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Zeta function: infinite sum and product

Riemann ζ-function has been an intriguing and fascinating object
ever since Riemann’s famous conjecture.

The infinite sum

ζ(s) =
∞∑

n=1

1
ns

I was introduced by Euler for positive integer s > 1.

He also

wrote the sum as an infinite product ζ(s) =
∏

p∈primes

1
(1− p−s)

over the prime numbers.

I extended to real s > 1 by Chebyshev.
I analytically continued by Riemann to the complex s-plane as a

meromorphic function.
Useful in regularising infinities in Physics.
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Riemann zeroes and the critical line

The analytically continued ζ-function satisfies the reflection
identity:

ζ(s) = 2sπs−1 sin
(πs
2

)
Γ(1− s)ζ(1− s)

I ζ(s) has a simple pole at s=1,
I vanishes for negative even integers s ∈ 2Z : trivial zeroes
I has non-trivial zeroes all of which lie on the critical line

Re (s) = 1
2 , or s = 1

2 + itm ≡ γm, tm ∈ R: Riemann
hypothesis

The symmetric zeta-function ξ(s) = 1
2π
−s/2s(s − 1)Γ

( s
2

)
ζ(s) is an

entire function that satisfies ξ(s) = ξ(1− s). Its zeroes are at the
non-trivial zeroes of ζ(s), at s = γm = 1

2 + itm.
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Some related functions

n γn

1 1
2 ± i 14.1347 . . .

2 1
2 ± i 21.0220 . . .

3 1
2 ± i 25.0108 . . .

4 1
2 ± i 30.4248 . . .

5 1
2 ± i 32.9350 . . .

6 1
2 ± i 37.5861 . . .

7 1
2 ± i 40.9187 . . .

· · · · · ·
First few zeroes

1
ζ(s)

=
∏
p

(1− p−s) =
∑
n

µ(n)

ns

π(x) =
∑
p

Θ(x − p) ∼ Li(x) ≡
∫ x

2

dy
ln y

J (x) =
∑
p

∑
n

1
n

Θ(x − pn)

= π(x) +
1
2
π(x1/2) +

1
3
π(x1/3) + · · ·

J (x) = Li(x)−
∑
n

Li (xγn)
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Zeroes as the spectrum

The distribution of the zeroes, i.e., the locations of the tm’s, are
not known. But it is related to the distribution of the primes.

Starting with Pólya (and Hilbert) there is an expectation that γm
can be realized as the eigenvalues of an (unbounded) self-adjoint
operator.
Montgomery conjectured the form of the two-point correlation
function of the Riemann zeroes (normalised to have unit average
spacing):

1− sin2 πu
(πu)2

Dyson pointed out that this has the same behaviour as the
two-point correlator of the eigenvalues of an ensemble of random
hermitian matrices.
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Numerical evidence and extension

Odlyzko confirmed this behaviour
from his numerical computation of
Riemann zeroes.

Rudnick-Sarnak extended it to
higher correlators.
Özlük extended to the zeroes of
Dirichlet L-functions:

L(s, χ) =
∞∑

n=1

χ(n)

ns =
∏

p∈primes

χ(p)

(1− p−s)

Figure : Blue dots describe the normalized
spacings of the first 105 non-trivial zeros of the
Riemann zeta function. The solid line describes
the two-point correlation function of GUE of
random matrices. (source: Wikipedia)
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Search for the Hamiltonian

Berry-Keating (and Connes) proposed the quantised form of the
classical xp Hamiltonian : HBK = (xp + px) = −2i h̄

(
x d

dx + 1
2

)
.

They were motivated by the similarity of the fluctuating part of the
prime distribution function and the Gutzwiller trace formula relating
the fluctuating part of the energy eignevalues and the periods of a
chaotic dynamical system.

Riemann zeroes Energy eigenvalues
l ∼ l

Primes Periods
(of primitive periodic orbits)
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Intriguing similarities

The fluctuating part of the distribution function
J(x) =

∑
m

Θ(x − tm) has the form

Jfl(x) = − 1
π

∑
p

∑
n∈N

1
n
e−n ln p/2 sin(xn ln p)

This is to be compared with the fluctuating part of the energy
eigenvalues in the Gutzwiller trace formula relating to the periods
of a chaotic dynamical system:

%fl(E ) =
1
π

∑
p

∑
n∈N

1
n
e−nλpτp/2 sin

(
nSp(E )− π

2
nµp

)
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Some issues

I What is the Hilbert space?

I The system is not classically chaotic
I The spectrum is continuous

Suggestion: Restrict the values of x and p.
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Can one work backwards?

Start with the zeroes of the Riemann zeta function and design a
unitary matrix model the eigenvalues (actually eigenvalue
distribution) of which coincide with the (distribution of the) zeroes.

Actually, this was done by [P. Dutta & S. Dutta]. Used a phase
space description of the matrix model, got a density function, but
... no Hamiltonian.

We start with the poles of the prime factors of the zeta function
and design a unitary matrix models for each p.

New ingredients: p-adic analysis, Hilbert space over p-adic
numbers, in particular, wavelets as a basis, and operators on this
space.
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Conformal map

The eigenvalues of large N × N unitary matrices gives a density
ρ(θ) =

∑
δ(θ − θi ) (distribution function) on the unit circle.

Given
a distribution on the line Re s = s0, one can find a Gaussian
Unitary Ensemble (GUE) such that its eigenvalue distribution is
related to it.

bs

s0

bz =
s − s0 − 1
s − s0 + 1−1 +1

s − s0 =
1 + z
1− z

=
1 + e iθ

1− e iθ = i cot
θ

2
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One-plaquette UMM

The partition function of the one-plaquette model is defined by:

Z=

∫
DU exp

[
N
∞∑

n=0

βn

n

(
Tr Un + Tr U†n

)]
=

∫ N∏
i=1

dθi
2π

e−N2Seff(θi )

where, Seff(θi ) = −
∞∑

n=1

N∑
i=1

2βn

n
cos(nθi )−

1
2

∑
i 6=j

ln
(
4 sin2

θi − θj
2

)

In the large N limit, x =
i
N
∈ [0, 1] and θi → θ(x)

S [θ] = −
∞∑

n=1

∫ 1

0
dx

2βn

n
cos nθ(x)− 1

2

∫ 1

0
dx −
∫ 1

0
dy ln

(
4 sin2

θ(x)− θ(y)

2

)
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Saddle point

The saddle point of the action is determined by

−
∫

dθ′

2π
ρ(θ′) cos

(
θ − θ′

2

)
=
∞∑

n=1

2βn sin nθ
(

=
dV (θ)

dθ

)
where, 2πdx = ρ(θ)dθ is the density of eigenvalues.

Given βn one can determine ρ(θ), or vice versa. Easier to work with

the resolvant R(z) =
1
N

〈
Tr
(

1
1− zU

)〉
and find βn from the

Taylor expansion of the resolvant.

2πρ(θ) = 2Re [R(e iθ)]− 1 = lim
ε→0

[
R
(

(1 + ε)e iθ
)
− R

(
(1− ε)e iθ

)]
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UMM in terms of Irreps (Schematic)

The PF of a UMM can also be expanded in terms of the irreducible
representions (irreps) of U(N)

Z ∼
∑

R∈irreps

∑
~k,~̀

α(~β,~k)α(~β, ~̀)χR(C (~k))χR(C (~̀))

(where χR(C (~k)) is the character of the conjugacy class C (~k) of
the permutation group SK=

∑
nkn .).

The following have been used∏
n

(Tr Un)kn =
∑
R

χR(C (~k))TrR(U)∫
DU TrR(U)TrR′(U†) = δRR′
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Young diagrams and momenta

Irreps can be labelled by the number of boxes in Young diagrams.
In the large N limit

Z =

∫
Dh(x)

∫
d~k d ~̀ exp

(
−N2Seff[h(x), ~k , ~̀]

)
where u(h)dh ∼ dx is another density function.

The variables h are the momenta conjugate to the eigenvalues θ.
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Partition function in the phase space

There are δ-function constraints in the expression of the partition
function as a sum over irreps.

Introducing auxiliary variables for these constraints, the partition
function is expressed as integrals over momenta and Lagrange
multipliers. The auxiliary variables turn out to be the coordinates/
eigenvalues!
There is a density Ω(θ, h) in the phase space, such that∫

dh Ω(θ, h) = ρ(θ) and
∫

dθΩ(θ, h) = u(h)

Expectation: Phase space description may lead to a Hamiltonian.
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Our approach

I Start with the non-trivial zeroes of the zeta function.

I Map the critical line (containing the zeroes) on the unit circle.
I Construct a unitary matrix model (UMM) for which these

zeroes are the eigenvalues: Z ∼
∫
DU eS(U).

I Write the partition function of the UMM in phase space:

Z ∼
∫

dθ dh e−H(θ,h).

I Try to realise this as the trace of some operator: Z ∼ Tr %̂.
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One plaqutte UMM and the Keiper-Li numbers

Parikshit Dutta and Suvankar Dutta constructed a UMM starting
with the symmetric zeta function ξ(s).

I Map zeroes γi = 1
2 + ti to θi on the unit circle

I Compare the density ρ(θ) =
∑
δ(θ − θi ) to the resolvant

I This determines the parameters of the one plaquette model:

βn = − 1
2n ln 2

λn =
1

2 ln 2

∮
C1

ds
2πi

sn−1

(s − 1)n + 1
ln ξ(s)

in terms of the Keiper-Li numbers‡

λn =
1

(n − 1)!

dn

dsn sn−1 ln ξ(s)
∣∣∣
s=1

=
∑

i

[
1−

(
1− 1

γi

)n]
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Phase space density of the UMM of ξ(s)

The density in the phase space is

Ω(θ, h) =

{
1 in the shaded region
0 otherwise

The prime power counting
function J(x) jumps by 1/n at
every pn:

J(x) =
∑
p,n

1
n

Θ (x − pn)

= 〈J〉(x) + Jfl(x)

Turns out that the
momentum density
h(x) ∼ Jfl(x), the fluctuating
part of the counting function.
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Local and adelic zeta

Recall the Euler product ζ(s) =
∏

p(1− p−s)−1 =
∏

p ζp(s)

Define ζA(s) = π−s/2Γ
( s
2

)∏
p(1− p−s)−1. This satisfies

ζA(s) = ζA(1− s).

Moreover, π−s/2Γ
( s
2

)
=

∫
R

dx |x |s−1e−πx2 ≡ ζR(s) is the Mellin

transform of the Gaussian.
Likewise ζp(s) is the Mellin transform of the analogue of the
Gaussian on the p-adic numbers Qp .
Fix a prime p: the p-adic ‘line’ Qp is obtained by completing the
rational numbers Q by the p-adic notion of distance. It has to do
with divisibility by a prime number p.
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Singling out a prime: Leaving rationality

A p-adic number ξ = pN (ξ0 + ξ1p + ξ2p2 + · · ·
)
, where N is an

integer, ξk = {0, 1, · · · p − 1} but ξ0 6= 0, and

|ξ|p= p−N .
Qp’s are close relatives of the real numbers, although the notion of
continuity and ‘nearness’ are very different, determined by
divisibility wrt p. For example, Zp, the completion of integers Z is
compact in Qp.
For a fixed p, Qp is an ultrametric non-archimedean space.
Integration is simple in Qp. There is a translation invariant

measure, normalised by
∫
Zp

dx = 1. Most integrals involve summing

infinite geometric series.
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Local zeta and the resolvent

The local zeta function at the prime p, ζp(s) = (1− p−s)
−1 does

not have any zero, but has equally spaced simple poles at s =
2πi
ln p

n

(n is an integer) on the vertical line Re(s) = 0.

These poles can be brought on the unit circle on z =
s − 1
s + 1

plane.

R<(z) = 1 +
z

(1− z)2
p−s(z)

1− p−s(z) , R>(z) = − z
(1− z)2

ps(z)

1− ps(z)

The resolvent above satisfies all the properties (R<(0) = 1,
R>(z →∞) = 0 and R<(z) + R>(1/z) = 1).

?(Caveat)
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A well-known measure

The following is easily computed:∫
pZp

|h|s−1p dh =
(1− p−1)p−s

(1− p−s)
, pZp =

{
h ∈ Qp : |h|p < 1

}

So 2R<(z)− 1 = p
∫

pZp

dh
(
1 +

2z
(p − 1)(1− z)2

|h|
1+z
1−z−1
p

)
This is suggestive of a phase space density

Ωp(θ, h) = p − p
2(p−1) sin2( θ

2 )
|h|−i cot( θ

2 )−1
p ∼ p − p−in cot( θ

2 )

2(p−1) sin2( θ
2 )

D Ghoshal (JNU) Designing Matrix Models for Zeta Functions



Introduction & Motivation
Phase Space Description of the Unitary Matrix Model

Unitary Matrix Model for the Symmetric Zeta-function
UMM for the Local ζ-function and Attempts at a Synthesis

A well-known measure

The following is easily computed:∫
pZp

|h|s−1p dh =
(1− p−1)p−s

(1− p−s)
, pZp =

{
h ∈ Qp : |h|p < 1

}

So 2R<(z)− 1 = p
∫

pZp

dh
(
1 +

2z
(p − 1)(1− z)2

|h|
1+z
1−z−1
p

)

This is suggestive of a phase space density

Ωp(θ, h) = p − p
2(p−1) sin2( θ

2 )
|h|−i cot( θ

2 )−1
p ∼ p − p−in cot( θ

2 )

2(p−1) sin2( θ
2 )

D Ghoshal (JNU) Designing Matrix Models for Zeta Functions



Introduction & Motivation
Phase Space Description of the Unitary Matrix Model

Unitary Matrix Model for the Symmetric Zeta-function
UMM for the Local ζ-function and Attempts at a Synthesis

A well-known measure

The following is easily computed:∫
pZp

|h|s−1p dh =
(1− p−1)p−s

(1− p−s)
, pZp =

{
h ∈ Qp : |h|p < 1

}

So 2R<(z)− 1 = p
∫

pZp

dh
(
1 +

2z
(p − 1)(1− z)2

|h|
1+z
1−z−1
p

)
This is suggestive of a phase space density

Ωp(θ, h) = p − p
2(p−1) sin2( θ

2 )
|h|−i cot( θ

2 )−1
p ∼ p − p−in cot( θ

2 )

2(p−1) sin2( θ
2 )

D Ghoshal (JNU) Designing Matrix Models for Zeta Functions



Introduction & Motivation
Phase Space Description of the Unitary Matrix Model

Unitary Matrix Model for the Symmetric Zeta-function
UMM for the Local ζ-function and Attempts at a Synthesis

Vladimirov derivative and Kozyrev wavelets

The totally disconnected topology of Qp, makes differentiation
difficult. [Vladimirov] defined derivative as an integral kernel:(

Dα
(p)f

)
(x) =

1
Γp(−α)

∫
Qp

dx
f (x)− f (y)

|x − y |αp
, α ∈ C

The p-adic wavelets of [Kozyrev] are eigenfunctions of the
generalised Vladimirov derivatives:

Dα
(p) |ψn〉 = pα(1−n) |ψn〉

These are like the scaling functions.

(2R<(z)− 1) dθ ∼ dθ + d
(
cot

θ

2

)
Tr D

−i cot θ
2

(p)︸ ︷︷ ︸
fluctuating part
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Haar wavelets and the Affine group

Scaling and translation generate the affine
group t → a t + b, for a > 0 and b ∈ R.
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The p-adic number field Qp

ξ = pN (ξ0 + ξ1p + ξ2p2 + ξ3p3 + · · ·
)
, N ∈ Z

ξm = 0, 1, · · · , p − 1

ξ0 6= 0

(Fig. from Gubser et al)
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Wavelets on Qp

1 pp−1p−2
Mother wavelet

1 pp−1p−2
Mother wavelet scaled by p

1 pp−1p−2
Mother wavelet scaled by p−1

1 pp−1p−2
Mother wavelet translated by m = p−1(2 + · · ·)

Figure : A schematic representation of the wavelets. The sets are ordered
by the values |ξ|p= pn. (Colour code: grey = 1, black = 0, other colours
correspond to primitive roots of unity.) [Dutta,-DG-Lala (2018)]
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Towards a Hamiltonian

Energy eigenvalues of the Hamiltonian are E (p)
n =

(
cot θ2

)
(n ln p).

Reminiscent of Berry-Keating’s classical Hamiltonian H(p)
BK = XP .

However, n takes only positive values. So
momentum ∼ scaling on the half-line.

X and P is not a usual canonically conjugate pair.

The Hilbert space H(p) of the quantum Hamiltonian is spanned by
a subset of the Kozyrev wavelets (which are eigenfunctions of the
Vladimirov derivative.)
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Parameters of the UMMp

Recall that the parameters βm =

∮
dz

zm+1R<(z).

For the UMM of a local ζ-function at p, the diagonal form of a
term in the action of the UMMp is

∞∑
m=1

1
m
βmzm

i =
1

2 ln p
ln

1− p−
1+zi
1−zi

1− p−1


Let us try to combine the results for all primes. First redefine
β
(p)
m → ln p β(p)m . This amounts to∫ ∞

0
dξ ξ−i cot θ

2
dJp

dξ
→
∫ ∞
0

dξ ξ−i cot θ
2 ln p

dJp

dξ

D Ghoshal (JNU) Designing Matrix Models for Zeta Functions



Introduction & Motivation
Phase Space Description of the Unitary Matrix Model

Unitary Matrix Model for the Symmetric Zeta-function
UMM for the Local ζ-function and Attempts at a Synthesis

Parameters of the UMMp

Recall that the parameters βm =

∮
dz

zm+1R<(z).

For the UMM of a local ζ-function at p, the diagonal form of a
term in the action of the UMMp is

∞∑
m=1

1
m
βmzm

i =
1

2 ln p
ln

1− p−
1+zi
1−zi

1− p−1



Let us try to combine the results for all primes. First redefine
β
(p)
m → ln p β(p)m . This amounts to∫ ∞

0
dξ ξ−i cot θ

2
dJp

dξ
→
∫ ∞
0

dξ ξ−i cot θ
2 ln p

dJp

dξ

D Ghoshal (JNU) Designing Matrix Models for Zeta Functions



Introduction & Motivation
Phase Space Description of the Unitary Matrix Model

Unitary Matrix Model for the Symmetric Zeta-function
UMM for the Local ζ-function and Attempts at a Synthesis

Parameters of the UMMp

Recall that the parameters βm =

∮
dz

zm+1R<(z).

For the UMM of a local ζ-function at p, the diagonal form of a
term in the action of the UMMp is

∞∑
m=1

1
m
βmzm

i =
1

2 ln p
ln

1− p−
1+zi
1−zi

1− p−1


Let us try to combine the results for all primes.

First redefine
β
(p)
m → ln p β(p)m . This amounts to∫ ∞

0
dξ ξ−i cot θ

2
dJp

dξ
→
∫ ∞
0

dξ ξ−i cot θ
2 ln p

dJp

dξ

D Ghoshal (JNU) Designing Matrix Models for Zeta Functions



Introduction & Motivation
Phase Space Description of the Unitary Matrix Model

Unitary Matrix Model for the Symmetric Zeta-function
UMM for the Local ζ-function and Attempts at a Synthesis

Parameters of the UMMp

Recall that the parameters βm =

∮
dz

zm+1R<(z).

For the UMM of a local ζ-function at p, the diagonal form of a
term in the action of the UMMp is

∞∑
m=1

1
m
βmzm

i =
1

2 ln p
ln

1− p−
1+zi
1−zi

1− p−1


Let us try to combine the results for all primes. First redefine
β
(p)
m → ln p β(p)m .

This amounts to∫ ∞
0

dξ ξ−i cot θ
2
dJp

dξ
→
∫ ∞
0

dξ ξ−i cot θ
2 ln p

dJp

dξ

D Ghoshal (JNU) Designing Matrix Models for Zeta Functions



Introduction & Motivation
Phase Space Description of the Unitary Matrix Model

Unitary Matrix Model for the Symmetric Zeta-function
UMM for the Local ζ-function and Attempts at a Synthesis

Parameters of the UMMp

Recall that the parameters βm =

∮
dz

zm+1R<(z).

For the UMM of a local ζ-function at p, the diagonal form of a
term in the action of the UMMp is

∞∑
m=1

1
m
βmzm

i =
1

2 ln p
ln

1− p−
1+zi
1−zi

1− p−1


Let us try to combine the results for all primes. First redefine
β
(p)
m → ln p β(p)m . This amounts to∫ ∞

0
dξ ξ−i cot θ

2
dJp

dξ
→
∫ ∞
0

dξ ξ−i cot θ
2 ln p

dJp

dξ

D Ghoshal (JNU) Designing Matrix Models for Zeta Functions



Introduction & Motivation
Phase Space Description of the Unitary Matrix Model

Unitary Matrix Model for the Symmetric Zeta-function
UMM for the Local ζ-function and Attempts at a Synthesis

Parameters of the UMM

Combining all p

βm =
∑
p

ln p β(p)m ∼
∫

d
(
cot

θ

2

)
e−imθ

∞∑
n=1

〈
Ψ1−n

∣∣∣∣D−i cot θ
2

∣∣∣∣Ψ1−n

〉

The wavefunction Ψ1−n =
⊗

p ψ
(p)
1−n ∈

⊗
pH
−
(p) and D =

∑
p

Dp

acts as D(p) at the p-th place.

∑
p

ln p
dJp(ξ)

dξ
=

dψ(ξ)

dξ
= 1−

∑
i

ξγi−1

︸ ︷︷ ︸
non-trivial zeroes

−
∑
n

ξ2n−1
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Divergence

Keeping only the non-trivial zeroes γi

βm ∼
∫

dξ ξ−i cot θ
2+γi−1 =

∫
d(ln ξ) eRe(γi ) ln ξ+i(Im(γi )−cot θ

2 ) ln ξ

The integral diverges since Re(γi ) > 0. To get a convergent
integral, we may instead work with∫

d(ln ξ) e(Re(γi )−µ) ln ξ+i(Im(γi )−cot θ
2 ) ln ξ

which converges for µ > Re(γi ).
Clearly µ has to be independent of i . The reflection symmetry of
ζ-function implies that µ > 1 and assuming Riemann hypothesis
µ > 1

2 .
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Renormalization

The redefinition of the integral amounts to a renormalization

I either of the wavefunction ψ(p)
1−n → p−µ/2ψ(p)

1−n
I or of the Hamiltonian operator

This is possible thanks to the special form of the Vladimirov
operator and its eigenvalues.

Leads to a one-parameter family of Hamiltonians

Hµ ∼ H − µP
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Trivial zeroes and local zeta at infinity

Consider ζA(s) = π−
s
2 Γ
( s
2

) ∏
p ζp(s) ≡ ζ∞(s)

∏
p ζp(s), the adelic

zeta function. It involves Qp for all primes and R, and satisfies
ζA(s) = ζA(1− s).

π−
s
2 Γ
( s
2

)
=

∫
R

dx |x |s−1 e−πx2

The LHS is the Mellin transform of the Gaussian function.

ζp(s) =

∫
Q∗p

dx |x |s−1 Ωp(x) =
p

p − 1

∫
Qp

dx |x |s−1 Ωp(x)

is also a Mellin transform of the p-adic analogue of the Gaussian.
The Γ-factor takes care of the trivial zeroes.
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Wigner functions for local models

We construct the Wigner functions on the local phase space
R×Qp for ρ(p)x ′ = |x ′〉〈x ′|

W (p)
x ′ (x , q) =

∫ ∞
−∞

dy
〈
x +

y
2

∣∣∣ ρ̂(p)x ′

∣∣∣x − y
2

〉
e−iyq

= 2
∫ ∞
0

dκ e2i(q−κ)(x−x ′) dp(eκ)

dκ
dp(e2q−κ)

d(2q − κ)

where p(x) =
∑
n∈N

Θ(x − pn) is the local counting function: it

jumps by 1 at every power of p (fixed).
After integrating over position (momentum) Wigner function gives
the counting function (resp. eigenvalue density) upto an infinite
factor.
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Wigner function in the large phase space

Issues with coordinates:(
x(2), x(3), x(5), · · · ; q(2), q(3), q(5), · · ·

)
∼ (x ; q)→ (x , q)

〈x ′|x〉 =
∑
p

ln p
∑

m(p)∈Z

∫ ∞
0

dκ(p)e
i
(
x−x′+

2πm(p)
ln p

)
κ(p) =

∫ ∞
0

dκ e i(x−x′)κ dψ(eκ)

dκ

should be equivalent. ([Neretin] Canonical bijection between the
spaces of locally constant complex valued functions on ⊗pQp and
distributions on R.) Integrated Wigner function:∫ ∞

−∞
dx Wx ′+iµ(x , q) = −

(
e−µq dψ(eq)

dq

)2
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Other proposals and open issues

I Our renormalised UMM match with the UMM of Dutta &
Dutta.

I Propose operators for coordinate and momentum thru
Schwinger realisation of SL(2)

I Independent analysis of the Hamiltonian? (Cf. truncation in
Berry-Keating)

I Is there way to fix µ to get a unique Hamiltonian?
I More on the geometry of the phase space? Ultrametric?
I Issues at s = ±i∞ (equivalently z = 1 or θ = 0)
I Extension to Dirichlet L-function with twisted Vladimirov

derivatives (Also modular L-functions?).

etc. etc. etc. · · ·
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In summary, we attempt to get to the elusive Hamiltonian for the
zeta-function by starting at the local zeta-function at the p-th
place. This suggests a phase space picture with the hint of a
Hamiltonian. We attempt to combine this for all primes.

Thank you!
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