DLC - WP2 FT

Objectives

Goals FTM-Next

- Reduce production time of Polyimide foils with thin DLC coating
- Develop procedure for DLC deposition with reproducible resistivity through Pulsed Laser Deposition process & increase DLC strength
- Use small PLD produced DLC samples to instrument a small size FTM prototype with reduced noise design and demonstrate FTM principle with small-size prototype
- ullet Pioneer **new Flexible Cupper Clad Laminates** (FCCLs) and pioneer etching of 125 μ m FCCLs to allow reaching higher gas gains
- Asses electrostatic stability $250\,\mu\mathrm{m}$ gaps \Rightarrow scale to larger area
- Continue **Fast Electronics** development for smal signals (1.6 fC)

(DLC - WP2) FTM - WP1

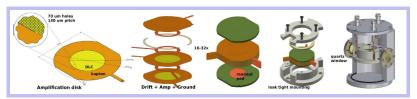
- WP1 Scale - WP3

Electr - WP4

High Quality Thin DLC films through PLD

Deposition of Uniform Low-Resistivity DLC layers:

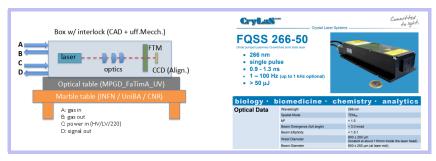
(Core)


- in a reproducible way;
- with good thickness uniformity (hence good resistivity uniformity);
- with good adhesion of DLC to polyimide;
- with application-taylored surface resistivity values (Rate vs Res.).
- Pulsed Laser Deposition:
 - good control of DLC properties thanks to independent PLD param.;
 - will allow for fast iteration to converge to reproducible results
- Characterization of DLC films:
 - AFM & SEM to study morphology & topography of DLC;
 - DLC-PI bond & DLC internal stress investigated through Raman spectroscopy; 4-point Hall probe to characterise electrical properties
- Excellent expertise in field of Thin Films in Italy (Lecce)

DLC - WP2 (FTM - WP1)

Backup

Detector Architecture Design & Construction


- Design small-size FTM prototype housing DLC coated PI foils from WP-2
- Prototype with single-pad readout and inside stainless steel housing to reduce noise and allow for testing with simple electronics (single-ch. fast pre-amps)
- Prototype equipped with two quartz windows to allow testing with UV-laser (allows single-layer testing, testing also the signal transparency of the structure)
- Modular prototype will allow exchange of amplification disks during the project with disks of different thickness (test higher gain) and lower resistivity (test higher rate capability & test signal transparency)
- PSPICE simulation to establish rate capability vs electrical transparency
- COMSOL & ANSYS simulations to understand optimal settings of electric fields
 to evaluate etching procerdure (hole quality) on gain

Detector Tests

Grant NeoAssunti 2017: MPGD-FaTimA-UV

to test gain & response of individual layers

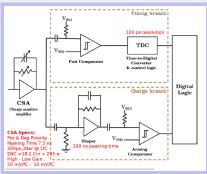
Cosmic Ray Muons Charged Beams lab tests before going to test beam μ, π, p foreseen in 2nd and 3rd year

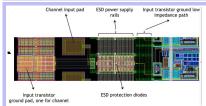
Backup

Large Area & High Gain

- Continue test FTM-v4 with more layers (already financed by MPGD-FaTimA) to test detection efficiency (need few mm to guarantee primary ionisation)
 - FTM-v4 (4 layers of 250 μ m = 1 mm) \rightarrow 12 layers of 250 μ m = 3 mm
 - When ready FATIC-v2, then also test Time Resolution FTM-v4
- Generic R&D Large Areas
 - for detectors with micro-drift gaps to scale to large areas
 - FTM electric fields distorted by spacers (result MPGD-Next), therefore need spaceless design where foils are stretched (cfr. CMS Triple-GEM)
 - Electrostatic stability studies need to be performed (simulation & experiment) to understand stability of foils under HV at sub-mm
 - ⇒ success of WP1 & WP3 will allow to propose large area FTM R&D
- Generic R&D High Gain
 - MPGD detectors typically have low gain (discharges due to high charge density)
 - ⇒ Enter Resistive Materials: no discharges at (some) price of Rate Capability
 - \Rightarrow 50 μ m PI foil can give gain up to 10,000 (cfr. uRWELL) \Rightarrow try 125 μ m PI Single-mask etching: max 75um: Double-mask etching of new 125 μ m FCCL
 - \Rightarrow success will allow faster timing (b/c of higher gain) + red. FE regs.

es DLC - WP2 FTM - WP1 Scale - WP3 (Electr - WP4) Management Backup


Fast Electronics Development


In MPGD-Next: FATIC-v1

- financed by CSN-I (30 kEUR)
- Low-Noise, high-gain, 32-ch, 15 pF. timing branch (TDC), charge branch
- Due to parasitic resistances, gain reduced by 50%. Details in Report MPGD-Next (S.Dalla Torre)
- 30 kEUR funding CSN-V restituted because of lack of understanding

Several tests conclusively proven origin of problems:

- FATIC-v2 solutions identified;
- Redesign Bonding Path
- ADC for charge branch;
- Internal Calibration Circuit:
- Design Ready by April 2019.

DLC - WP2 FTM - WP1 Scale - WP3 Electr - WP4 Management

Project Management

Milestones 2019:

- ★ MS-1: Design of small size FTM that can hold DLC samples WP 2
- ★ MS-2: Development of a Procedure for reproducible DLC deposition
- ★ MS-3: Test FTM-v4 extended up to 12 layers for Efficiency Meas.
- ★ MS-4: Submission of improved FATIC-v2 to foundry

Project Organization	slide 17
Project Team	slide 18
Financial Requests	slide 19

Backup

Objectives	DLC - WP2 FTM	1 - WP1		Scale -	WP3	Electr - WP4		Management)		В	ackup		
			20	19		2020				2021			
WP	Task Description	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	27	30	33	36
WP1 De	tector Architecture Design												
Simula	tion, Construction & Test										WP Le	ader: E	Bari
Task 1.1	Design of Small size FTM		*										
Task 1.2	Prototype Construction												
Task 1.3	Laser Tests												
Task 1.4	Test Beam (DESY/PSI)												
Task 1.5	Laser, Cosmics, Beam Tests												
WP2 Pulsed Laser Deposition of													
Diamor	d Like Carbon on PI Foils									١ ،	WP Lea	der: Le	ecce
Task 2.1	PLD w/ Resistivity Control				*								
Task 2.2	Creation new FCCL Structs												
Task 2.3	PLD w/ Resistivity Variation												
WP3 Lar	ge Area & High Gain R&D					٧	/P Lead	ler: Pav	via				
Task 3.1	Eff w/ 12 foils (50 μ m)				*								
Task 3.2	Electrostatic Stability Stud									Joi	n WP1	for Tes	t Beam
Task 3.3	Etching Studies 125 $\mu \mathrm{m}$												
WP4 Fast Electronics Development						١	NP Lea	der: Ba	ri				
Task 4.1	Design & Prod of FATIC-v2		*										
Task 4.2	Lab Tests + Cosmic Tests												

Objectives

Sez.	Name	Pos.	Time	Gender	CSN	Task
ВА	Verwilligen Piet (PI)	Ric.	30%	М	CSN-I	Sim, Design & Test
BA	Colaleo Anna	P.R.	10%	F	CSN-I	FTM Test
BA	Maggi Marcello	P.R.	30%	М	CSN-I	FTM Test
ВА	Venditti Rosamaria	A.d.R.	10%	F	CSN-I	FTM Test
ВА	Ranieri Antonio	D.R.	30%	М	CSN-I	FATIC v2 Test
ВА	Licciulli Francesco	A.T.	20%	М	CSN-I	FATIC v2 Design & Test
LE	Serra Antonio (RL)	P.A.	30%	М	CSN-V	DLC Characterization
LE	Calcagnile Lucio	P.O.	10%	М	CSN-V	DLC Characterization
LE	Manno Daniele Erminia	P.A.	20%	F	CSN-V	DLC Characterization
LE	Quarta Gianluca	Ric.	10%	М	CSN-V	DLC Characterization
LE	Caricato Anna Paola	P.A.	10%	F	CSN-V	DLC Deposition
LE	Di Giulio Massimo	P.A.	20%	М	CSN-V	DLC Deposition
LE	Martino Maurizio	P.A.	20%	М	CSN-V	DLC Deposition
PV	Vai Ilaria (RL)	A.d.R.	30%	F	CSN-I	FTM Test & Large Area
PV	Riccardi Cristina	P.A.	10%	F	CSN-I	Large Area
PV	Salvini Paola	Ric.	10%	F	CSN-I	Large Area
PV	Vitulo Paolo	P.A.	20%	М	CSN-I	FTM Test & Large Area

DLC - WP2 FTM - WP1 Scale - WP3 Electr - WP4 (Management) Backup

Financial Requests 2019

Objectives

Chapter	WP	Motivation	Req. k€	S.J. k€
Bari			25	30
MIS	1	Etching sessions at CERN	5	
CON	1	Prototype Constr. Mat., Polyimide, Etching Sessions	10	
CON	4	Front-End chip FATIC-v2 submission		30
INV	1	$2 \times Large\ Bandwidth\ Current\ Pre-Amp\ CIVIDEC\ (40\ dB)$	5	
L-SW	1	Licenze COMSOL (\leqslant 3k) ed ANSYS (\leqslant 2k)	5	
Lecce			7	
MIS	2	Meeting Attendance & Publication Fees	2	
CON	2	Reagents, C tape, Cu grids, Au target, Laser Gas (He,Ne)	5	
Pavia			8	
MIS	3	Electrostatic Stability Setup Design at CERN	2	
CON	3	Lab consumables for testing FTM	1	
INV	3	CAEN A1561H 12 ch High Resolution (50 pA) HV PS	5	
2019		Total inserted in DB Preventivi	40	30

DLC - WP2

Objectives

Electr - WP4

Backup

Future Financial Requests

Chapter	WP	Motivation	Req. k€	S.J. k€
2020		not yet inserted in DB Preventivi	35	
MIS	1	Test Beam	5	
CON	1	Test Beam setup: triggers, electronics, mechanics	5	
CON	1	Construction 2 nd prototype	10	
CON	2	Consumi DLC deposition & characterization	5	
CON	4	Test Board & Front End Boards for FATIC-v2	5	
L-SW	1	Licenze COMSOL ed ANSYS	5	
2021		not yet inserted in DB Preventivi	30	
MIS	1	Missioni Test Beam	5	
MIS	2	Conferenze Internazionale & Publications	5	
CON	1	Consumi Test Beam	5	
CON	1	Acquisition Test Beam time	5	
CON	2	Consumi DLC deposition & characterization	5	
L-SW	1	Licenze COMSOL ed ANSYS	5	