Gianluca Inguglia
Institute of High Energy Physics (HEPHY) Vienna- Austria (FWF P 31361-N36)
gianluca.inguglia@oeaw.ac.at
Vienna 12/08/2019
"First results and prospects for dark sector physics @ Belle II"

INSTITUT FÜR HOCHENERGIEPHYSIK

Der Wissenschaftsfonds.

Replace short dipoles with longer ones (LER)

Redesign the lattices of HER \& LER to squeeze the emittance

TiN-coated beam pipe with antechambers

> Positron source
New positron target / capture section
Low emittance gun
Low emittance electrons to
 inject

To obtain x40 higher luminosity

KEKB to SuperKEKB

New superconducting /permanent final focusing quads near the IP

Add / modify RF systems for higher beam current

Low emittance positrons to inject

Belle II Detector Elements

Belle II Luminosity Status and Plans

Belle II Luminosity Status and Plans

In addition $0.5 \mathrm{fb}-1$ have been collected in 2018 during commissioning of Super-KEKB Full Belle II detectorw/o Vertex detector \rightarrow Used for first Belle II physī̌s results shown today

A B-Factory is NOT just a B-Factory

$$
\begin{gathered}
\sigma\left[e^{+} e^{-} \rightarrow e^{+} e^{-}(y)\right]=74.4 n b \\
(51.99 \%)
\end{gathered}
$$

A B-Factory is NOT just a B-Factory

$$
\sigma\left[e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}(\gamma)\right]=1.15 \mathrm{nb}
$$

$$
\begin{array}{ccc}
\sigma\left[e^{+} e^{-} \rightarrow \mathrm{Y}(4 \mathrm{~S})\right]=1.05 \mathrm{nb} & /\left(\begin{array}{l}
e \\
\hline
\end{array} e^{\prime} \rightarrow \mu(\gamma)\right]=1.15 \mathrm{nb} & \sigma\left[e^{+} e^{-} \rightarrow c \bar{c}(\gamma)\right]=1.3 \mathrm{nb} \\
(0.91 \%)
\end{array}
$$

(0.73\%)

$$
\sigma\left[e^{+} e^{-} \rightarrow \tau^{+} \tau(\gamma)\right]=0.92 \mathrm{nb}
$$

$$
\begin{gathered}
\sigma\left[e^{+} e^{-} \rightarrow d \bar{d}(\gamma)\right]=0.40 \mathrm{nb} \\
(0.28 \%) \\
\sigma\left[e^{+} e^{-} \rightarrow s \bar{s}(\gamma)\right]=0.38 \mathrm{nb} \\
(0.27 \%)
\end{gathered}
$$

$$
(0.64 \%)
$$

$\sigma\left[e^{+} e^{-\rightarrow} e^{+} e^{-}(\gamma)\right]=74.4 \mathrm{nb}$
(51.99\%)

(0.91\%)
$\sigma\left[e^{+} e^{-} \rightarrow u \bar{u}(\gamma)\right]=1.61 \mathrm{nb}$
(1.13\%)
$\sigma\left[e^{+} e^{-} \rightarrow \gamma \gamma(\gamma)\right]=3.3 \mathrm{nb}$ (2.31\%)
$\sigma\left[e^{+} e^{-} \rightarrow e^{+} e^{-} \mu^{+} \mu^{-}\right]=18.9 n b$ (13.21\%)
$\sigma\left[e^{+} e^{-} \rightarrow e^{+} e^{-} e^{+} e^{-}\right]=39.7 \mathrm{nb}$
(27.74\%)

A B-Factory is NOT just a B-Factory

The Belle II Phyiscs book arXiv:1808.10567

Physics process Cross section [nb]	Cuts	
$\Upsilon(4 S)$	1.05 ± 0.10	-
$u \bar{u}(\gamma)$	1.61	-
$d \bar{d}(\gamma)$	0.40	-
$s \bar{s}(\gamma)$	0.38	-
$c \bar{c}(\gamma)$	1.30	-
$e^{+} e^{-}(\gamma)$	300 ± 3 (MC stat.)	$10^{\circ}<\theta_{e^{\prime} s}^{*}<170^{\circ}$,
		$E_{e^{\prime} s}^{*}>0.15 \mathrm{GeV}$
$e^{+} e^{-}(\gamma)$	74.4	$e^{\prime} \mathrm{s}(p>0.5 \mathrm{GeV})$ in ECL
$\gamma \gamma(\gamma)$	4.99 ± 0.05 (MC stat.)	$10^{\circ}<\theta_{\gamma^{\prime} s}^{*}<170^{\circ}$,
		$E_{\gamma^{\prime} s}^{*}>0.15 \mathrm{GeV}$
$\gamma \gamma(\gamma)$	3.30	$\gamma^{\prime} \mathrm{s}(p>0.5 \mathrm{GeV})$ in ECL
$\mu^{+} \mu^{-}(\gamma)$	1.148	-
$\mu^{+} \mu^{-}(\gamma)$	0.831	μ^{\prime} s $(p>0.5 \mathrm{GeV})$ in CDC
$\mu^{+} \mu^{-} \gamma(\gamma)$	0.242	$\mu^{\prime} \mathrm{s}(p>0.5 \mathrm{GeV})$ in CDC,
		$\geq 1 \gamma\left(E_{\gamma}>0.5 \mathrm{GeV}\right)$ in ECL
$\tau^{+} \tau^{-}(\gamma)$	0.919	-
$\nu \bar{\nu}(\gamma)$	0.25×10^{-3}	-
$e^{+} e^{-} e^{+} e^{-}$	39.7 ± 0.1 (MC stat.)	$W_{\ell \ell}>0.5 \mathrm{GeV}$
$e^{+} e^{-} \mu^{+} \mu^{-}$	18.9 ± 0.1 (MC stat.)	$W_{\ell \ell}>0.5 \mathrm{GeV}$

https://en.wikipedia.org/wiki/Barn_(unit)

Unit	Symbol	$\mathbf{m}^{\mathbf{2}}$	$\mathbf{c m}^{\mathbf{2}}$
megabarn	Mb	10^{-22}	10^{-18}
kilobarn	kb	10^{-25}	10^{-21}
barn	b	10^{-28}	10^{-24}
millibarn	mb	10^{-31}	10^{-27}
microbarn	$\mu \mathrm{b}$	10^{-34}	10^{-30}
nanobarn	nb	10^{-37}	10^{-33}
picobarn	pb	10^{-40}	10^{-36}
femtobarn	fb	10^{-43}	10^{-39}
attobarn	ab	10^{-46}	10^{-42}
zeptobarn	zb	10^{-49}	10^{-45}
yoctobarn	yb	10^{-52}	10^{-48}

Cross-section of the process to be
Remember!! $\quad N=L \times \sigma$ studied in the specific experiment

Number of events of a process

Luminosity of an experiment

A B-Factory is NOT just a B-Factory

The Belle II Phyiscs book arXiv:1808.10567

Physics process	Cross section [nb]	Cuts
$\Upsilon(4 S)$	1.05 ± 0.10	-
$u \bar{u}(\gamma)$	1.61	-
$d \bar{d}(\gamma)$	0.40	-
$s \bar{s}(\gamma)$	0.38	-
$c \bar{c}(\gamma)$	1.30	-
$e^{+} e^{-}(\gamma)$	300 ± 3 (MC stat.)	$\begin{aligned} & 10^{\circ}<\theta_{e^{\prime} s}^{*}<170^{\circ}, \\ & E_{e^{\prime} s}^{*}>0.15 \mathrm{GeV} \end{aligned}$
$e^{+} e^{-}(\gamma)$	74.4	e 's $(p>0.5 \mathrm{GeV})$ in ECL
$\gamma \gamma(\gamma)$	4.99 ± 0.05 (MC stat.)	$\begin{aligned} & 10^{\circ}<\theta_{\gamma^{\prime} s}^{*}<170^{\circ}, \\ & E_{\gamma^{\prime} s}^{*}>0.15 \mathrm{GeV} \end{aligned}$
$\gamma \gamma(\gamma)$	3.30	γ 's ($p>0.5 \mathrm{GeV}$) in ECL
$\mu^{+} \mu^{-}(\gamma)$	1.148	-
$\mu^{+} \mu^{-}(\gamma)$	0.831	μ 's $(p>0.5 \mathrm{GeV})$ in CDC
$\mu^{+} \mu^{-} \gamma(\gamma)$	0.242	$\begin{aligned} & \mu^{\prime} \mathrm{s}(p>0.5 \mathrm{GeV}) \text { in CDC, } \\ & \geq 1 \gamma\left(E_{\gamma}>0.5 \mathrm{GeV}\right) \text { in ECL } \end{aligned}$
$\tau^{+} \tau^{-}(\gamma)$	0.919	-
$\nu \bar{\nu}(\gamma)$	0.25×10^{-3}	-
$e^{+} e^{-} e^{+} e^{-}$	39.7 ± 0.1 (MC stat.)	$W_{\ell \ell}>0.5 \mathrm{GeV}$
$e^{+} e^{-} \mu^{+} \mu^{-}$	18.9 ± 0.1 (MC stat.)	$W_{\ell \ell}>0.5 \mathrm{GeV}$
Dark sector particles	?? \pm ? ?	? ? > ?

https://en.wikipedia.org/wiki/Barn_(unit)

Unit	Symbol	$\mathbf{m}^{\mathbf{2}}$	$\mathbf{c m}^{\mathbf{2}}$
megabarn	Mb	10^{-22}	10^{-18}
kilobarn	kb	10^{-25}	10^{-21}
barn	b	10^{-28}	10^{-24}
millibarn	mb	10^{-31}	10^{-27}
microbarn	$\mu \mathrm{b}$	10^{-34}	10^{-30}
nanobarn	nb	10^{-37}	10^{-33}
picobarn	pb	10^{-40}	10^{-36}
femtobarn	fb	10^{-43}	10^{-39}
attobarn	ab	10^{-46}	10^{-42}
zeptobarn	zb	10^{-49}	10^{-45}
yoctobarn	yb	10^{-52}	10^{-48}

Cross-section of the process to be studied in the specific experiment

Number of events of a process

Luminosity of an experiment

ArXiv:1707.04591

Dark Sector Candidates, Anomalies, and Search Techniques

Small Experiments: Coherent Field Searches, Direct Detection, Nuclear and Atomic Physics, Accelerators Microlensing

ArXiv:1707.04591

Dark Sector Candidates, Anomalies, and Search Techniques

Belle II
Search for events with missing energy, particle disappearance, dark forces, single/multi-photon final state events, etc.

- Vector portal $\quad \epsilon F_{Y}^{\mu \nu} F^{\prime}{ }_{\mu \nu}\left(\right.$ dark photon $\left.A^{\prime}\right), \sum_{l} \theta g^{\prime} \bar{l} \gamma^{\mu} Z^{\prime}{ }_{\mu} l\left(\right.$ dark $\left.Z^{\prime}\right)$
- Axion portal
- Scalar portal

$$
\frac{G_{a g g}}{4} a G_{\mu \nu} \widetilde{G}^{\mu \nu}+\frac{G_{a \gamma \gamma}}{4} a F_{\mu \nu} \widetilde{F}^{\mu \nu} \quad(\text { axion }, \text { alps })
$$

- Neutrino portal $\lambda H^{2} S^{2}+\mu H^{2} S$ (dark Higgs)
- More ... Searching for Dark Matter and Forces @ Belle/Belle II

Belle II
Search for events with missing energy, particle disappearance, dark forces, single/multi-photon final state events, etc.

- Vector portal $\quad \epsilon F_{Y}^{\mu \nu} F^{\prime}{ }_{\mu \nu}\left(\right.$ dark photon $\left.A^{\prime}\right), \sum_{l} \theta g^{\prime} \bar{l} \gamma^{\mu} Z^{\prime}{ }_{\mu} l\left(\right.$ dark $\left.Z^{\prime}\right)$
- Axion portal $\frac{G_{a g g}}{4} a G_{\mu \nu} \widetilde{G}^{\mu \nu}+\frac{G_{a \gamma \gamma}}{4} a F_{\mu \nu} \widetilde{F}^{\mu \nu}$ (axion, alps)
- Scalar portal $\lambda H^{2} S^{2}+\mu H^{2} S$ (dark Higgs)
- Neutrino portal $k(H L) N$ (sterile neutrinos)
- More ...
\rightarrow The model is a new gauge boson, called a Z^{\prime}, which couples to $L_{\mu}-L_{\tau}$:

$$
\mathcal{L}=-g^{\prime} \bar{\mu} \gamma^{\mu} Z_{\mu}^{\prime} \mu+g^{\prime} \bar{\tau} \gamma^{\mu} Z_{\mu}^{\prime} \tau-g^{\prime} \nu_{\mu, L}^{-} \gamma^{\mu} Z_{\mu}^{\prime} \nu_{\mu, L}+g^{\prime} \nu_{\tau, L}^{-} \gamma^{\mu} Z_{\mu}^{\prime} \nu_{\tau, L}
$$

\rightarrow For $\mathrm{M}_{\mathrm{Z}^{\prime}}<2 \mathrm{M}_{\mu} \mathrm{BF}\left(\mathrm{Z}^{\prime} \rightarrow\right.$ invisible $)=1$.
\rightarrow For $2 M_{\mu}<M_{Z^{\prime}}<2 M_{\tau} B F\left(Z^{\prime} \rightarrow\right.$ invisible $) \sim 1 / 2$
\rightarrow For $\mathrm{M}_{\mathrm{Z}}>2 \mathrm{M}_{\tau} \mathrm{BF}\left(\mathrm{Z}^{\prime} \rightarrow\right.$ invisible $) \sim 1 / 3$
\rightarrow The branching fraction to one neutrino species is half of the branching fraction to one charged lepton flavour. The reason is, of course, that the Z' only couples to left-handed neutrino chiralities whereas it couples to both left- and right-handed charged leptons.

$$
B F\left(Z^{\prime} \rightarrow \text { invisible }\right)=\frac{2 \Gamma\left(Z^{\prime} \rightarrow v_{l} \overline{v_{l}}\right)}{2 \Gamma\left(Z^{\prime} \rightarrow v_{l} \overline{v_{l}}\right)+\Gamma\left(Z^{\prime} \rightarrow \mu \bar{\mu}\right)+\Gamma\left(Z^{\prime} \rightarrow \tau \bar{\tau}\right)}
$$

Partial width and BR can be derived from eqn. 2.12 of Essig et al. JHEP02(2015)157, arXiv:1412.0018 [hep-ph].
\rightarrow Very important: If $M_{Z^{\prime}}>2 X \rightarrow B F\left[Z^{\prime} \rightarrow X X\right] \sim 1$
(see for example: https://arxiv.org/abs/1403.2727)

The $L_{\mu}-L_{\tau}$ model in the context of dark sector searches: a dark Z^{\prime}

\rightarrow The branching fraction to one neutrino species is half of the branching fraction to one charged lepton flavour. The reason is, of course, that the Z' only couples to left-handed neutrino chiralities whereas it couples to both left- and right-handed charged leptons.
\rightarrow For $\mathrm{M}_{\mathrm{z}^{\prime}}<2 \mathrm{M}_{\mu} \mathrm{BF}\left(\mathrm{Z}^{\prime} \rightarrow\right.$ invisible $)=1$.
\rightarrow For $2 \mathrm{M}_{\mathrm{H}}<\mathrm{M}_{\mathrm{Z}^{\prime}}<2 \mathrm{M}_{\mathrm{T}} \mathrm{BF}\left(\mathrm{Z}^{\prime} \rightarrow\right.$ invisible $) \sim 1 / 2$
If $M_{Z}>\mathbf{> 2 X} \rightarrow B F\left[Z^{\prime} \rightarrow X X\right] \sim 1$
\rightarrow For $M_{z^{\prime}}>2 M_{\tau} B F\left(Z^{\prime} \rightarrow\right.$ invisible $) \sim 1 / 3$

Belle 2 DATA event display run \# 3236 Event \#493624

```
Belle 2 DATA
event display
run # 3236
Event #493624
M}\mp@subsup{\textrm{Z}}{}{\prime
```


- Cross section provided by MadGraph for $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mu^{+} \mu \mathrm{Z}^{\prime}, \mathrm{Z}^{\prime} \rightarrow \nu_{\mu} \bar{v}_{\mu}$ and multiplied by a factor 2 to account for $Z^{\prime} \rightarrow v_{\tau} \bar{v}_{\tau}$ as this is the other channel that contribute to the invisible decays of Z^{\prime}.
- Different masses are accessible with different luminosity: the larger the luminosity, the higher the mass of the Z ' that can be probed at Belle II.

Z' search on phase II data: results

PRL paper in preparation to be submitted soon

TABLE I: List of systematic uncertainties

Source	Error
Trigger efficiency	4%
Tracking efficiency	4%
PID	4%
luminosity	1.5%
τ suppression (background)	22%
discrepancy in muon yields (background)	2%
discrepancy in muon yields (signal efficiency)	12.5%

Assuming systematics from 26\% to 3\%
TABLE I: List of systematic uncertainties

TABLE I: List of systematic uncertainties	
Source	Error
Trigger efficiency	4%
Tracking efficiency	4%
PID	4%
luminosity	1.5%
τ suppression (background)	22%
discrepancy in muon yields (background)	2%
discrepancy in muon yields (signal efficiency)	12.5%

Dark Photon and Kinetic Mixing

Dark photon first proposed in
P. Fayet, Phys. Lett. B 95, 285 (1980),
P. Fayet Nucl. Phys. B 187, 184 (1981).
\rightarrow (Holdom, 1986) A boson belonging to an additional $U(1)$ ' symmetry would mix kinetically with the photon:

\rightarrow The kinetic mixing is a term in the Lagrangian expressed by $\frac{1}{2} \epsilon F_{\mu \nu}^{Y} F^{\prime \mu \nu}$
\rightarrow For the dark photon to acquire mass an extended Higgs sector might be required to break the new $\mathrm{U}(1)$ ' symmetry (if dark sector is "Higgsed")

Note: ϵ is the strength of the kinetic mixing could be as large as 10^{-2} for $m_{A^{\prime}}$ in the GeV range, the smaller the value of $\boldsymbol{\epsilon}$ the longer A^{\prime} lifetime (i.e. long lived).

Most dark sector models require an additional $\mathrm{U}(1)$ symmetry responsible for the "interactions" between dark sector particles and SM particles through its gauge boson A' .
P. Fayet, Phys. Lett. B 95, 285 (1980),

P. Fayet Nucl. Phys. B 187, 184 (1981).
B. Holdom, Phys. Lett. B 166, 196 (1986)
\checkmark Kinetic mixing strength

Dark Photon Search Strategy (invisible case)

See the Belle II Physics book arXiv:1808.10567

$A^{\prime}=$ dark photon, $\chi=$ dark matter particle (neutral under $\operatorname{SU}(3) \times S U(2) \times U(1)$)
A' decays to dark matter. One on-shell (mono-energetic) or one off-shell (broad spectrum) photon with different gamma spectrum .
radiative production in e+e- collisions only one photon in the final state with

$$
E_{\gamma}^{*}=\left(s-M_{A^{\prime}}^{2}\right) / 2 \sqrt{s}(\text { on }- \text { shell })
$$

\rightarrow Only existing limits from BaBar based on $53 \mathrm{fb}^{-1}$ of data, Phys. Rev. Lett. 119, 131804 (2017)

Since the decay products of the A' are invisible to the detector, only the ISR photon is visible. Therefore this analysis requires a single photon trigger.

Dark photon \rightarrow invisible, Belle 2 expected sensitivity

The Belle II Phyiscs book
arXiv:1808.10567
BaBar's analysis PRL.119.131804

Why does Belle II perform better than BaBar? \rightarrow no ECL cracks pointing to the interaction regions

Axion Like Particles (ALPs) at Belle II

$$
\begin{aligned}
\mathcal{L} \supset & -\frac{g_{a \gamma \gamma}}{4} a F_{\mu \nu} \tilde{F}^{\mu \nu}-\frac{g_{a \gamma Z}}{4} a F_{\mu \nu} \tilde{Z}^{\mu \nu} \\
& -\frac{g_{a Z Z}}{4} a Z_{\mu \nu} \tilde{Z}^{\mu \nu}-\frac{g_{a W W}}{4} a W_{\mu \nu} \tilde{W}^{\mu \nu}
\end{aligned}
$$

Axion Like Particles (ALPs) at Belle II

Belle II expected limits

- No systematics incuded
- Dominant $\mathrm{e}^{+} e^{-} \rightarrow \gamma \gamma$ background taken into account
- beam background negligible
$-135 \mathrm{fb}^{-1}$ projection assumes no veto of $\gamma \gamma$ events in barrel at trigger level
- Three photons that add up to the beam energy + bump on di-photon mass.
- SM background: $e^{+} e^{-} \rightarrow y y(y), e^{+} e^{-} \rightarrow e^{+} e^{-}(y)$, and $e^{+} e^{-} \rightarrow s c a l a r+y(y)$

Conclusions

- Although the Belle II experiment is designed mainly for B-physics, the detector capabilities offer many possibilities to explore dark sector models,
- in this talk we considered various example final states including photons, charged particles, and (large) missing energy in the final state.
- First Belle II results shown today
- Discovering dark matter is today one of the biggest challenges we are facing, but more important is the understanding of its nature
- Synergy between different experiments is required.
- Many searches at the Belle II experiment are ongoing and higher precision will be reached thanks to the great luminosity of Belle II at Super-KEK and thanks to improved hardware/software.
- We look forward to a bright future for dark sector physics.

Thank you for your attention!

Axion Like Particles (ALPs) at Belle II

JHEP 1712 (2017) 094

- Three photons that add up to the beam energy + bump on di-photon mass.
- SM background: $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{yy}(\mathrm{y}), \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}(\mathrm{y})$, and $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{scalar}+\mathrm{y}(\mathrm{y})$

Z' search on phase II data: results

PRL paper in preparation to be submitted soon

TABLE I: List of systematic uncertainties

Source	Error
Trigger efficiency	4%
Tracking efficiency	4%
PID	4%
luminosity	1.5%
τ suppression (background)	22%
discrepancy in muon yields (background)	2%
discrepancy in muon yields (signal efficiency)	12.5%

What about a LFV Z'?

See for example arXiv:1610.08060 or ArXiv:1701.08767
\rightarrow Complement the search for low mass Z' and low mass dark sector
\rightarrow Alternative way to look into cLFV, complementing ongoing searches
\rightarrow (Almost) background free
\rightarrow Get a search for doubly charged bosons for free
\rightarrow A model for this final state is however not available...see next slide

What about a LFV Z'?

What about a LFV Z'?

Limits are set in a model-independent way to $\varepsilon x \sigma=$ efficiency (flat) x cross section
Theory input needed for future work!

Dark Photon Search Strategy (visible case)

See R. Essig et al. JHEP11 (2013) 167.

$A^{\prime}=$ dark photon, $L=$ long lived light gauge boson (model independent).
A^{\prime} decays to SM final states through kinetic mixing (if allowed by kinematics). Low multiplicity final states with 2 oppositely charged tracks and 1 photon.

- Decays to leptons require $M_{A^{\prime}}>1.02 \mathrm{MeV} / \mathrm{c}^{2}$
- Decays to hadrons require $M_{A^{\prime}}>0.36 \mathrm{GeV} / \mathrm{c}^{2}$

Note

- If $M_{x}<M_{A} / 2 \rightarrow$ invisible A^{\prime} decays to dark matter!

Dark Photon: Current UL to Kinetic Mixing

$$
e^{+} e^{-} \rightarrow \gamma A^{\prime} \rightarrow \gamma e^{+} e^{-}, \gamma \mu^{+} \mu^{-}, \text {prompt }
$$

Very conservative estimation of Belle II sensitivity to prompt decays of A' based on BABAR results projected to full Belle 2 luminosity

- Belle II calorimeter crystals are reused from Belle.
- $8736 \mathrm{CsI}(\mathrm{TI})$ crystals
- New readout electronics.
- New clustering \rightarrow high luminosity environment.

Crystal energy

Nominal backgrounds + single 2.5 GeV photon

- Belle II calorimeter crystals are reused from Belle.
- $8736 \mathrm{CsI}(\mathrm{TI})$ crystals
- New readout electronics.
- New clustering \rightarrow high luminosity environment.

Belle II MC
Shower (no timing selection)

New clustering: finds "showers"

- Belle II calorimeter crystals are reused from Belle.
- $8736 \mathrm{CsI}(\mathrm{TI})$ crystals
- New readout electronics.
- New clustering \rightarrow high luminosity environment.

Belle II MC
Cluster (timing selection, $\mathrm{E}_{\text {Cluster }}>20 \mathrm{MeV}$)

Timing and minimal cluster energy requirement

- Belle II calorimeter crystals are reused from Belle.
- $8736 \mathrm{CsI}(\mathrm{TI})$ crystals
- New readout electronics.
- New clustering \rightarrow high luminosity environment.

Belle II MC
Cluster (timing selection, $\mathrm{E}_{\text {Cluster }}>20 \mathrm{MeV}$)

Timing and minimal cluster energy requirement

Analysis

- $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{yA}^{\prime} \rightarrow \mathrm{Y}\left(\mathrm{X}_{1} \mathrm{X}_{2}\right)$
- General strategy: nothing in the event except one photon. (no tracks, other good photon clusters). Search for a bump in the recoil mass spectrum.
- Check that the ECL works properly

$$
e^{+} e^{-} \rightarrow \mu^{+} \mu^{-} \gamma
$$

Analysis

- $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{yA}^{\prime} \rightarrow \mathrm{y}\left(\mathrm{X}_{1} \mathrm{X}_{2}\right)$
- General strategy: nothing in the event except one photon. (no tracks, other good photon clusters). Search for a bump in the recoil mass spectrum.
- Check that the ECL works properly

$$
e^{+} e^{-} \rightarrow \mu^{+} \mu^{-} \gamma
$$

Dark photon \rightarrow invisible

Analysis

- $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{yA}^{\prime} \rightarrow \mathrm{y}\left(\mathrm{X}_{1} \mathrm{X}_{2}\right)$
- General strategy: nothing in the event except one photon. (no tracks, other good photon clusters). Search for a bump in the recoil mass spectrum.
- Backgrounds $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \mathrm{y}(\mathrm{y})$ and $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{yy}(\mathrm{y})$

The signal would appear as an horizontal cluster of events:
fixed energy equivalent to the A^{\prime} mass, spread over all angles

Dark photon \rightarrow invisible

Analysis

- $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{yA}^{\prime} \rightarrow \mathrm{y}\left(\mathrm{X}_{1} \mathrm{X}_{2}\right)$
- General strategy: nothing in the event except one photon. (no tracks, other good photon clusters). Search for a bump in the recoil mass spectrum.
- Backgrounds $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \mathrm{y}(\mathrm{y})$ and $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{yy}(\mathrm{y})$

The signal would appear as an horizontal cluster of events:
fixed energy equivalent to the A' mass, spread over all angles

$$
\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{yy} \text {, endcap gaps }
$$

\rightarrow The branching fraction to one neutrino species is half of the branching fraction to one charged lepton flavour. The reason is, of course, that the Z' only couples to left-handed neutrino chiralities whereas it couples to both left- and right-handed charged leptons.
\rightarrow For $M_{z},<2 M_{\mu} \operatorname{Br}\left(Z^{\prime} \rightarrow\right.$ invisible $)=1$.
\rightarrow For $2 M_{\mu}<M_{Z^{\prime}}<2 M_{\tau} \operatorname{Br}\left(Z^{\prime} \rightarrow\right.$ invisible $) \sim 1 / 2$
\rightarrow For $M_{z^{\prime}}>2 M_{\tau} \operatorname{Br}\left(Z^{\prime} \rightarrow\right.$ invisible $) \sim 1 / 3$

\rightarrow The branching fraction to one neutrino species is half of the branching fraction to one charged lepton flavour. The reason is, of course, that the Z' only couples to left-handed neutrino chiralities whereas it couples to both left- and right-handed charged leptons.
\rightarrow For $M_{z^{\prime}}<2 M_{\mu} \operatorname{Br}\left(Z^{\prime} \rightarrow\right.$ invisible $)=1$.
\rightarrow For $2 M_{\mu}<M_{Z^{\prime}}<2 M_{\tau} \operatorname{Br}\left(Z^{\prime} \rightarrow\right.$ invisible $) \sim 1 / 2$
\rightarrow For $\mathrm{M}_{\mathrm{Z}^{\prime}}>2 \mathrm{M}_{\mathrm{T}} \operatorname{Br}\left(\mathrm{Z}^{\prime} \rightarrow\right.$ invisible $) \sim 1 / 3$

Rough projection to Belle II luminosity preliminary studies are ongoing
\rightarrow The branching fraction to one neutrino species is half of the branching fraction to one charged lepton flavour. The reason is, of course, that the Z' only couples to left-handed neutrino chiralities whereas it couples to both left- and right-handed charged leptons.
\rightarrow For $\mathrm{M}_{\mathrm{Z}^{\prime}}<2 \mathrm{M}_{\mu} \mathrm{Br}\left(\mathrm{Z}^{\prime} \rightarrow\right.$ invisible $)=1$.
\rightarrow For $2 \mathrm{M}_{\mu}<\mathrm{M}_{Z^{\prime}}<2 \mathrm{M}_{\tau} \operatorname{Br}\left(\mathrm{Z}^{\prime} \rightarrow\right.$ invisible $) \sim 1 / 2$
\rightarrow For $\mathrm{M}_{\mathrm{z}}>\mathbf{> 2 M _ { \tau }} \operatorname{Br}\left(\mathrm{Z}^{\prime} \rightarrow\right.$ invisible $) \sim 1 / 3$

Invisible Y(1S) Decays @ Belle II

$Y(n S)$: bound state of a b quark and $a b$ antiquark

$$
\frac{B R(Y(1 S) \rightarrow \nu \bar{v})}{B R\left(Y(1 S) \rightarrow e^{+} e^{-}\right)}=\frac{27 G^{2} M_{Y(1 S)}^{4}}{64 \pi^{2} \alpha^{2}}\left(-1+\frac{4}{3} \sin ^{2} \theta_{W}\right)^{2}=4.14 \times 10^{-4}
$$

$$
B R(Y(1 S) \rightarrow v \bar{v}) \sim 9.9 \times 10^{-6}
$$

Belle2 Simulation
$Y(3 S) \rightarrow \pi^{+} \pi-Y(1 S)$,
$Y(1 S) \rightarrow v \nu$
Charge=1, \quad PDG=211 ($\mathrm{pi}+$)
$\mathbf{p T}=0,420365, \quad \mathbf{p Z}=0.000692372$
$\mathrm{V}=(-0,00,-0,00,-0+03)$
Mother + MCParticles[0] (Upsilon(35))
\rightarrow In absence of new physics enhancement, Belle2 should be able to observe the $S M Y(1 S) \rightarrow V v$
$\sim 900 \mathrm{MeV}$ available for $P_{\pi \pi}$
$M_{Y(3 S)}=10.355 \mathrm{GeV} / \mathrm{c}^{2}, \quad M_{Y(2 s)}=10.023 \mathrm{GeV} / \mathrm{c}^{2}, \quad M_{Y(1 s)}=9.460 \mathrm{GeV} / \mathrm{c}^{2}$
Charge $=-1$, PDG=-211 (pi-)
pT=0.344016, $\mathbf{p Z}=0.118851$
$\psi=(-0.00,-0.00,-0.03)$
Mother: MCParticles[0] (Upsilon(35))

$$
\begin{aligned}
& \longrightarrow e^{+} e^{-} \rightarrow Y(3 S) \\
& \downarrow \text { (4.4\%) } \\
& \begin{array}{cc}
\longrightarrow e^{+} e^{-} \rightarrow Y(2 S) \\
& \downarrow(18.1 \%) \\
Y(2 S) & \rightarrow \pi^{+} \pi^{-} Y(1 S) \\
& \downarrow \\
Y(1 S) & \rightarrow \text { invisible }
\end{array}
\end{aligned}
$$

Invisible Y(1S) Decays @ Belle II

$$
\begin{gathered}
\frac{B R(Y(1 S) \rightarrow v \bar{v})}{B R\left(Y(1 S) \rightarrow e^{+} e^{-}\right)}=\frac{27 G^{2} M_{Y(1 S)}^{4}}{64 \pi^{2} \alpha^{2}}\left(-1+\frac{4}{3} \sin ^{2} \theta_{W}\right)^{2}=4.14 \times 10^{-4} \\
B R(Y(1 S) \rightarrow v \bar{v}) \sim 9.9 \times 10^{-6}
\end{gathered}
$$

\rightarrow Low mass dark matter particles however might might play a role in the decays of $Y(1 S)$, having $Y(1 S) \rightarrow X X$ if kinematic allowed. [Phys. Rev. D 80, 115019, 2009]
\rightarrow Also, new mediators (Z^{\prime}, A^{0}, h^{0}) or SUSY particles might enhance $\mathrm{Y}(1 \mathrm{~S}) \rightarrow \mathrm{vv}(\mathrm{y})$. [Phys. Rev. D 81, 054025, 2010]
\rightarrow In absence of new physics enhancement, Belle2 should be able to observe the $S M Y(1 S) \rightarrow V V$

A signal of $\mathrm{Y}(1 \mathrm{~S}) \rightarrow$ invisible is an excess of events over the background in the M_{r} distribution at a mass equivalent to that of the $\mathrm{Y}(1 \mathrm{~S})\left(9.460 \mathrm{GeV} / \mathrm{c}^{2}\right)$

$$
M_{r}^{2}=s+M_{\pi^{+} \pi}-2 \sqrt{s} E_{\pi^{*} \pi}^{C M S}
$$

$$
\begin{aligned}
& \longrightarrow e^{+} e^{-} \rightarrow Y(3 S) \\
& \downarrow \text { (4.4\%) } \\
& Y(3 S) \rightarrow \underset{\downarrow}{\pi^{+} \pi^{-} Y(1 S)} \\
& Y(1 S) \rightarrow \text { invisible } \\
& \longrightarrow e^{+} e^{-} \rightarrow Y(2 S) \\
& \downarrow \text { (18.1\%) } \\
& Y(2 S) \rightarrow \pi^{+} \pi^{-} Y(1 S) \\
& \downarrow \\
& Y(1 S) \rightarrow \text { invisible }
\end{aligned}
$$

Belle2 Simulation
$Y(3 S) \rightarrow \pi^{+} \pi^{-} Y(1 S)$,
$Y(1 S) \rightarrow v$
Charge $=1, \quad \mathrm{PDG}=211$ (pi+)
$\mathbf{P T}=0+420365, \quad \mathbf{P Z}=0.000692372$
$\mathrm{Y}=(-0,00,-0+00,-0+03)$
Mother + MCParticles[0] (Upsilon(35))

Charge $=-1, \quad \mathbf{P D G}=-211$ (pi-)
$\mathbf{p T}=0.344016, \quad \mathbf{p Z}=0.118851$
$\mathrm{V}=(-0,00,-0,00,-0,03)$
Mother + MCParticles[0] (Upsilon(35))

Trigger Considerations

$\mathrm{Y}(3 \mathrm{~S}) \rightarrow \pi^{+} \pi^{-} \mathrm{Y}(1 \mathrm{~S})$
 $$
\mathrm{Y}(1 \mathrm{~S}) \rightarrow \mu^{+} \mu^{-}
$$

Too low efficiency with usual condition ($>135^{\circ}$)
\rightarrow Higher efficiency with looser condition \rightarrow Special trigger condition was implemented ($\sim 850 \mathrm{~Hz}$, twice as usual condition)

Single track trigger was implemented, too with $1 / 500$ pre-scale rate (pt>250 MeV/c)

2-track trigger \& 1-track trigger 1-track trigger for efficiency monitoring

Invisible Y(1S) Decays: Signal or Background?

$$
M_{r}^{2}=s+M_{\pi^{+} \pi^{-}}-2 \sqrt{s} E_{\pi^{+} \pi^{-}}^{C M S}
$$

[babar]: http://arxiv.org/abs/0908.2840
(2 months running @ Y(3S))

$$
M_{r}^{2}=s+M_{\pi^{+} \pi^{-}}-2 \sqrt{s} E_{\pi^{+} \pi^{-}}^{C M S}
$$

No signal was observed over the expected background and upper limits have been obtained: $\mathrm{BR}(\mathrm{Y} \rightarrow \mathrm{VV})<3 \times 10^{-4}$ (BaBar) and $\mathrm{BR}(\mathrm{Y} \rightarrow \mathrm{VV})<3.0 \times 10^{-3}$ (Belle).

At Belle 2 one would expect to collect $>200 \mathrm{fb}^{-1}$ of data @ $\mathrm{Y}(3 \mathrm{~S})$ (ongoing discussion for $Y(2 S)$ data taking and trigger) allowing one to reconstruct between 30 and 300 events, assuming $10^{-5}(\mathrm{SM})<\mathrm{BR}(\mathrm{Y} \rightarrow$ invisible $)<10^{-4}(\mathrm{NP})$ and Belle efficiencies.

$$
M_{r}^{2}=s+M_{\pi^{+} \pi^{-}}-2 \sqrt{s} E_{\pi+\pi^{-}}^{C M S}
$$

[babar]: http://arxiv.org/abs/0908.2840
(2 months running @ Y(3S))

Irreducible peaking background when final states go undetected (i.e. detector supports, beampipe etc.) in the process $Y(3 S) \rightarrow \pi^{+} \pi^{+} Y(1 S), Y(1 S) \rightarrow$ undetected f.s.

Irreducible peaking background when final states go undetected (i.e. detector supports, beampipe etc.) in the process $Y(3 S) \rightarrow \pi^{+} \pi^{+} Y(1 S), Y(1 S) \rightarrow$ undetected f.s.

Invisible Y(1S) Decays @ Belle II: Expected Yields

$\frac{B R(Y(1 S) \rightarrow \nu \bar{v})}{B R\left(Y(1 S) \rightarrow e^{+} e^{-}\right)}=\frac{27 G^{2} M_{Y(1 S)}^{4}}{64 \pi^{2} \alpha^{2}}\left(-1+\frac{4}{3} \sin ^{2} \theta_{W}\right)^{2}=4.14 \times 10^{-4}$

$$
B R(Y(1 S) \rightarrow v \bar{v}) \sim 9.9 \times 10^{-6}
$$

$$
\begin{aligned}
& \longrightarrow e^{+} e^{-} \rightarrow Y(3 S) \\
& \downarrow \text { (4.4\%) } \\
& Y(3 S) \rightarrow \underset{\downarrow}{\pi^{+} \pi^{-}} Y(1 S) \\
& Y(1 S) \rightarrow \text { invisible } \\
& \longrightarrow e^{+} e^{-} \rightarrow Y(2 S) \\
& \downarrow \text { (18.1\%) } \\
& Y(2 S) \rightarrow \pi^{+} \pi^{-} Y(1 S) \\
& \downarrow \\
& Y(1 S) \rightarrow \text { invisible }
\end{aligned}
$$

Belle2 Simulation
$Y(3 S) \rightarrow \pi^{+} \pi-Y(1 S)$,
$\mathrm{Y}(1 \mathrm{~S}) \rightarrow \mathrm{V}$
Charge=1, PDG=211 (pi+)
$\mathbf{P T}=0,420365, \mathbf{P Z}=0.000692372$
$\psi=(-0.00,-0,00,-0+03)$
Mother: MCParticles[0] (Upsilon(35))
\rightarrow In absence of new physics enhancement, Belle2 should be able to strongly constrain the $\mathrm{SM} \mathrm{Y}(1 \mathrm{~S}) \rightarrow V \mathrm{~V}$

No signal was observed over the expected background and upper limits have been obtained: $\mathrm{BR}(\mathrm{Y} \rightarrow \mathrm{VV})<3 \times 10^{-4}$ (BaBar) and $B R(Y \rightarrow v V)<3.0 \times 10^{-3}$ (Belle).

Process	$L_{\text {int }}\left(a b^{-1}\right)$	ϵ	$N(\Upsilon(1 S))$	$N_{\Upsilon(1 S) \rightarrow \nu \bar{\nu}}$	$N_{N P}$
$\Upsilon(2 S) \rightarrow \pi^{+} \pi^{-} \Upsilon(1 S)$	$0.2, \Upsilon(2 S)$	$0.1-0.2$	2.3×10^{8}	$230-460$	$6900-13800$

DM: The Synergy Between Theory, Direct and Collider Searches

Theory work is needed in order to connect direct and indirect searches of dark matter.
\rightarrow Shown here $Y(1 S) \rightarrow X X$ vs. direct searches.
\rightarrow Similar studies have performed also for dark photon dark matter (see for example J. Pradler et al. arXiv:1412.8378)

ArXiv: 1404.6599

Name	Interaction Structure	Annihilation	Scattering
F5	$\left(1 / \Lambda^{2}\right) \bar{X} \gamma^{\mu} X \bar{q} \gamma_{\mu} q$	Yes	SI
F6	$\left(1 / \Lambda^{2}\right) \bar{X} \gamma^{\mu} \gamma^{5} X \bar{q} \gamma_{\mu} q$	No	No
F9	$\left(1 / \Lambda^{2}\right) \bar{X} \sigma^{\mu \nu} X \bar{q} \sigma_{\mu \nu} q$	Yes	SD
F10	$\left(1 / \Lambda^{2}\right) \bar{X} \sigma^{\mu \nu} \gamma^{5} X \bar{q} \sigma_{\mu \nu} q$	Yes	No
S3	$\left(1 / \Lambda^{2}\right) \imath I m\left(\phi^{\dagger} \partial_{\mu} \phi\right) \bar{q} \gamma^{\mu} q$	No	SI
V3	$\left(1 / \Lambda^{2}\right) \imath I m\left(B_{\nu}^{\dagger} \partial_{\mu} B^{\nu}\right) \bar{q} \gamma^{\mu} q$	No	SI
V5	$(1 / \Lambda)\left(B_{\mu}^{\dagger} B_{\nu}-B_{\nu}^{\dagger} B_{\mu}\right) \bar{q} \sigma^{\mu \nu} q$	Yes	SD
V6	$(1 / \Lambda)\left(B_{\mu}^{\dagger} B_{\nu}-B_{\nu}^{\dagger} B_{\mu}\right) \bar{q} \sigma^{\mu \nu} \gamma^{5} q$	Yes	No
V7	$\left(1 / \Lambda^{2}\right) B_{\nu}^{(\dagger)} \partial^{\nu} B_{\mu} \bar{q} \gamma^{\mu} q$	No	No
V9	$\left(1 / \Lambda^{2}\right) \epsilon^{\mu \nu \rho \sigma} B_{\nu}^{(\dagger)} \partial_{\rho} B_{\sigma} \bar{q} \gamma_{\mu} q$	No	No

TABLE I. Effective contact operators which can mediate the decay of a $J^{P C}=1^{--}$quarkonium bound state. We also indicate if the operator can permit an s-wave dark matter initial state to annihilate to a quark/anti-quark pair; if so, then a bound can also be set by indirect observations of photons originating from dwarf spheroidal galaxies. Lastly, we indicate if the effective operator can mediate velocity-independent nucleon scattering which is either spin-independent (SI) or spindependent (SD).

