
Log file analysis

Overview
• Goal: predict the operator

action, requested
memory, job splitting,
xrootd enabled

• So far: each feature is a
sparse matrix (error/site)

• Entries of the matrix is the
number of times the error
code is thrown per site

• Idea: add NLP info from
log files to provide more
information

Error matrix (taken from Dominykas)

NLP: Acquisition of text
snippets

• ~ 25.000 workflows

• Small error messages
stored on HDFS with
WMArchive

• Full logs partially on
CASTOR / EOS

• Use pyspark for reduction
and write back result to
HDFS

Workflows per month from
actionshistory.json

1. Small messages from
WMArchive

• SWAN notebook for
analysis - faster than
WMArchive framework

• Interesting key to identify
log file: (task_name, site,
error)

• -1 error codes cannot be
identified

• Runtime ~ 20 min

Error codes for (task, site, error)

{ …,
u'task': u’/vlimant_ACDC0_task_HIG-RunIIFall17wmLHEGS-01415__v1_T_180706_002124_986/HIG-
RunIIFall17DRPremix-02001_1/HIG-RunIIFall17DRPremix-02001_1MergeAODSIMoutput/HIG-
RunIIFall17MiniAODv2-01299_0', … ,

u'meta_data': {u'jobstate': u’jobfailed'}

u'steps': [

 {u'status': 99996, u'errors': [
 {u'type': u'ReportManipulatingError', u'details': u'Failed to find a step report for
 stageOut1!’,
 u'exitCode': 99996}], u'name': u'stageOut1', u'stop': None, u'site': u'T1_UK_RAL', },

 {u'status': 0, u'errors': [], u'name': u’logArch1’},

 {u'status': 85, u'errors': [

 {u'type': u'CMSSWStepFailure', u'details': u"\n Adding last 25 lines of CMSSW stdout: ',
 u'exitCode': 85},

 {u'type': u'Fatal Exception', u'details': u"An exception of category 'FileReadError'
 occurred while\n ', u'exitCode': 8021},

 {u'type': u'ErrorLoggingAddition', u'details': u'Adding extra error in order to hold error
 report\n\nAdding last ten lines of CMSSW stderr:\nWARNING:', u'exitCode': 99999},

 {u'type': u'WMAgentStepExecutionError', u'details': u"<@========== WMException Start
 ==========@>\nException Class: CmsRunFailure\nMessage: ", u'exitCode': 85}],
 u'site': u'T1_UK_RAL', }], …
}

WMarchive entry example:

1. Select failed workflows
2. Flatmap the entry to key, value: (task, site, error), msg

3. Join on this key with the actionshist entries for the labels

Results

• Some entries (error != -1) are not found (e.g. site field not filled)

• What is the meaning of status?

• Other fields interesting?

• Multiple error messages per key redundant?

~ 95.000 correctly associated keys with at
least one error message

~ 20.000 messages not found

2. Full logs from
EOS / CASTOR

• Full logs contain more
information

• Goal: get more and larger
snippets than what is
stored on WMArchive ~
more lines around error

• Problem: log archives are
collected in large log
collect tar files

• Used WMArchive to
associate lfn of logArchive
with lfn of logCollect to
get the path on EOS/
CASTOR

• move also to notebooks

Content of log archive tar.gz

Pipeline from CASTOR to HDFS
• Problem 1: data on CASTOR difficult to access -> only certain

CMS accounts have rights to stage

• Problem 2: need to stage many large tar files ~PB

• Problem 3: Staging takes some time: CMS experts estimated
1-2 months, but IT experts 1-2 weeks

• Help from CERN IT: notebook to stream large tar logCollect
files directly from EOS to access content of small tar.gz
logArchives with pyspark and store relevant infos to HDFS ->
verified with small number of files

• Our proposal: first show improvement with small error snippets

NLP with the reduced error
messages

• Depending on the size of the output the word
embeddings and the ML have to be done with pyspark

• Considering only one error message per (task_name, site,
error) -> NLP can be done with pandas

 Preprocessing

• Challenge: Logs are not
human language

• Tokenize + remove
unnecessary words

• Also more sophisticated
clustering algorithms
available: https://
github.com/logpai/
logparser

• But usable with spark?

https://github.com/logpai/logparser
https://github.com/logpai/logparser
https://github.com/logpai/logparser

 Word Embeddings

• Vector space models: map words in a continuous vector space
where semantically similar words are mapped to nearby points

• word2vec: feed a corpus -> get one vector for each word

• Default word2vec on spark: average all word vectors per
document -> one high dimensional vector represents document

• Also interesting: counting approaches TF-IDF, pre-tained models

Example pipeline: unique error message per (task, site, error)

Tokenization + word2vec with pyspark

Join + group word vectors and labeled history on task_name

Word vectors from HDFS

Actionshistory (from Christian)

Input for the machine learning

• Complicated, high dimensional features

• Good hardware needed - hopefully avoid spark (but can also be done)

• Experiment with models (and ask experts) in the next weeks

• Build on Dominykas (and Hamed’s?) framework for k-fold evaluation

Input per workflow with multiple word
vectors per (task,site,error)

Input per workflow with one
word vector per (task,site,error)

Input for the machine learning

• Flatten matrix + RNN?

• Merge with frequency of occurrences (standard of Christian)

Input per workflow with multiple word
vectors per (task,site,error)

Input per workflow with one
word vector per (task,site,error)

Summary + Plans
Current status

• First prototype for ML input

• Concrete concept how to acquire the missing data

Next steps

• Set up a first model

• Validate the pipeline from EOS to HDFS

Plans

• Have a complete pipeline until end of June

• Optimize with experts at CERN during 2-3 months summer stay

