
Log file analysis



Overview
• Goal: predict the operator 

action, requested 
memory, job splitting, 
xrootd enabled


• So far: each feature is a 
sparse matrix (error/site)


• Entries of the matrix is the 
number of times the error 
code is thrown per site


• Idea: add NLP info from 
log files to provide more 
information

Error matrix (taken from Dominykas)



NLP: Acquisition of text 
snippets

• ~ 25.000 workflows 


• Small error messages 
stored on HDFS with 
WMArchive


• Full logs partially on 
CASTOR / EOS 


• Use pyspark for reduction 
and write back result to 
HDFS 

Workflows per month from 
actionshistory.json



1. Small messages from 
WMArchive

• SWAN notebook for 
analysis - faster than 
WMArchive framework 


• Interesting key to identify 
log file: (task_name, site, 
error)


• -1 error codes cannot be 
identified


• Runtime ~ 20 min 

Error codes for (task, site, error)



{ …, 
u'task': u’/vlimant_ACDC0_task_HIG-RunIIFall17wmLHEGS-01415__v1_T_180706_002124_986/HIG-
RunIIFall17DRPremix-02001_1/HIG-RunIIFall17DRPremix-02001_1MergeAODSIMoutput/HIG-
RunIIFall17MiniAODv2-01299_0', … ,  

u'meta_data': {u'jobstate': u’jobfailed'} 

u'steps': [ 

    {u'status': 99996, u'errors': [ 
        {u'type': u'ReportManipulatingError', u'details': u'Failed to find a step report for  
         stageOut1!’, 
         u'exitCode': 99996}], u'name': u'stageOut1', u'stop': None, u'site': u'T1_UK_RAL', }, 

    {u'status': 0, u'errors': [], u'name': u’logArch1’}, 

    {u'status': 85, u'errors': [ 

          {u'type': u'CMSSWStepFailure', u'details': u"\n Adding last 25 lines of CMSSW stdout: ',  
           u'exitCode': 85},  

          {u'type': u'Fatal Exception', u'details': u"An exception of category 'FileReadError'  
           occurred while\n   ', u'exitCode': 8021}, 
  
          {u'type': u'ErrorLoggingAddition', u'details': u'Adding extra error in order to hold error  
          report\n\nAdding last ten lines of CMSSW stderr:\nWARNING:',  u'exitCode': 99999},  

          {u'type': u'WMAgentStepExecutionError', u'details': u"<@========== WMException Start  
          ==========@>\nException Class: CmsRunFailure\nMessage: ", u'exitCode': 85}],   
     u'site': u'T1_UK_RAL', }], … 
} 

WMarchive entry example: 

1. Select failed workflows 
2. Flatmap the entry to key, value: (task, site, error), msg 

3. Join on this key with the actionshist entries for the labels 



Results

• Some entries (error != -1) are not found (e.g. site field not filled)


• What is the meaning of status?


• Other fields interesting?


• Multiple error messages per key redundant?

~ 95.000 correctly associated keys with at 
least one error message

~ 20.000 messages not found 



2. Full logs from  
EOS / CASTOR

• Full logs contain more 
information


• Goal: get more and larger 
snippets than what is 
stored on WMArchive ~ 
more lines around error 


• Problem: log archives are 
collected in large log 
collect tar files 


• Used WMArchive to 
associate lfn of logArchive 
with lfn of logCollect to 
get the path on EOS/
CASTOR


•  move also to notebooks

Content of log archive tar.gz



Pipeline from CASTOR to HDFS
• Problem 1: data on CASTOR difficult to access -> only certain 

CMS accounts have rights to stage


• Problem 2: need to stage many large tar files ~PB


• Problem 3: Staging takes some time: CMS experts estimated 
1-2 months, but IT experts 1-2 weeks


• Help from CERN IT: notebook to stream large tar logCollect 
files directly from EOS to access content of small tar.gz 
logArchives with pyspark and store relevant infos to HDFS -> 
verified with small number of files


• Our proposal: first show improvement with small error snippets



NLP with the reduced error 
messages

• Depending on the size of the output the word 
embeddings and the ML have to be done with pyspark


• Considering only one error message per (task_name, site, 
error) -> NLP can be done with pandas 



 Preprocessing

• Challenge: Logs are not 
human language


• Tokenize + remove 
unnecessary words


• Also more sophisticated 
clustering algorithms 
available: https://
github.com/logpai/
logparser


• But usable with spark?

https://github.com/logpai/logparser
https://github.com/logpai/logparser
https://github.com/logpai/logparser


 Word Embeddings

• Vector space models: map words in a continuous vector space 
where semantically similar words are mapped to nearby points


• word2vec: feed a corpus -> get one vector for each word 


• Default word2vec on spark: average all word vectors per 
document -> one high dimensional vector represents document


• Also interesting: counting approaches TF-IDF, pre-tained models



Example pipeline: unique error message per (task, site, error) 

Tokenization + word2vec with pyspark


Join + group word vectors and labeled history on task_name

Word vectors from HDFS

Actionshistory (from Christian)



Input for the machine learning

• Complicated, high dimensional features


• Good hardware needed - hopefully avoid spark (but can also be done)


• Experiment with models (and ask experts) in the next weeks


• Build on Dominykas (and Hamed’s?) framework for k-fold evaluation

Input per workflow with multiple word 
vectors per (task,site,error)

Input per workflow with one 
word vector per (task,site,error)



Input for the machine learning

• Flatten matrix + RNN?


• Merge with frequency of occurrences (standard of Christian)

Input per workflow with multiple word 
vectors per (task,site,error)

Input per workflow with one 
word vector per (task,site,error)



Summary + Plans
Current status 

• First prototype for ML input


• Concrete concept how to acquire the missing data


Next steps 

• Set up a first model 


• Validate the pipeline from EOS to HDFS


Plans 

• Have a complete pipeline until end of June


• Optimize with experts at CERN during 2-3 months summer stay




