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Cosmic ray detection:  

• antiparticle component 
• chemical and isotopic composition  
• spectral features 
• heliospheric effects  
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The AMS results on the electron spectrum together with
earlier measurements [24,29–34] are shown in Fig. 2(a).
The AMS results significantly improve the precision and
extend the measurements to the uncharted high energy
region. The positron fraction results together with earlier
measurements [24,29–34] are presented in Fig. 2(b). The
sum of the electron and positron [4] spectra is compared to
the recent measurements of the combined electron and
positron spectrum [35–39] in Fig. 2(c).
To examine the energy dependence of the electron flux in

a model-independent way, the flux spectral index γ is
calculated from

γ ¼ d½logðΦÞ%=d½logðEÞ%; ð2Þ

over nonoverlapping energy intervals which are chosen to
have sufficient sensitivity to the spectral index. The energy
interval boundaries are 3.36, 5.00, 7.10, 10.32, 17.98,
27.25, 55.58, 90.19, 148.81, 370, and 1400 GeV. The
results are presented in Fig. 3(a) together with the positron
results [4]. They are stable against the variation of energy
range boundaries as verified by shifting the boundaries to
higher and lower values by one or two energy bins (see
Fig. S8 of the Supplemental Material [21]). As seen in
Fig. 3(a), both the electron and positron indices decrease
(soften) rapidly with energy below ∼10 GeV, and then they
both start increasing (harden) at > 20 GeV. In particular,
the electron spectral index increases from γ ¼ −3.295&
0.026 in the energy range [17.98–27.25] GeV to an average
γ ¼ −3.180& 0.008 in the range [55.58–1400] GeV, where
it is nearly energy independent. As seen in Fig. 3(a), the
behavior of the electron and positron spectral indices is
distinctly different.

To determine the transition energy E0 where the change
of the electron spectral index occurs, we use a double
power law approximation:

Φe−ðEÞ ¼
!
CðE=20.04 GeVÞγ E ≤ E0

CðE=20.04 GeVÞγ ðE=E0ÞΔγE > E0:
ð3Þ
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FIG. 1. The AMS electron (blue data points) and positron (red
data points, multiplied by 10) spectra (Ẽ3Φe& ). For display
purposes the electron data point at ∼830 GeV is slightly shifted
horizontally to avoid overlap with the positron point. As seen, the
electron spectrum has distinctly different magnitude and energy
dependence compared to that of positrons.
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FIG. 2. (a) The AMS electron spectrum (Ẽ3Φe− , red data points,
placed at Ẽ) and (b) the AMS positron fraction (red data points,
placed at the bin center). Also shown are earlier measurements
from PAMELA [29], Fermi-LAT [30], MASS [31], CAPRICE
[32], AMS-01 [24,33], and HEAT [34]. (c) The sum of AMS
electron and positron [4] spectra (red data points, placed at Ẽ).
Also shown are recent measurements of the combined ðeþ þ e−Þ
flux from ATIC [35], HESS [36], Fermi-LAT [37], DAMPE [38],
and CALET [39].
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10-3 rejection @ 70% signal efficiency

�17

signal
background

Et (e.g., <0.7% above 40 GeV) and its effect is similar to
the transition described by the dashed line in Fig. SM 3 of
Ref. [2]. The two components, a and b, correspond to two
power law functions with corresponding normalization
factors Ca and Cb, and spectral indices γa and γb. To
account for solar modulation effects, the force-field
approximation [45] is used, with the energy of particles
in the interstellar space Ê ¼ Eþ φe− and the effective
modulation potential φe− . The constant Ea is chosen to be
20 GeV to minimize the correlation between parameters Ca
and γa, and the constant Eb is chosen to be 300 GeV to
minimize correlation between the parameters Cb and γb.
A fit to the data in the energy range [0.5–1400] GeV yields
φe− ¼ 0.87# 0.12 GeV for the effective potential,
Et ¼ 3.94# 0.21 GeV and Δγt ¼ −2.14# 0.09 for the
parameters of the transition term, Ca ¼ ð1.13# 0.08Þ ×
10−2 ½m2 sr s GeV'−1 and γa ¼ −4.31# 0.13 for the power
law a, and Cb ¼ ð3.96# 0.04Þ × 10−6 ½m2 sr s GeV'−1
and γb ¼ −3.14# 0.02 for the power law b, with
χ2=d:o:f: ¼ 36.5=68. The result of the fit is presented in
Fig. 4. The energy dependence of the electron spectral
index corresponding to the results of the fit of Eq. (5) is
shown in Fig. 3(a) as a blue 68% C.L. band. Studies of the
time dependence of the fit parameters show that the only
time-dependent parameter is φe− and the other parameters
do not show significant time variations (see description of
the analysis and Fig. S11 in the Supplemental Material
[21]). Note that the choice of the Ea and Eb constants does
not affect the shapes nor the magnitudes of the terms a and
b shown in Fig. 4. We conclude that in the energy range
[0.5–1400] GeV the sum of two power law functions
with the additional transition term provides an excellent
description of the data.

As seen in Fig. 4, these functions are very different in
shape and in magnitude from those describing the positron
flux [4]. Contrary to the interstellar secondary production
term in positrons, which corresponds to positrons produced
in collisions of ordinary cosmic rays (protons and helium)
with the interstellar gas and dominates the positron flux
below 10 GeV, the power law a contribution exceeds the
expected secondary electron or positron production by a
factor of ∼20 (see Ref. [40]). The power law b contribution,
which dominates the electron flux at high energies
>40 GeV, significantly exceeds the magnitude of the
positron source term [4], which has an exponential energy
cutoff at 810þ310

−180 GeV (see Fig. 4). The electron flux
does not have an energy cutoff below 1.9 TeV at the 5σ
level. Therefore, the excess of the electron flux at
E0 ¼ 42.1þ5.4

−5.2 GeV compared to the lower energy trends
has a different nature compared to positron flux excess at
25.2# 1.8 GeV. This is clear evidence that most cosmic-
ray electrons originate from different sources than cosmic-
ray positrons.
An analysis of the arrival directions of electrons

and positrons was presented in Ref. [3]. A similar ana-
lysis was performed using the electron data of this Letter
[46]. The electron flux is found to be consistent with
isotropy; the upper limit on the amplitude of the dipole
anisotropy is δ < 0.005 at the 95% C.L. for energies
above 16 GeV.
In conclusion, we have presented the high statistics

precision measurements of the electron flux from 0.5 GeV
to 1.4 TeV, with detailed study of systematic uncertainties
based on a data sample of 28.1 × 106 electrons. In the entire
energy range the electron and positron spectra have dis-
tinctly different magnitudes and energy dependences. The
electron flux exhibits a significant excess starting from
42.1þ5.4

−5.2 GeV compared to the lower energy trends, but
the nature of this excess is different from the positron
flux excess above 25.2# 1.8 GeV. Contrary to the posi-
tron flux, which has an exponential energy cutoff of
810þ310

−180 GeV, at the 5σ level the electron flux does not
have an energy cutoff below 1.9 TeV. In the entire energy
range from 0.5 GeV to 1.4 TeV the electron flux is well
described by the sum of two power law components. The
different behavior of the cosmic-ray electrons and positrons
measured by AMS is clear evidence that most high energy
electrons originate from different sources than high energy
positrons.

We are grateful for important physics discussions
with Pasquale Blasi, Fiorenza Donato, Jonathan Ellis,
Jonathan Feng, Michael M. Kachelrieß, Mischa Malkov,
Igor Moskalenko, Andrii Neronov, Subir Sarkar, and
Dmitri Semikoz. We thank former NASA Administrator
Daniel S. Goldin for his dedication to the legacy of the ISS
as a scientific laboratory and his decision for NASA to
fly AMS as a DOE payload. We also acknowledge the
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FIG. 4. The two power law fit of Eq. (5) to the electron flux data
in the energy range [0.5–1400] GeV with 68% C.L. (green band).
The two power law components a and b of Eq. (5) are represented
by the gray and blue areas, respectively. Also shown are the
positron spectrum together with the fit of Eq. (4) of Ref. [4]
including the positron diffuse (i.e., interstellar secondary pro-
duction) term (the brown area) and positron source term (the
magenta area) contributions.
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To study the significance of the 1=Es measurement we
varied all six fit parameters to find the regions in six-
dimensional (6D) parameter space corresponding to the
confidence levels from 1 to 5σ with a step of 0.01σ. As
an example, the insert in Fig. 4 shows projections of the 6D
regions of 1σ (green line, 68.26% C.L.), 2σ (black line,
95.54% C.L.), 3σ (blue line, 99.74% C.L.), and 4σ (red line,
99.99% C.L.) onto the plane of parameters (1=Es − Cs).
Detailed analysis shows that a point where the parameter
1=Es reaches 0 corresponds to a confidence level of 4.07σ;
i.e., the significance of the source term energy cutoff is
established at more than 4σ, or that the positron flux in the
entire energy range cannot be described by a sum of two
power-law functions at the 99.99% C.L.
An analysis of the arrival directions of electrons and

positrons was presented in Ref. [1]. A similar analysis was
performed using the positron data of this Letter [37]. The
positron flux is found to be consistent with isotropy; the
upper limit on the amplitude of the dipole anisotropy is
δ < 0.019 at the 95% C.L. for energies above 16 GeV.
In conclusion, we have presented the precision measure-

ments of the positron flux from 0.5 GeV to 1 TeV, with a
detailed study of systematic errors based on 1.9 million
positrons. The positron flux shows complex energy depend-
ence. Its distinctive properties are (a) a significant excess
starting from 25.2! 1.8 GeVcompared to the lower-energy
trends, (b) a sharp dropoff above 284þ91

−64 GeV, (c) in the
entire energy range the positron flux is well described by the
sum of a diffuse term associatedwith the positrons produced
in the collision of cosmic rays, which dominates at low

energies, and a new source term of positrons, which
dominates at high energies, and (d) a finite energy cutoff
of the source term of Es ¼ 810þ310

−180 GeV is established with
a significance of more than 4σ. These experimental data on
cosmic ray positrons show that, at high energies, they
predominantly originate either fromdarkmatter annihilation
or from other astrophysical sources.

We thank former NASA Administrator Daniel S. Goldin
for his dedication to the legacy of the ISS as a scientific
laboratory and his decision for NASA to fly AMS as a DOE
payload. We also acknowledge the continuous support
of the NASA leadership, particularly William H.
Gerstenmaier, and of the JSC and MSFC flight control
teams that have allowed AMS to operate optimally on the
ISS for over seven years. We are grateful for the support of
Jim Siegrist and his staff of the DOE including resources
from the National Energy Research Scientific Computing
Center under Contract No. DE-AC02-05CH11231. We also
acknowledge the continuous support from MIT and its
School of Science, Michael Sipser, and Boleslaw
Wyslouch. Research supported by São Paulo Research
Foundation (FAPESP) Grant No. 2014/19149-7, Brazil;
CAS, NSFC, MOST, the provincial governments
of Shandong, Jiangsu, Guangdong, and the China
Scholarship Council, China; CNRS/IN2P3, CNES,
Enigmass, and the ANR, France; Pascale Ehrenfreund,
DLR under Grant No. 50OO1403 and JARA-HPC under
Project No. JARA0052, Germany; INFN and ASI under
ASI-INFN Agreements No. 2013-002-R.0 and No. 2014-
037-R.0, Italy; the Consejo Nacional de Ciencia y
Tecnología and UNAM, Mexico; FCT under Grant
No. PTDC/FIS/122567/2010, Portugal; CIEMAT, IAC,
CDTI, and SEIDI-MINECO under Grants No. ESP2017-
87055-C2-1-P, No. SEV-2015-0548, No. MDM-2015-
0509, and No. RyC-2013-14660, Spain; the Swiss
National Science Foundation (SNSF), federal and cantonal
authorities, Switzerland; Academia Sinica and the Ministry
of Science and Technology (MOST) under Grants No. 103-
2112-M-006-018-MY3, No. 105-2112-M-001-003, and
No. CDA-105-M06, former Presidents of Academia
Sinica Yuan-Tseh Lee and Chi-Huey Wong and former
Ministers of MOST Maw-Kuen Wu and Luo-Chuan Lee,
Taiwan; the Turkish Atomic Energy Authority under Grant
No. 2017TAEK(CERN)A5.H6.F2-15, Turkey; and NSF
Grants No. 14255202 and No. 1551980, Wyle Laboratories
Grant No. 2014/T72497, and NASA NESSF Grant
No. HELIO15F-0005, the United States of America. We
gratefully acknowledge the strong support from CERN
including Fabiola Gianotti, and the CERN IT department
including Bernd Panzer-Steindel, and from the European
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The Space Station Crosses a Spotless Sun  
Image Credit & Copyright: Rainee Colacurcio
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The Space Station Crosses a Spotless Sun  
Image Credit & Copyright: Rainee Colacurcio
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Cosmic Ray - variation in time
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higher Z time variation - analysis being 
finalised
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LOW ENERGY FLUXES (OXYGEN)

Fl
ux

 (m
2  s

 s
r G

ev
)-1

1.92 - 2.15 GV

2.15 - 2.40 GV

4.02 - 4.43 GV

10.1 - 11.0 GV

28.8 - 31.1 GV

56.1 - 60.3 GV

�501/01/12 31/12/12 31/12/13 31/12/14 01/01/16 31/12/16 31/12/17

01/01/12 31/12/12 31/12/13 31/12/14 01/01/16 31/12/16 31/12/17
11.5
22.5
3

01/01/12 31/12/12 31/12/13 31/12/14 01/01/16 31/12/16 31/12/17
1

1.5
2

2.5
3

01/01/12 31/12/12 31/12/13 31/12/14 01/01/16 31/12/16 31/12/17
0.6
0.8
1

01/01/12 31/12/12 31/12/13 31/12/14 01/01/16 31/12/16 31/12/17
0.1
0.12
0.14

01/01/12 31/12/12 31/12/13 31/12/14 01/01/16 31/12/16 31/12/170.007
0.008
0.009
0.01
0.011

01/01/12 31/12/12 31/12/13 31/12/14 01/01/16 31/12/16 31/12/17
0.0012
0.0014
0.0016
0.0018

01/01/12 31/12/12 31/12/13 31/12/14 01/01/16 31/12/16 31/12/17
11.5
22.5
3

01/01/12 31/12/12 31/12/13 31/12/14 01/01/16 31/12/16 31/12/17
1

1.5
2

2.5
3

01/01/12 31/12/12 31/12/13 31/12/14 01/01/16 31/12/16 31/12/17
0.6
0.8
1

01/01/12 31/12/12 31/12/13 31/12/14 01/01/16 31/12/16 31/12/17
0.1
0.12
0.14

01/01/12 31/12/12 31/12/13 31/12/14 01/01/16 31/12/16 31/12/170.007
0.008
0.009
0.01
0.011

01/01/12 31/12/12 31/12/13 31/12/14 01/01/16 31/12/16 31/12/17
0.0012
0.0014
0.0016
0.0018

V. FORMATO - 29/11/2018 - RESEARCH ACTIVITIES ON NUCLEI IN PERUGIA

LOW ENERGY FLUXES (CARBON)

Fl
ux

 (m
2  s

 s
r G

ev
)-1

1.92 - 2.15 GV

2.15 - 2.40 GV

4.02 - 4.43 GV

10.1 - 11.0 GV

28.8 - 31.1 GV

56.1 - 60.3 GV

�401/01/12 31/12/12 31/12/13 31/12/14 01/01/16 31/12/16 31/12/1713



SPACE WEATHER STUDIES

& ALTEA COMPARED DATA ANALYSIS PROJECT

Comparison*with*GOES
GOES%has%identified%33%SEP%events%from%2011/05/19%to%2017/07/05
https://umbra.nascom.nasa.gov/SEP/
14%have%also%been%found%by%the%algorithm.

blue:777significance7>75
violet:7significance7>77
red:77777significance7>710

GOES7start GOES7maximum

New tool – currently under development  
Aim: 

providing basic information about the radiation 
environment encountered by several cosmic ray 
missions 

User selection:  
- orbital parameters (altitude, latitude, longitude) 
-  magnetic parameters (B, L shell) 
 - missions 
 - temporal periods 
Output: 
Raw count rate counts along given orbit 
No particle ID 

Use "low level" AMS (but 
not only) data to monitor 

the space weather  
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Starlight 

WSGT 

CERN GRID 
Internet 

NASA Internet 

MSFC 

Comm. Predictions: 

22	

SHIFTS @CERN 
Payload Operations and Control Centre
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anagrafiche e richieste 2020

3.9 FTE/ 5 ricercatori 

richieste 2020 @csn2  = 36.5 k€  

- missioni 29.5 K€ (conferenze naz.-intern., meeting analisi dati, shifts 
controllo presa dati)  

- consumo, inventario e spservizi 
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Backup
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ASI SSDC 
aggiungere
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@ASI - SSDC  
space science data center
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@ASI - SSDC  
space science data center



ams-02 
results 
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example: Temperature 
variation with iss changing 
attitude
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