UK Light Injection System

JENNIFER2 Kick Off Meeting Vienna, September 2019

Adrian Pritchard

<u>a.a.pritchard@liverpool.ac.uk</u> On behalf of the UK calibration group

Introduction

- The UK group are designing the optical calibration system for Hyper-K
- We had the chance to deploy a fully functioning prototype system at Super-K
 - Hardware in tank: during tank open work in summer 2018
 - **Electronics**: in February and July 2019
- Goals:
 - For SK: provide new calibration techniques and data
 - For HK: excellent chance to develop the calibration methods and new hardware ahead of HK construction

September 2019

Adrian Pritchard University of Liverpool

Calibration Goals

- Our system is designed to run in parallel with normal data taking, and allow insitu measurement and calibration of a number of key properties in HK:
- Measuring all properties with the same system requires the system to produce different beam widths and intensities
 - Use diffusers and collimators to achieve this
- Characterisation of PMT response:
 - Timing calibration
 - PMT gain measurement
 - Evolution of PMT gain
- Measurement of optical properties of the detector:
 - Attenuation length of water
 - Scattering, absorption
 - Depth dependence of water quality

SK Installation

- We installed injectors at 5 locations in the SK tank, ~6m apart in depth
- Each position has a diffuser, collimator, bare fibre, so 15 total injectors
- Each injector has its own dedicated light source
- Also an external monitor PMT connected to all sources

Hardware Installation In Super-K

- We accessed the various levels from a floating platform as the water drained from the tank
- Optics bolted to the PMT frame on the ID, optical fibre connections made in OD

MC Feasibility Studies

- We have made MC studies to develop some analyses ahead of data taking
- Studies have been performed using a collimated (narrow angle) beam
 - Using approximately 5 days of data in normal data taking conditions
- So far focused on measuring the scattering and absorption in the water
- New PhD students have started work on studies using a diffuse (wide angle) beam, and will work on monitor calibration studies (not discussed here)

Absorption From Total Charge

- Changed absorption by the RMS/mean values for SK-IV
- Determine the change to total charge measured in SK when absorption is varied
- Conclusion: change in total charge is <1% even with 10% variation in absorption
- Needs precision of monitoring <<1%, probably unfeasible to measure this way

Wavelength (nm)	Charge Change Abs + RMS/mean	Charge Change Abs - RMS/mean
337	+0.49%	-0.67%
405	+0.48%	-0.43%
473	+0.92%	-0.95%

Water Parameters From TOF Corrected Time Profiles

- Include timing information by using χ² comparison method with MC to measure water quality
- Use of narrow beam allows localised measurement of water parameters
- Conclusion: accurately measure absorption with ~7% (~6% stat, ~3% sys) precision using 5 days data with perfect monitor information

Injector	Expected	Injected Photons Norm (Precision)	Total Q in SK Norm (Precision)
B1	1.123	1.1042 ± 0.0658 (5.96%)	1.1800 ± 0.1573 (13.33%)
B2	1.060	1.0278 ± 0.0679 (6.61%)	0.9394 ± 0.1517 (16.15%)
B3	0.996	1.0083 ± 0.0676 (6.71%)	0.9350 ± 0.1547 (16.55%)
B4	0.939	0.9969 ± 0.0669 (6.71%)	0.6453 ± 0.1536 (23.81%)
B5	0.890	0.8604 ± 0.0670 (7.78%)	0.9215 ± 0.1528 (16.58%)

- We installed the electronics across two trips to Kamioka:
 - February 2019: Installed first motherboard, laid cables, connected to SK DAQ, first data collection
 - July 2019: Installed second motherboard, correction of some issues from February, full integration with SK
- Collaborated closely with SK calibration group members in Japan to achieve this
- We were able to take data (~100k events) for each of the 15 SK injectors
 - 5x diffuser
 - 5x collimator
 - 5x bare fibre
- Remaining slides discuss the completed installation and a first look at the first data from the new UK injectors

'52' to the IREG to trigger this pulser

September 2019

- We completed the full installation of the electronics and integration with SK
- Confirmed that we can selectively pulse every individual pulser
- We took data for all 15 of the light injectors to assess the performance (~100k events each)
- Also took some data for the monitor PMT calibration (analysis ongoing)

September 2019

First Data - Collimators

- Occupancy for B1 collimator
- Clearly defined narrow beam spot seen
- Other collimators also working as designed
 - Weaker intensity from B3 and B5
 - Partly fixed by running at higher input intensities for those channels

September 2019

First Data - Diffusers

- Occupancy for B3 diffuser
- Much wider beam is seen for the diffusers, as intended
- All diffusers seen to be functioning correctly

September 2019

First Data – Bare Fibres

- Occupancy for B2 bare fibre injector
- B2 and B4 fibres appear normal
- B1,B3,B5 fibres show some unexpected behaviour
- Bare fibres only included in system as cross-check in SK installation
- No plans to include bare fibre injectors in HK

September 2019

Remaining Work For SK Installation

- The remaining task is to integrate the new UK system in the autocalibration routine at SK
- This will mean our system will start taking data during normal runs
- First test of new scheduler took place last Thursday (thanks to our Japanese colleagues who have learned how to use our system)
 - Test run of ~6 hours using only the B1 collimator
 - Test was successfully completed, further analysis of the data must be completed before testing with all of the optical sources
- Then after SKDetSim for SK-V is ready, can produce the required MC and begin the analysis on data
 - Will reproduce optical profiles of collimator/diffuser in MC based on laboratory measurements from Warwick
 - Beam targets and directions to come from analysis of this first data set

Summary

- The new UK optical calibration prototype system has been fully installed at SK
- Our system is integrated with all of the necessary hardware to receive triggers from SK slow control, and record position tags in data stream
- First studies show that all of the diffusers and collimators are working
 - Some variance in the output efficiency, but can be offset by running individual sources at different intensities
- Final step is to integrate our system in the autocalibration scheduler at SK so we take data during normal runs
 - Work is ongoing for this, should be completed soon

Next Steps

- Begin the analyses with the collimator data from SK
- Design analyses using diffuser balls using MC and apply to data from SK
- Look at reproducing the feasibility studies for HK
 - These will inform the full system design for HK, eg how many injection points, how intense do we need the light?
- I have been working on an instrumentation paper to fully detail the R&D behind the production and installation of the full system
 - First draft is around 75% complete, so hope to have it ready soon
- Full internal review of the installation planned within UK
 - Ensure we identify any issues from SK installation so that we can make improvements for HK (eg, underwater fibre connections)