
Artificial Intelligence in Medicine

INFN - CSN5 proposal 2019-2021

RN: A. Retico (INFN-PI)

RL: A. Chincarini (GE) / P. Oliva (CA) / D. Remondini (BO) /

S. Tangaro (BA) / M. Marrale (CT)/ C. Talamonti (FI)

partners & dataset

Clinical partners

- IRCCS S. Martino (GE)
- IRCCS Stella Maris (PI)
- IRCCS Gaslini (GE)
- IRCCS Centro S. G. di Dio (BS)
- IRCCS G.Paolo II (BA)
- IRCCS SDN (NA)
- AOUP (PI)
- Policlinico (BA)
- Policlinico (PA)
- Osp. Pediatrico Meyer (FI)

EU / consortia

- IMAGO7 (Fondazione di Ricerca)
- EADC (EU)
- ADNI (US)
- ABIDE (EU/US)
- ENIGMA (WW)

Azienda Ospedaliera Universitaria Policlinico Paolo Giaccone

Cosa dobbiamo fare

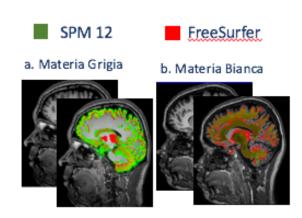
AIM 1: Data harmonization

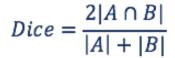
<u>AIM1.T1</u> - Multi-site data harmonization in MRI (PI, BA, BO) [Task expected duration: 3 years, starting month: 1] M1.1 (31-12-2019) Identification and coding of Generative Adversarial Network for MRI data harmonization

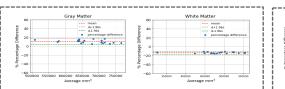
<u>AIM1.T2</u> - Multi-site data harmonization in mammography (PI, CA) [Task expected duration: 2 years; starting month: 1] M1.2 (31-12-2019) Implementation of first prototype of the harmonization algorithm for mammograms

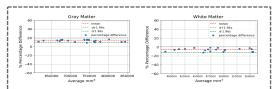
AIM 3: Predictive models

<u>AIM3.T1</u> - Predictive models for Radiation Therapy treatments (FI, GE, PI) [Task expected duration: 3 years; starting month: 1] M3.1 (31-12-2019) Creation of database for predictive models for Radiation Therapy treatments

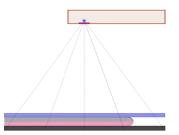

<u>AIM3.T2</u> - Predictive models for mammography and CESM (PI, CA, BA) [Task expected duration: 3 years; starting month: 1] M3.2a (30-06-2019) Development of a CNN for automatic classification of breast density in the 4 BIRADS classes

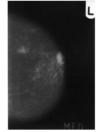

Cosa stiamo facendo/faremo

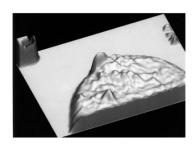



AIM 1: Data harmonization

MRI: Ripetibilità e riproducibilità di misure di volumi cerebrali con SPM e FreeSurfer






Plot Bland-Altman dei volumi di GM and WM segmentati da FS e SPM per analisi di riproducibilità inter-method sul dataset Kirby-21 (sinistra) e sul dataset OASIS (destra).

Necessità di cross-validare con diversi algoritmi di segmentazione prima di procedere all'interpretazione

Mammografia: Normalizzazione basata su un modello fisico

$$E_p(x,y) = \Phi(KVp_{tube})A_p t_s \sum_{E} N_0^{rel}(E)E \cdot S(E) \cdot e^{-\mu(E)h}$$

E_p: energia depositata nel pixel (x, y) per effetto dei fotoni primari;

Φ: il flusso di fotoni, per unita' di area e di tempo, generato dal tubo radiogeno ad un dato KVp;

A p, t s: rispettivamente l'area del pixel e il tempo di esposizione;

N 0^rel, E: il numero di fotoni, relativo al totale, ad una data energia E e l'energia associata;

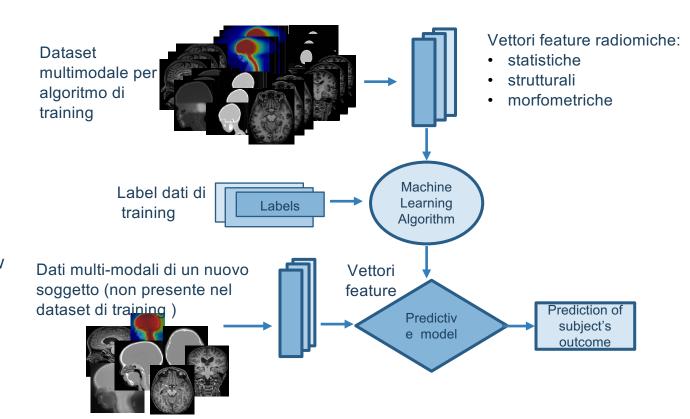
S: frazione di fotoni che riescono ad attraversare la griglia antiscatter, ad una data energia E;

 μ , h: il coefficiente di assorbimento del materiale attraversato e lo spessore relativo.

Cosa stiamo facendo/faremo

AIM 3: Predictive models

Radiomica: Correlazione distribuzione di dose organi a rischio e tossicità encefaliche e/o eventuali recidive

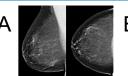


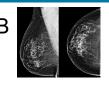
MR preoperatoria – postoperatoria – follow up (ogni 3 mesi) ;

CT centraggio;

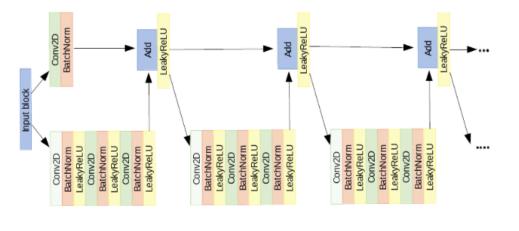
RT-structure, RT-plan e RT-dose;

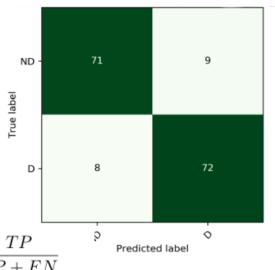
dati clinici

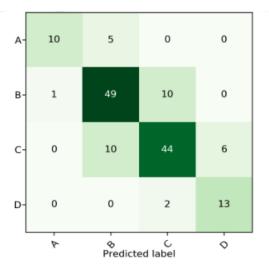



Cosa stiamo facendo/faremo

AIM 3: Predictive models


Mammografia: R-CNN per la classificazione del livello di ghiandolarità





$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN} \quad Precision = \frac{TP}{TP + FP} \quad Recall = \frac{TP}{TP + FN}$$

Dense/Non-dense	Left (%)	Right (%)	All (%)	BI-RADS	Left (%)	Right (%)	All (%)
Accuracy	84.4	88.8	89.4	Accuracy	73.3	76.7	77.3
Recall	82.3	89.9	90.0	Recall	72.1	79.2	77.1
Precision	85.5	87.7	88.9	Precision	76.6	75.2	78.6

Chi siamo

Nome	Ruolo	FTE (Tot 5.4)	
A. Retico	Ric INFN	0.7 (0.3 ML-INFN)	
M.E. Fantacci	Ric UniPI	0.7 (0.3 ML-INFN)	
E. Ferrari	Dottoranda (SNS data science)	1	
F. Lizzi	Dottoranda (SNS data science)	1	
P. Barca	Assegnista (UNIPI)	0.4	
R. Lamastra	Borsista (UNIPI)	0.3	
R. Tucciariello	Borsista (UNIPI)	0.3	
L. Biagi	Stella Maris/IMAGO7	0.2	
P. Bosco	Stella Maris/IMAGO7	0.2	
G. Buonincontri	Stella Maris/IMAGO7	0.2	
M. Costagli	Stella Maris/IMAGO7	0.2	
M. Tosetti	Stella Maris/IMAGO7	0.2	

Servizio Calcolo

- Partecipazione
 - o S. Arezzini
 - o E. Mazzoni
 - A. Ciampa

Sinergia con RADIOMA (Fondazione Pisa)

Sinergia con Q-MRI (INFN-RT2, POR-FSE 2014-2020, www.giovanisi.it)

• Assegnista Jan Kurwzasky

Budget e servizi di sezione

	Second year	
Travel	15	
HardWare	10	
Consumables	5	
SW licenses	-	
WorkShops	-	
	30	

Servizio Calcolo

- Manutenzione Risorse Calcolo dedicate:
 - CPUs: 2x 10 cores Intel Xeon E5-2640v4
 @2.40 GHz;
 - o RAM: 64 GB;
 - GPUs: 4x nVidiaTesla K80, with 2x GPUs
 Tesla GK210, 24 GB RAM and 2496
 CUDA cores each;
 - 1x nVidiaV100
- Accesso Risorse Calcolo di Sezione
- Stampa 3D di fantocci anatomici per la validazione degli algoritmi