|-----------------|---------------|-----------------|------------------------------------------|---------|---------|---------------|
| 1                | 0.25                                    |                                       |                                      |                     |                              |                          |               |                 | -             |                 |                                          |         |         |               |
|                  | recupero<br>D-pledge<br>2019<br>(kHS06) | recupero<br>D-pledge<br>2019<br>(TBN) | Dismissioni<br>2019 (not<br>granted) | Dismissioni<br>2020 | Totale<br>dismissioni<br>CPU | Dismisioni<br>2020 disco | Totale<br>CPU | Totale<br>disco | CPU<br>(euro) | Disco<br>(euro) | Recupero<br>pledges<br>CPU 2018<br>(Eur) | Rete    | Server  | Totale (euro) |
|                  |                                         |                                       | kHS06                                | kHS06               | kHS06                        | TBN                      |               |                 |               |                 |                                          |         |         |               |
| Bari             | 2.75                                    | 217.5                                 | 0.00                                 | 4.6                 | 4.60                         | 640                      | 7.35          | 857.5           | 73500         | 120050          |                                          | 5206.25 | 6774.25 | 205530.5      |
| Pisa             | 2.75                                    | 217.5                                 | 2.55                                 | 4.75                | 7.30                         | 120                      | 10.05         | 337.5           | 100500        | 47250           | 8400                                     | 4196.25 | 5171.25 | 165517.5      |
| Legnaro          | 2.75                                    | 217.5                                 | 4.05                                 | 6.9                 | 10.95                        | 704                      | 13.70         | 921.5           | 137000        | 129010          | 18800                                    | 7335.25 | 9310.35 | 301455.6      |
| Roma1            | 2.75                                    | 217.5                                 | 2.45                                 | 5                   | 7.45                         | 0                        | 10.20         | 217.5           | 102000        | 30450           | 10600                                    | 3821.25 | 4635.75 | 151507        |
|                  |                                         |                                       |                                      |                     |                              |                          |               |                 |               |                 |                                          |         |         |               |
| Totali           | 11                                      | 870                                   | 9.05                                 | 21.25               | 30.30                        | 1464                     | 41.30         | 2334            | 413000        | 326760          | 37800                                    | 20559   | 25891.6 | 824010.6      |

N.B. Bari viene finanziato tramite PON, quindi i numeri sono «virtuali» per la CSN1

## Pisa: responsabilita' CMS 2020

| А                     | В       | С    | D                                                                                     | E        | F         |    |
|-----------------------|---------|------|---------------------------------------------------------------------------------------|----------|-----------|----|
| NOME                  | LIVELLO | SEDE | RUOLO                                                                                 | Commento | Mesi Uomo |    |
| Tommaso Boccali       | L2      | PI   | Computing steering group                                                              |          |           | ŀ  |
| Tommaso Boccali       | L2      | PI   | Ecom2X convener                                                                       |          |           | ŀ  |
| Giuseppe Bagliesi     | L2      | PI   | Facilities Services convener, Resp.<br>Nazionale Comp., delegato nazionale<br>nel CRB |          |           | 5  |
| Enrico Mazzoni        | L3      | PI   | Resp. tier2 Pisa                                                                      |          | 2         | 2  |
|                       |         |      |                                                                                       |          |           |    |
| Paolo Azzurri         | L2      | PI   | SMP Convener                                                                          |          | 4         | I. |
| Gacomo Fedi           | L3      | PI   | BPH – Spectr.&Properties convener                                                     |          | 2         | 2  |
| Lorenzo Bianchini     | L3      | PI   | BPH – SMP - V convener                                                                |          | 2         | 2  |
| Konstantin Androsov   | L3      | PI   | tauID trigger convener                                                                |          | 2         | 2  |
| Piero Giorgio Verdini | L3      | PI   | TK safety coordinator                                                                 |          | 2         | 2  |
| Piero Giorgio Verdini | L3      | PI   | TK DCS coordinator                                                                    |          | -         | I  |
| Fabrizio Palla        | L3      | PI   | LHC HF working group convener                                                         |          | 2         | 2  |
| TOTALE                |         |      |                                                                                       |          | 30        | )  |

## CMS Pisa: Anagrafica 2020

| FISICI                | Contratto        | Qualifica            | % Totale |
|-----------------------|------------------|----------------------|----------|
|                       |                  |                      |          |
| Androsov Konstantin   | Associato        | Post-doc             | 100      |
| Azzurri Paolo         | Dipendente       | Ricercatore          | 90       |
| Bagliesi Giuseppe     | Dipendente       | Primo Ricercatore    | 95       |
| Bertacchi Valerio     | Associato        | Perfezionando SNS    | 100      |
| Bianchini Lorenzo     | Dipendente       | Ricercatore          | 90       |
| Boccali Tommaso       | Dipendente       | Primo Ricercatore    | 100      |
| L Castaldi Rino       | Associato (anz.) | Dirigente di Ricerca | 0        |
| Chowdhury Suvankar    | Associato        | Borsista SNS         | 100      |
| Ciocci Maria Agnese   | Associato        | Prof. Associato      | 90       |
| Dell'Orso Roberto     | Dipendente       | Primo Ricercatore    | 90       |
| Di Domenico Maria     |                  |                      |          |
| Rosaria               | Associata        | Dottoranda Siena     | 100      |
| Donato Silvio         | Dipendente       | Ricercatore          | 100      |
| Fedi Giacomo          | Associato        | Borsista             | 100      |
| Giannini Leonardo     | Associato        | Perfezionando SNS    | 100      |
| Giassi Alessandro     | Dipendente       | Ricercatore          | 100      |
| Grippo Maria Teresa   | Associato        | Post-doc             | 100      |
| Ligabue Franco        | Associato        | Ricercatore          | 95       |
| Manca Elisabetta      | Associata        | Perfezionanda SNS    | 100      |
| Mandorli Giulio       | Associato        | Perfezionando SNS    | 100      |
| Messineo Alberto      | Associato        | Prof. Associato      | 80       |
| Negin Shafiei         | Associata        | Dottoranda           | 100      |
| Palla Fabrizio        | Dipendente       | Dirigente di Ricerca | 75       |
| Parolia Shubhi        | Associata        | Dottoranda           | 100      |
| Rizzi Andrea          | Associato        | Prof. Associato      | 100      |
| Rolandi Luigi         | Associato        | Prof. Ord. SNS       | 85       |
| ) Scribano Angelo     | Associato (anz.) | Prof. Ord. Siena     | 0        |
| Spagnolo Paolo        | Dipendente       | Primo Ricercatore    | 80       |
| Tenchini Roberto      | Dipendente       | Dirigente di Ricerca | 90       |
| Tonelli Guido Emilio  | Associato        | Prof. Ordinario      | 90       |
| ) Turini Nicola       | Associato        | Ricercatore          | 0        |
| Venturi Andrea        | Dipendente       | Primo Ricercatore    | 100      |
| Verdini Piero Giorgio | Dipendente       | Primo Ricercatore    | 90       |
|                       |                  |                      |          |
| otale: CMS Bicercato  | 4                | <u> </u>             | 27.4     |

|          | TECNOLOGI          | Contratto  | Qualifica       | %<br>Totale |
|----------|--------------------|------------|-----------------|-------------|
| 1        | Arezzini Silvia    | Dipendente | Primo Tecnologo | 30          |
| 1        | Basti Andrea       | Associato  | Tecnologo       | 30          |
|          | Bosi Filippo       | Dipendente | Tecn.           | 0           |
| 1        | Beccherle Roberto  | Dipendente | Tecnologo       | 100         |
| 1        | Ciampa Alberto     | Dipendente | Primo Tecnologo | 50          |
| 1        | Magazzu' Guido     | Dipendente | Primo Tecnologo | 30          |
| 1        | Massa Maurizio     | Dipendente | Tecnologo       | 20          |
| 1        | Mazzoni Enrico     | Dipendente | Tecnologo       | 55          |
| 1        | Moggi Andrea       | Dipendente | Tecnologo       | 30          |
| 1        | Morsani Fabio      | Dipendente | Primo Tecnologo | 20          |
| 1        | Piendibene Marco   | Associato  | Ingegnere unipi | 20          |
| 1        | Raffaelli Fabrizio | Dipendente | Dir. Tecnologo  | 20          |
| 11<br>To | tale tecnologi     |            |                 | 4.05        |

#### Fase2 $\rightarrow$ Ric. 6.6 + Tecnol. 2.7 = 9.3 FTE



## **Gran totale richieste finanziarie**

|                | Consumi k€ |
|----------------|------------|
| Metabolismo    | 47.175     |
| Macchine CERN  | 8          |
| RD50           | 2          |
| RD53           | 2          |
| Camere Pulite  | 5          |
| Totale Consumi | 64.175     |

|                   | Missioni k€ |
|-------------------|-------------|
| Metabolismo ME    | 119.51      |
| Metabolismo MI    | 31.45       |
| Responsabilita'   | 114         |
| EPR               | 102.6       |
| Fase2 e test beam | 34.2        |
| Totale Missioni   | 401.76      |

|              | Tier2 |                                             |                  |
|--------------|-------|---------------------------------------------|------------------|
| CPU          | 100.5 | rimpiazzi e nuovi acquisti: 10.05 kHS06     |                  |
| CPU          | 8.4   | recupero exrtra costo CPU 2018              |                  |
| Storage      | 47.5  | rimpiazzi e nuovi acquisti: 337.5 TBN       |                  |
| Server       | 5.2   | server per storage + CPU                    |                  |
| Rete         | 4.2   | infrastrutture rete per storage+CPU, richie | este tramite CCR |
|              |       |                                             |                  |
| Totale Tier2 | 165.8 | (di cui 4.2 chiesti tramite CCR)            |                  |

| FASE 2 |                |                                                                  |                       |          |
|--------|----------------|------------------------------------------------------------------|-----------------------|----------|
|        | Consumi        |                                                                  |                       |          |
| IT     | 20             | S.J Tooling per realizzazione prototipi L4, L1                   |                       |          |
| IT     | 5              | meccanica per test moduli QUAD prodotti                          |                       |          |
| IT     | 30             | S.J. Bump Bonding per full size 3D sensors                       |                       |          |
|        | Inventariabile |                                                                  |                       |          |
| OT kE  | 18             | PS SY4527B + booster + 1 A7435 + 2 A2519                         |                       |          |
|        | CORE           |                                                                  |                       |          |
| от     | 18.2           | CORE Tracker/1.1.5 OT Infrastructure/ Module Burn set-up         |                       |          |
| от     | 70             | CORE Tracker/1.1.5 OT Infrastructure/ Sub-struct integr: 300W CO | 2 Cooling Plant, di c | ui 20 SJ |

## Backup

### heterogeneous framework HLT

### Very promising proposal, that can provide several benefits to HLT and to the CMS

Transition to a heterogeneous framework and reconstruction software, and synergy with HPC centres

#### But is not committing CMS for the future

within the next 3-5 years other approaches may become realistic

other accelerators: other GPUs, FPGAs, TPUs

other solutions: dedicated nodes, remote offloading, are already being studied within CMS

#### Plan is to identify the time line, milestones and criteria to take the final decision

First to invest resources in the development (from R&D to Engineering)

And finally, a little before 2021, to purchase the HW

## BACKUP MECCANICA

• pictures



- Pixel detector.
- 4 Layers.
- Raggi: <u>29,60,102,143 mm</u>
- Lunghezza tot. = + /-200 mm
- 4 Sottostrutture.
- 2 tipi di moduli: (1x2) e (2x2) chips.
- 324 moduli (1x2)
- 432 moduli (2x2)





### **CMS phase-II TBPX detector**













### **BACKUP RD53**

### **Backup Pixel**

## **Espansione clean**

### room

- L'attuale configurazione e gli spazi nella clean room non sono adeguati per la fase di costruzione dell'upgrade OT di fase-2 di CMS
- Preventivo dettagliato in arrivo (o gia' disponibile)
  - Capitolato preparato da Filippo
- Spostamento dell'area grigia (ingresso) all'interno dell'atrio
  - Secondo ingresso con doppia porta (per accesso rings)
- Camera climatica 3m x 3m
  - Spazio nel retro per cooling CO2 (sistema Marta 300 W 1m x 1m circa)
- Cooling a CO<sub>2</sub> (-40 C)
- CMS non necessita di sistema di misura con precisione del micron (refurbishing CMM S.Piero)
  - Contatti con la ditta Hexagon per l'acquisto di un braccio articolato con testa intercambiabile (precisione 50-100 micron)
- Possibili sinergie con dipartimento e Universita'
  - Investimenti su macchinari di interesse generale (bando unipi grandi strumentazioni)



## **Fusione CMS - Totem II**

### **TOTEM-CMS-CERN MoU**

- Dal punto di vista dei M&O A, l'MoU stabilisce che, per le founding agency, nulla cambi rispetto alla attuale situazione. Quindi prevede che, per i nuovi membri provenienti da TOTEM, non ci sia trasferimento di fondi a CMS nel biennio 2018-2019.
- Mentre per il 2020 e 2021, prevede che sia TOTEM stesso a trasferire a CMS i fondi nella percentuale del 25% e 50% rispettivamente. Questo per garantire a TOTEM le risorse per preparare ed effettuare l'ultima presa dati a 14TeV.
- Dal 2022, il 100% dei M&O A verranno trasferiti direttamente a CMS, dalle founding agency, dato che l'ultimo anno di presa dati di TOTEM si prevede sia il 2021.

F.S. Cafagna, CNS1 21st of May 2018

21

N.B. Vedi talk di Nicola Turini Per maggiori dettagli

