

JENNIFER2 Kickoff Meeting

12-13 September 2019

Österreichische Akademie der Wissenschaften

Europe/Vienna timezone

Gianluca Inguglia

Institute of High Energy Physics (HEPHY) Vienna- Austria (FWF P 31361-N36)

gianluca.inguglia@oeaw.ac.at Vienna 12/08/2019

"First results and prospects for dark sector physics @ Belle II"

ÖSTERREICHISCHE AKADEMIE DER WISSENSCHAFTEN

Der Wissenschaftsfonds.

KEKB to SuperKEKB

[SR Channel]

[Beam Channel]

To obtain x40 higher luminosity

Belle II Detector Elements

Belle II Luminosity Status and Plans

Belle II Luminosity Status and Plans

In addition 0.5 fb-1 have been collected in 2018 during commissioning of Super-KEKB Full Belle II detectorw/o Vertex detector → **Used for first Belle II physics results shown today**

The Belle II Phyiscs book arXiv:1808.10567

Physics proces	ss Cross section [nb]	Cuts
$\Upsilon(4S)$	1.05 ± 0.10	-
$u ar{u}(\gamma)$	1.61	-
$dar{d}(\gamma)$	0.40	-
$sar{s}(\gamma)$	0.38	-
$c\bar{c}(\gamma)$	1.30	-
$e^+e^-(\gamma)$	$300 \pm 3 \; (MC \; stat.)$	$10^{\circ} < \theta_{e's}^* < 170^{\circ},$
		$E_{e's}^* > 0.15 \text{ GeV}$
$e^+e^-(\gamma)$	74.4	e's $(p > 0.5 GeV)$ in ECL
$\gamma\gamma(\gamma)$	$4.99 \pm 0.05~(\mathrm{MC~stat.})$	$10^{\circ} < \theta_{\gamma's}^* < 170^{\circ},$
		$E_{\gamma's}^* > 0.15 \text{ GeV}$
$\gamma\gamma(\gamma)$	3.30	$\gamma\text{'s}\ (p>0.5\text{GeV})$ in ECL
$\mu^+\mu^-(\gamma)$	1.148	-
$\mu^+\mu^-(\gamma)$	0.831	μ 's $(p > 0.5 \text{GeV})$ in CDC
$\mu^+\mu^-\gamma(\gamma)$	0.242	μ 's $(p > 0.5 \text{GeV})$ in CDC,
		\geq 1 $\gamma~(E_{\gamma}>\!\!0.5{\rm GeV})$ in ECL
$\tau^+\tau^-(\gamma)$	0.919	-
$ uar{ u}(\gamma)$	0.25×10^{-3}	-
$e^{+}e^{-}e^{+}e^{-}$	$39.7 \pm 0.1 \text{ (MC stat.)}$	$W_{\ell\ell} > 0.5 { m GeV}$
$e^+e^-\mu^+\mu^-$	$18.9 \pm 0.1~(\mathrm{MC~stat.})$	$W_{\ell\ell} > 0.5 { m GeV}$
·	·	

https://en.wikipedia.org/wiki/Barn_(unit)

Unit	Symbol	m ²	cm ²
megabarn	Mb	10-22	10-18
kilobarn	kb	10-25	10-21
barn	b	10-28	10-24
millibarn	mb	10-31	10-27
microbarn	μb	10-34	10-30
nanobarn	nb	10 ⁻³⁷	10 ⁻³³
picobarn	pb	10-40	10-36
femtobarn	fb	10-43	10-39
attobarn	ab	10 ⁻⁴⁶	10 ⁻⁴²
zeptobarn	zb	10-49	10-45
yoctobarn	yb	10 ⁻⁵²	10-48

Remember!!

$$N = L \times \sigma$$

Cross-section of the process to be studied in the specific experiment

The Belle II Phyiscs book arXiv:1808.10567

Physics proces	s Cross section [nb]	Cuts
$\Upsilon(4S)$	1.05 ± 0.10	-
$u\bar{u}(\gamma)$	1.61	-
$dar{d}(\gamma)$	0.40	-
$sar{s}(\gamma)$	0.38	-
$car{c}(\gamma)$	1.30	-
$e^+e^-(\gamma)$	$300 \pm 3 \; (MC \; stat.)$	$10^{\circ} < \theta_{e's}^* < 170^{\circ},$
		$E_{e's}^* > 0.15 \text{ GeV}$
$e^+e^-(\gamma)$	74.4	e's $(p > 0.5 GeV)$ in ECL
$\gamma\gamma(\gamma)$	$4.99 \pm 0.05~(\mathrm{MC~stat.})$	$10^{\circ} < \theta_{\gamma's}^* < 170^{\circ},$
		$E_{\gamma's}^* > 0.15 \text{ GeV}$
$\gamma\gamma(\gamma)$	3.30	γ 's $(p > 0.5 \text{GeV})$ in ECL
$\mu^+\mu^-(\gamma)$	1.148	-
$\mu^+\mu^-(\gamma)$	0.831	μ 's $(p > 0.5 \text{GeV})$ in CDC
$\mu^+\mu^-\gamma(\gamma)$	0.242	μ 's $(p > 0.5 \text{GeV})$ in CDC,
		\geq 1 $\gamma~(E_{\gamma}>\!\!0.5{\rm GeV})$ in ECL
$ au^+ au^-(\gamma)$	0.919	-
$ uar{ u}(\gamma)$	0.25×10^{-3}	-
$e^+e^-e^+e^-$	$39.7 \pm 0.1 \text{ (MC stat.)}$	$W_{\ell\ell} > 0.5 { m GeV}$
$e^+e^-\mu^+\mu^-$	$18.9 \pm 0.1 \; (\mathrm{MC \; stat.})$	$W_{\ell\ell} > 0.5 { m GeV}$
Dark sector	?? ± ??	?? > ??

https://en.wikipedia.org/wiki/Barn_(unit)

Unit	Symbol	m ²	cm ²
megabarn	Mb	10-22	10-18
kilobarn	kb	10-25	10-21
barn	b	10-28	10-24
millibarn	mb	10-31	10-27
microbarn	μb	10-34	10-30
nanobarn	nb	10 ⁻³⁷	10 ⁻³³
picobarn	pb	10-40	10-36
femtobarn	fb	10-43	10-39
attobarn	ab	10 ⁻⁴⁶	10 ⁻⁴²
zeptobarn	zb	10-49	10-45
yoctobarn	yb	10 ⁻⁵²	10-48

Dark sector particles

Remember!!

 $N = L \times \sigma$

Cross-section of the process to be studied in the specific experiment

Dark Sector Candidates, Anomalies, and Search Techniques

Dark Sector Candidates, Anomalies, and Search Techniques

Searching for Dark Matter and Forces @ Belle/Belle II

Search for events with missing energy, particle disappearance, dark forces, single/multi-photon final state events, etc.

- Vector portal
- $\epsilon F_{Y}^{\mu\nu} F'_{\mu\nu} (dark \, photon \, A'), \sum_{l} \theta g' \overline{l} \, \gamma^{\mu} Z'_{\mu} l (dark \, Z')$
- Axion portal
- $\frac{G_{agg}}{4}aG_{\mu\nu}\widetilde{G}^{\mu\nu} + \frac{G_{a\,y\,y}}{4}aF_{\mu\nu}\widetilde{F}^{\mu\nu} \quad (axion, alps)$
- Scalar portal
- $\lambda H^2 S^2 + \mu H^2 S$ (dark Higgs)
- Neutrino portal
- k(HL)N (sterile neutrinos)

More ...

Searching for Dark Matter and Forces @ Belle/Belle II

Search for events with missing energy, particle disappearance, dark forces, single/multi-photon final state events, etc.

Vector portal

$$\epsilon F_{Y}^{\mu\nu}F'_{\mu\nu}\;(dark\;photon\,A'), \sum_{l}\theta g'\bar{l}\; \gamma^{\mu}Z'_{\mu}l\;(dark\,Z')$$

Axion portal

$$\frac{G_{agg}}{4}aG_{\mu\nu}\widetilde{G}^{\mu\nu} + \frac{G_{a\,\gamma\gamma}}{4}aF_{\mu\nu}\widetilde{F}^{\mu\nu} \quad (axion, alps)$$

Scalar portal

$$\lambda H^2 S^2 + \mu H^2 S$$
 (dark Higgs)

Neutrino portal

$$k(HL)N$$
 (sterile neutrinos)

More ...

The L_u - L_τ model in the context of dark sector searches: a dark Z'

→ The model is a new gauge boson, called a Z', which couples to L_u-L_z:

$$\mathcal{L} = -g' \bar{\mu} \gamma^{\mu} Z'_{\mu} \mu + g' \bar{\tau} \gamma^{\mu} Z'_{\mu} \tau - g' \nu_{\mu,L}^{-} \gamma^{\mu} Z'_{\mu} \nu_{\mu,L} + g' \nu_{\tau,L}^{-} \gamma^{\mu} Z'_{\mu} \nu_{\tau,L}$$

- For M₇, <2M₁₁ BF(Z' → invisible) =1.
- → For $2M_u$ $< M_{Z'}$ $< 2M_τ$ BF(Z' \rightarrow invisible)~1/2
- For M₇, >2M_τ BF(Z' → invisible)~1/3
- → The branching fraction to one neutrino species is half of the branching fraction to one charged lepton flavour. The reason is, of course, that the Z' only couples to left-handed neutrino chiralities whereas it couples to both left- and right-handed charged leptons.

$$BF(Z' \rightarrow invisible) = \frac{2\Gamma(Z' \rightarrow v_l \overline{v_l})}{2\Gamma(Z' \rightarrow v_l \overline{v_l}) + \Gamma(Z' \rightarrow \mu \overline{\mu}) + \Gamma(Z' \rightarrow \tau \overline{\tau})}$$

Partial width and BR can be derived from eqn. 2.12 of Essig et al. JHEP02(2015)157, arXiv:1412.0018 [hep-ph].

→ Very important: If $M_{z'}>2\chi \rightarrow BF[Z'\rightarrow \chi\chi]\sim 1$ (see for example: https://arxiv.org/abs/1403.2727)

The L_{u} - L_{τ} model in the context of dark sector searches: a dark Z'

→ The branching fraction to one neutrino species is half of the branching fraction to one charged lepton flavour. The reason is, of course, that the Z' only couples to left-handed neutrino chiralities whereas it couples to both left- and right-handed charged leptons.

→ For
$$M_{Z'}$$
 <2 M_{μ} BF(Z' → invisible) =1.

→ For $2M_{_{U}} < M_{_{Z}}$, $<2M_{_{T}}$ BF(Z' \rightarrow invisible)~1/2

For M₇, >2M_T BF(Z' → invisible)~1/3

If
$$M_{z'} > 2\chi \rightarrow BF[Z' \rightarrow \chi\chi] \sim 1$$

16

Z' → invisible, Belle II Event Display

Belle II Event Display

Belle II Event Display

Cross section for Z' → invisible (ii)

- Cross section provided by MadGraph for $e^+e^- \to \mu^+\mu^-Z'$, $Z' \to \nu_\mu \overline{\nu}_\mu$ and multiplied by a factor 2 to account for $Z' \to \nu_\tau \overline{\nu}_\tau$ as this is the other channel that contribute to the invisible decays of Z'.
- Different masses are accessible with different luminosity: the larger the luminosity, the higher the mass of the Z' that can be probed at Belle II. 20

Z' search on phase II data: results

PRL paper in preparation to be submitted soon

Source	Error
Trigger efficiency	4%
Tracking efficiency	4%
PID	4%
luminosity	1.5%
τ suppression (background)	22%
discrepancy in muon yields (background)	2%
discrepancy in muon yields (signal efficiency)	12.5%

Z' sensitivity on early phase III data (expected) and projection

Assuming systematics from 26% to 3%

Source	Erro
Trigger efficiency	4%
Tracking efficiency	4%
PID	4%
luminosity	1.5%
τ suppression (background)	22%
discrepancy in muon yields (background)	2%
discrepancy in muon yields (signal efficiency)	12.5%

Dark Photon and Kinetic Mixing

Dark photon first proposed in

- P. Fayet, Phys. Lett. B **95**, 285 (1980),
- P. Fayet Nucl. Phys. B **187**, 184 (1981).

→ (Holdom, 1986) A boson belonging to an additional U(1)' symmetry would mix kinetically with the photon:

- The kinetic mixing is a term in the Lagrangian expressed by $\frac{1}{2} \epsilon F_{\mu\nu}^{Y} F^{\mu\nu}$
- → For the dark photon to acquire mass an extended Higgs sector might be required to break the new U(1)' symmetry (if dark sector is "Higgsed")

Note: ε is the strength of the kinetic mixing could be as large as 10^{-2} for $m_{A'}$ in the GeV range, the smaller the value of ε the longer A' lifetime (i.e. long lived).

Dark Sector Searches: Constraining the Kinetic Mixing

Most dark sector models require an additional U(1) symmetry responsible for the "interactions" between dark sector particles and SM particles through its gauge boson A'.

- P. Fayet, Phys. Lett. B 95, 285 (1980),
- P. Fayet Nucl. Phys. B **187**, 184 (1981).
- B. Holdom, Phys. Lett. B 166, 196 (1986)

Kinetic mixing strength

Dark Photon Search Strategy (invisible case)

See the Belle II Physics book arXiv:1808.10567

A'= dark photon, $\chi=$ dark matter particle (neutral under SU(3)xSU(2)xU(1)) A' decays to dark matter. One on-shell (mono-energetic) or one off-shell (broad spectrum) photon with different gamma spectrum .

radiative production in e+e- collisions only one photon in the final state with $E_{_{Y}}^{*}=(s-M_{_{A'}}^{^{2}})/2\sqrt{s}$ (on-shell)

→ Only existing limits from BaBar based on 53 fb⁻¹ of data, *Phys. Rev. Lett.* **119**, 131804 (2017)

Since the decay products of the A' are invisible to the detector, only the ISR photon is visible. Therefore this analysis requires a single photon trigger.

Dark photon → invisible, Belle 2 expected sensitivity

The Belle II Phyiscs book arXiv:1808.10567
BaBar's analysis
PRL.119.131804

Why does Belle II perform better than BaBar?

→ no ECL cracks pointing to the interaction regions

JHEP 1712 (2017) 094

Axion Like Particles (ALPs) at Belle II

$$\mathcal{L} \supset -\frac{g_{a\gamma\gamma}}{4} a F_{\mu\nu} \tilde{F}^{\mu\nu} - \frac{g_{a\gamma Z}}{4} a F_{\mu\nu} \tilde{Z}^{\mu\nu} - \frac{g_{aZZ}}{4} a Z_{\mu\nu} \tilde{Z}^{\mu\nu} - \frac{g_{aWW}}{4} a W_{\mu\nu} \tilde{W}^{\mu\nu}$$

Photon fusion

Axion Like Particles (ALPs) at Belle II

Belle II expected limits

- No systematics incuded
- Dominant $e^+e^- \rightarrow \gamma \gamma$ background taken into account
- beam background negligible
- 135 fb $^{\text{-1}}$ projection assumes no veto of $\gamma\gamma$ events in barrel at trigger level
- Three photons that add up to the beam energy + bump on di-photon mass.
- SM background: $e^+e^- \rightarrow yy(y)$, $e^+e^- \rightarrow e^+e^-(y)$, and $e^+e^- \rightarrow scalar+y(y)$

Conclusions

- Although the Belle II experiment is designed mainly for B-physics, the detector capabilities offer many possibilities to explore dark sector models,
 - in this talk we considered various example final states including photons, charged particles, and (large) missing energy in the final state.
 - First Belle II results shown today
- Discovering dark matter is today one of the biggest challenges we are facing, but more important is the understanding of its nature
 - Synergy between different experiments is required.
- Many searches at the Belle II experiment are ongoing and higher precision will be reached thanks to the great luminosity of Belle II at Super-KEK and thanks to improved hardware/software.
- We look forward to a bright future for dark sector physics.

Thank you for your attention!

Axion Like Particles (ALPs) at Belle II

JHEP 1712 (2017) 094

- Three photons that add up to the beam energy + bump on di-photon mass.
- SM background: $e^+e^- \rightarrow \gamma\gamma(\gamma)$, $e^+e^- \rightarrow e^+e^-(\gamma)$, and $e^+e^- \rightarrow scalar + \gamma(\gamma)$

Z' search on phase II data: results

1000 □

PRL paper in preparation to be submitted soon

→ invisible) [fb] 900 - Belle II 2018 - Preliminary $L dt = 276 \text{ pb}^{-1}$ 800 700 600 $\sigma(e^+e^- \rightarrow \mu^+ \mu^- Z',$ 500 400 300 200 100└ 5 Recoil mass [GeV/c²]

TABLE I: List of systematic uncertainties

Source	Error
Trigger efficiency	4%
Tracking efficiency	4%
PID	4%
luminosity	1.5%
τ suppression (background)	22%
discrepancy in muon yields (background)	2%
discrepancy in muon yields (signal efficiency)	12.5%

What about a LFV Z'?

final state: $2e^+2\mu^-(+c.c.)$

See for example arXiv:1610.08060 or ArXiv:1701.08767

- → Complement the search for low mass Z' and low mass dark sector
- → Alternative way to look into cLFV, complementing ongoing searches
- → (Almost) background free
- → Get a search for doubly charged bosons for free
- → A model for this final state is however not available...see next slide

What about a LFV Z'?

What about a LFV Z'?

Limits are set in a model-independent way to εxσ= efficiency (flat) x cross section Theory input needed

for future work!

Dark Photon Search Strategy (visible case)

See R. Essig et al. JHEP11 (2013) 167.

A'= dark photon, L= long lived light gauge boson (model independent).

A' decays to SM final states through kinetic mixing (if allowed by kinematics). Low multiplicity final states with 2 oppositely charged tracks and 1 photon.

- Decays to leptons require M_A>1.02 MeV/c²
- Decays to hadrons require M_{A'}>0.36 GeV/c²

Note

- If M_{χ} < $M_{A'}$ /2 \rightarrow invisible A' decays to dark matter!

Dark Photon: Current UL to Kinetic Mixing

Dark Photon: Expected Sensitivity @ Belle II

Very conservative estimation of Belle II sensitivity to prompt decays of A' based on BABAR results projected to full Belle 2 luminosity

Photons in the electromagnetic calorimeter (ECL) 1/4

- Belle II calorimeter crystals are reused from Belle.
 - 8736 CsI(Tl) crystals
 - New readout electronics.
- New clustering → high luminosity environment.

Belle II MC

Nominal backgrounds + single 2.5 GeV photon

Photons in the electromagnetic calorimeter (ECL) 2/4

- Belle II calorimeter crystals are reused from Belle.
 - 8736 CsI(Tl) crystals
 - New readout electronics.
- New clustering → high luminosity environment.

Belle II MC Shower (no timing selection)

New clustering: finds "showers"

Photons in the electromagnetic calorimeter (ECL) 3/4

- Belle II calorimeter crystals are reused from Belle.
 - 8736 CsI(Tl) crystals
 - New readout electronics.
- New clustering → high luminosity environment.

Timing and minimal cluster energy requirement

Photons in the electromagnetic calorimeter (ECL) 4/4

- Belle II calorimeter crystals are reused from Belle.
 - 8736 CsI(Tl) crystals
 - New readout electronics.
- New clustering → high luminosity environment.

Timing and minimal cluster energy requirement

Dark photon → **invisible**, additional checks

Analysis

- $e^+e^- \rightarrow \gamma A' \rightarrow \gamma (\chi_1 \chi_2)$
- General strategy: nothing in the event except one photon. (no tracks, other good photon clusters). Search for a bump in the recoil mass spectrum.
- Check that the ECL works properly

Dark photon → invisible, additional checks

Analysis

- $e^+e^- \rightarrow \gamma A' \rightarrow \gamma (\chi_1 \chi_2)$
- General strategy: nothing in the event except one photon. (no tracks, other good photon clusters). Search for a bump in the recoil mass spectrum.
- Check that the ECL works properly

Dark photon → **invisible**

Analysis

- $e^+e^- \rightarrow \gamma A' \rightarrow \gamma (\chi_1 \chi_2)$
- General strategy: nothing in the event except one photon. (no tracks, other good photon clusters). Search for a bump in the recoil mass spectrum.
- Backgrounds e⁺e⁻ → e⁺e⁻y(y) and e⁺e⁻ → yy(y)

The signal would appear as an horizontal cluster of events: fixed energy equivalent to the A' mass, spread over all angles

Dark photon → **invisible**

Analysis

- $e^+e^- \rightarrow \gamma A' \rightarrow \gamma (\chi_1 \chi_2)$
- General strategy: nothing in the event except one photon. (no tracks, other good photon clusters). Search for a bump in the recoil mass spectrum.
- Backgrounds e⁺e⁻ → e⁺e⁻γ(γ) and e⁺e⁻ → γγ(γ)

The signal would appear as an horizontal cluster of events: fixed energy equivalent to the A' mass, spread over all angles

The L_{\parallel} - L_{\perp} model in the context of dark sector searches: a dark Z'

→ The branching fraction to one neutrino species is half of the branching fraction to one charged lepton flavour. The reason is, of course, that the Z' only couples to left-handed neutrino chiralities whereas it couples to both left- and right-handed charged leptons.

- **→** For $M_{z'}$ <2 M_{μ} Br(Z' → invisible) =1.
- → For $2M_u$ $< M_z$, $< 2M_τ$ Br(Z' \rightarrow invisible)~1/2
- For M₇, >2M_T Br(Z' → invisible)~1/3

The L_u-L_t model in the context of dark sector searches: a dark Z'

- → The branching fraction to one neutrino species is half of the branching fraction to one charged lepton flavour. The reason is, of course, that the Z' only couples to left-handed neutrino chiralities whereas it couples to both left- and right-handed charged leptons.
 - **→** For $M_{Z'}$ <2 M_{u} Br(Z' \rightarrow invisible) =1.
 - For 2M_µ <M_z, <2M_τ Br(Z' → invisible)~1/2
 - → For M₂, >2M Br(Z' → invisible)~1/3

The L₁-L₂ model in the context of dark sector searches: a dark Z'

Rough projection to Belle II luminosity preliminary studies are ongoing

- → The branching fraction to one neutrino species is half of the branching fraction to one charged lepton flavour. The reason is, of course, that the Z' only couples to left-handed neutrino chiralities whereas it couples to both left- and right-handed charged leptons.
 - **→** For $M_{Z'}$ <2 M_{u} Br(Z' \rightarrow invisible) =1.
 - → For $2M_u$ $< M_{z'}$ $< 2M_{\tau}$ Br(Z' \rightarrow invisible)~1/2
 - For M₂, >2M₂ Br(Z' → invisible)~1/3

Invisible Y(1S) Decays @ Belle II

Y(nS): bound state of a b quark and a b antiquark

$$\frac{BR(Y(1S) \to v\bar{v})}{BR(Y(1S) \to e^+e^-)} = \frac{27G^2M_{Y(1S)}^4(-1 + \frac{4}{3}\sin^2\theta_W)^2 = 4.14 \times 10^{-4}}{64\pi^2\alpha^2} (-1 + \frac{4}{3}\sin^2\theta_W)^2 = 4.14 \times 10^{-4}$$

$$BR(Y(1S) \to v\bar{v}) \sim 9.9 \times 10^{-6}$$

- → Low mass dark matter particles however might might play a role in the decays of Y(1S), having Y(1S) $\rightarrow \chi\chi$ if kinematic allowed. [Phys. Rev. D 80, 115019, 2009]
- → Also, new mediators (Z', A⁰, h⁰) or SUSY particles might enhance $Y(1S) \rightarrow vv(y)$. [Phys. Rev. D **81**, 054025, 2010]
- → In absence of new physics enhancement, Belle2 should be able to observe the SM $Y(1S) \rightarrow vv$

Mother: MCParticles[0] (Upsilon(3S))

 \sim 900 MeV available for $P_{\pi\pi}$ $M_{Y(3S)} = 10.355 \, GeV/c^2$, $M_{Y(2S)} = 10.023 \, GeV/c^2$, $M_{Y(1S)} = 9.460 \, GeV/c^2$

Invisible Y(1S) Decays @ Belle II

$$\frac{BR(Y(1S) \to \nu \bar{\nu})}{BR(Y(1S) \to e^+ e^-)} = \frac{27G^2 M_{Y(1S)}^4}{64\pi^2 \alpha^2} (-1 + \frac{4}{3}\sin^2 \theta_W)^2 = 4.14 \times 10^{-4}$$

$$BR(Y(1S) \to \nu \bar{\nu}) \sim 9.9 \times 10^{-6}$$

- → Low mass dark matter particles however might might play a role in the decays of Y(1S), having Y(1S) → χχ if kinematic allowed. [Phys. Rev. D 80, 115019, 2009]
- → Also, new mediators (Z', A°, h°) or SUSY particles might enhance Y(1S) $\rightarrow \nu\nu(\gamma)$. [Phys. Rev. D **81**, 054025, 2010]
- → In absence of new physics enhancement, Belle2 should be able to observe the SM $Y(1S) \rightarrow vv$

A signal of Y(1S) \rightarrow *invisible* is an excess of events over the background in the M_r distribution at a mass equivalent to that of the Y(1S) (9.460 GeV/c²)

$$M_r^2 = s + M_{\pi^+\pi^-} - 2\sqrt{s} E_{\pi^+\pi^-}^{CMS}$$

$$e^{+}e^{-} \rightarrow Y(3S)$$

$$\downarrow^{(4.4\%)}$$

$$Y(3S) \rightarrow \pi^{+}\pi^{-}Y(1S)$$

$$\downarrow$$

$$Y(1S) \rightarrow invisible$$

$$e^{+}e^{-} \rightarrow Y(2S)$$

$$\downarrow^{(18.1\%)}$$

$$Y(2S) \rightarrow \pi^{+}\pi^{-}Y(1S)$$

$$\downarrow$$

$$Y(1S) \rightarrow invisible$$

Belle2 Simulation $Y(3S) \rightarrow \pi^{+}\pi^{-}Y(1S)$,

 $Y(1S) \rightarrow VV$

Charge=1, PDG=211 (pi+) pT=0,420365, pZ=0,000692372 V=(-0.00, -0.00, -0.03)

Mother: MCParticles[0] (Upsilon(3S))

Charge=-1, PDG=-211 (pi-) pT=0,344016, pZ=0,118851 V=(-0,00, -0,00, -0,03)

Mother: MCParticles[0] (Upsilon(3S))

Events / 3degree

Trigger Considerations

 $Y(3S) \rightarrow \pi^+\pi^-Y(1S)$

Too low efficiency with usual condition (>135°)

- → Higher efficiency with looser condition
- → Special trigger condition was implemented (~850 Hz, twice as usual condition)

Single track trigger was implemented, too with 1/500 pre-scale rate (pt>250 MeV/c)

2-track trigger & 1-track trigger

1-track trigger
for efficiency monitoring

Invisible Y(1S) Decays: Signal or Background?

$$M_r^2 = s + M_{\pi^+\pi^-} - 2\sqrt{s}E_{\pi^+\pi^-}^{CMS}$$

[belle]: http://arxiv.org/abs/hep-ex/0611041 (1 week running @ Y(3S))

[babar]: http://arxiv.org/abs/0908.2840 (2 months running @ Y(3S))

Invisible Y(1S) Decays: Belle II Discovery Potential

$$M_r^2 = s + M_{\pi^+\pi^-} - 2\sqrt{s}E_{\pi^+\pi^-}^{CMS}$$

[belle]: http://arxiv.org/abs/hep-ex/0611041 (1 week running @ Y(3S))

[babar]: http://arxiv.org/abs/0908.2840 (2 months running @ Y(3S))

No signal was observed over the expected background and upper limits have been obtained: BR(Y \rightarrow vv) < 3x10⁻⁴ (BaBar) and BR(Y \rightarrow vv) < 3.0x10⁻³(Belle).

At Belle 2 one would expect to collect >200fb⁻¹ of data @ Y(3S) (ongoing discussion for Y(2S) data taking and trigger) allowing one to reconstruct between 30 and 300 events, assuming 10^{-5} (SM)<BR(Y \rightarrow invisible)< 10^{-4} (NP) and Belle efficiencies.

Invisible Y(1S) Decays: Signal or Background?

$$M_r^2 = s + M_{\pi^+\pi^-} - 2\sqrt{s}E_{\pi^+\pi^-}^{CMS}$$

Irreducible peaking background when final states go undetected (i.e. detector supports, beampipe etc.) in the process $Y(3S) \rightarrow \pi^+\pi^- Y(1S), Y(1S) \rightarrow undetected f.s.$

Invisible Y(1S) Decays: irreducible background

Irreducible peaking background when final states go undetected (i.e. detector supports, beampipe etc.) in the process $Y(3S) \rightarrow \pi^+\pi^-Y(1S), Y(1S) \rightarrow undetected f.s.$

Invisible Y(1S) Decays @ Belle II: Expected Yields

$$\frac{BR(Y(1S) \to v\bar{v})}{BR(Y(1S) \to e^+e^-)} = \frac{27G^2M_{Y(1S)}^4(-1 + \frac{4}{3}\sin^2\theta_W)^2 = 4.14 \times 10^{-4}}{64\pi^2\alpha^2} (-1 + \frac{4}{3}\sin^2\theta_W)^2 = 4.14 \times 10^{-4}$$

$$BR(Y(1S) \to v\bar{v}) \sim 9.9 \times 10^{-6}$$

- → Low mass dark matter particles however might might play a role in the decays of Y(1S), having Y(1S) → χχ if kinematic allowed. [Phys. Rev. D 80, 115019, 2009]
- → Also, new mediators (Z', A°, h°) or SUSY particles might enhance Y(1S) \rightarrow vv(γ). [Phys. Rev. D **81**, 054025, 2010]
- → In absence of new physics enhancement, Belle2 should be able to strongly constrain the SM $Y(1S) \rightarrow vv$

No signal was observed over the expected background and upper limits have been obtained: BR(Y $\rightarrow \nu\nu$) < 3x10⁻⁴ (BaBar) and BR(Y $\rightarrow \nu\nu$) < 3.0x10⁻³(Belle).

$L_{int}(ab^{-1})$	ϵ	$N(\Upsilon(1S))$	$N_{\Upsilon(1S)\to\nu\bar{\nu}}$	N_{NP}		
$0.2, \Upsilon(2S)$	0.1-0.2	2.3×10^{8}	230-460	6900-13800		
$0.2, \Upsilon(3S)$	0.1-0.2	3.2×10^{7}	32-64	945-1890		
$50.0, \Upsilon(4S)$	0.1-0.2	5.5×10^{6}	5.5-11	165-310		
$5.0, \Upsilon(5S)$	0.1-0.2	7.6×10^{6}	7.6-15.2	228-456		
$50.0, \Upsilon(4S)$	0.1-0.2	1.5×10^{8}	150-300	4500-9000		
$50.0, \Upsilon(4S)$	0.1-0.2	3.5×10^{7}	35-70	1050-2100		
	$0.2, \Upsilon(2S)$ $0.2, \Upsilon(3S)$ $50.0, \Upsilon(4S)$ $5.0, \Upsilon(5S)$ $50.0, \Upsilon(4S)$	$\begin{array}{c ccc} 0.2, \Upsilon(2S) & 0.1\text{-}0.2 \\ 0.2, \Upsilon(3S) & 0.1\text{-}0.2 \\ 50.0, \Upsilon(4S) & 0.1\text{-}0.2 \\ 5.0, \Upsilon(5S) & 0.1\text{-}0.2 \\ 50.0, \Upsilon(4S) & 0.1\text{-}0.2 \\ \end{array}$	$\begin{array}{c cccc} 0.2, \Upsilon(2S) & 0.1\text{-}0.2 & 2.3 \times 10^8 \\ 0.2, \Upsilon(3S) & 0.1\text{-}0.2 & 3.2 \times 10^7 \\ 50.0, \Upsilon(4S) & 0.1\text{-}0.2 & 5.5 \times 10^6 \\ 5.0, \Upsilon(5S) & 0.1\text{-}0.2 & 7.6 \times 10^6 \\ 50.0, \Upsilon(4S) & 0.1\text{-}0.2 & 1.5 \times 10^8 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		

$$e^{+}e^{-} \rightarrow Y(3S)$$

$$\downarrow^{(4.4\%)}$$

$$Y(3S) \rightarrow \pi^{+}\pi^{-}Y(1S)$$

$$\downarrow$$

$$Y(1S) \rightarrow invisible$$

$$e^{+}e^{-} \rightarrow Y(2S)$$

$$\downarrow^{(18.1\%)}$$

$$Y(2S) \rightarrow \pi^{+}\pi^{-}Y(1S)$$

$$\downarrow$$

$$Y(1S) \rightarrow invisible$$

Belle2 Simulation

 $Y(3S) \rightarrow \pi^{+}\pi^{-}Y(1S),$ $Y(1S) \rightarrow \nu\nu$

Charge=1, PDG=211 (pi+) pT=0,420365, pZ=0,000692372 V=(-0.00, -0.00, -0.03)

Mother: MCParticles[0] (Upsilon(3S))

Charge=-1, PDG=-211 (pi-)
pT=0.344016, pZ=0.118851
V=(-0.00, -0.00, -0.03)
Mother: MCParticles[0] (Upsilon(3S))

DM: The Synergy Between Theory, Direct and Collider Searches

Theory work is needed in order to connect direct and indirect searches of dark matter.

- Shown here Y(1S) → χχ vs. direct searches.
- → Similar studies have performed also for dark photon dark matter (see for example J. Pradler et al. arXiv:1412.8378)

Extrapolation based on ArXiv: 1511.03728, 1404.6599

Eff. contact operators in for dark matter in $Y(1S) \rightarrow invisible$

ArXiv: 1404.6599

Name	Interaction Structure	Annihilation	Scattering
F5	$(1/\Lambda^2)\bar{X}\gamma^{\mu}X\bar{q}\gamma_{\mu}q$	Yes	SI
F6	$(1/\Lambda^2)\bar{X}\gamma^{\mu}\gamma^5X\bar{q}\gamma_{\mu}q$	No	No
F9	$(1/\Lambda^2) \bar{X} \sigma^{\mu\nu} X \bar{q} \sigma_{\mu\nu} q$	Yes	SD
F10	$(1/\Lambda^2)\bar{X}\sigma^{\mu\nu}\gamma^5X\bar{q}\sigma_{\mu\nu}q$	Yes	No
S3	$(1/\Lambda^2)iIm(\phi^{\dagger}\partial_{\mu}\phi)\bar{q}\gamma^{\mu}q$	No	SI
V3	$(1/\Lambda^2)iIm(B_{\nu}^{\dagger}\partial_{\mu}B^{\nu})\bar{q}\gamma^{\mu}q$	No	SI
V5	$(1/\Lambda)(B^{\dagger}_{\mu}B_{\nu} - B^{\dagger}_{\nu}B_{\mu})\bar{q}\sigma^{\mu\nu}q$	Yes	SD
V6	$(1/\Lambda)(B^{\dagger}_{\mu}B_{\nu} - B^{\dagger}_{\nu}B_{\mu})\bar{q}\sigma^{\mu\nu}\gamma^{5}q$	Yes	No
V7	$(1/\Lambda^2)B_{\nu}^{(\dagger)}\partial^{\nu}B_{\mu}\bar{q}\gamma^{\mu}q$	No	No
V9	$(1/\Lambda^2)\epsilon^{\mu\nu\rho\sigma}B_{\nu}^{(\dagger)}\partial_{\rho}B_{\sigma}\bar{q}\gamma_{\mu}q$	No	No

TABLE I. Effective contact operators which can mediate the decay of a $J^{PC}=1^{--}$ quarkonium bound state. We also indicate if the operator can permit an s-wave dark matter initial state to annihilate to a quark/anti-quark pair; if so, then a bound can also be set by indirect observations of photons originating from dwarf spheroidal galaxies. Lastly, we indicate if the effective operator can mediate velocity-independent nucleon scattering which is either spin-independent (SI) or spin-dependent (SD).