# Gauge Bosons the W boson

欢迎你们来到乌迪林学

AR ARABABA

Marina Cobal Giancarlo Panizzo

Università di Udine



## Unstable particles

- The wave function describing a decaying state is:  $\psi(t) = \psi(0)e^{-i\omega_R t}e^{-t/2\tau} = \psi(0)e^{-t\left(iE_R + \Gamma/2\right)}$ 

with  $E_R$  = resonance energy and  $\tau$  = lifetime

- The Fourier transform gives:  $g(\omega) = \int_{0}^{\infty} \psi(t) e^{i\omega t} dt$ The amplitude as a function of E is then:  $\chi(E) = \int \psi(t) e^{iEt} dt = \psi(0) \int e^{-t \left[ \left( \frac{\Gamma}{2} \right) + i \left( E_R - E \right) \right]} dt = \frac{K}{(E - E_R) - i\Gamma 2}$ 

K = constant,  $E_R = central value of the energy of the state$ 







- The value of the peak cross-section  $\sigma_{_{max}}$  can be found using arguments from wave optics:

$$\sigma_{\rm max} = 4 \pi \lambda^2 (2J + 1)$$

With  $\lambda$  = wavelenght of scattered/scattering particle in cms

 Including spin multiplicity factors, one gets the Breit-Wigner formula:

$$\sigma = \frac{4\pi \lambda^2 (2J+1)}{(2s_a+1)(2s_b+1)} \frac{\Gamma^2 4}{[(E-E_R)^2 + \Gamma^2 4]}$$

 $s_{\rm a}$  and  $s_{\rm b}$ : spin s of the incident and target particles J: spin of the resonant state







• Mean value of the Breit-Wigner shape is the mass of the resonance:  $M=E_R$ .  $\Gamma$  is the width of a resonance and is inverse mean lifetime of a particle at rest:  $\Gamma = 1/\tau$ 



## Missing Transverse Energy

- Missing energy is not a good quantity in a hadron collider as much energy from the proton remnants are lost near the beampipe
- Missing transverse energy  $(E_{T})$  much better quantity
  - Measure of the loss of energy due to neutrinos
- Definition:

$$- E_T \equiv -\sum_i E_T^i \hat{n}_i = -\sum_{all \text{ visible}} \vec{E}_T$$

• Best missing  $E_{\tau}$  reconstruction

–Use all calorimeter cells with true signal

- Use all calibrated calorimeter cells
- Use all reconstructed particles not fully reconstructed in the calorimeter
  - e.g. muons from the muon spectrometer



## Missing Transverse Energy





W leptonic widths

Masses (approximately)

$$M_{W} = \left(\frac{g^{2}\sqrt{2}}{8G_{F}}\frac{\dot{j}^{1/2}}{\dot{j}} = \sqrt{\frac{\pi\alpha}{\sqrt{2}G_{F}}}\frac{1}{\sin\theta_{W}} = \frac{37.3}{\sin\theta_{W}} \text{ GeV}$$

$$\frac{M_W}{M_Z} = \cos\theta_W$$

From the measured value of  $\theta_w$ 

$$M_{\rm W} = 80 \text{ GeV} \qquad M_Z \degree 91 \text{ GeV}$$

W. leptonic widths (equal one to each other, universality). From theory:

$$\Gamma_{ev} = \Gamma_{\mu v} = \Gamma_{\tau v} = \left(\frac{g}{\sqrt{2}}\right)^2 \frac{M_W}{24\pi} = \frac{1}{2} \frac{G_F M_W^3}{3\sqrt{2\pi}} \stackrel{\text{s}}{=} 225 \text{ MeV}$$

NB. In general, withds of interaction bosons are proportional to the cube of the mass



W hadronic widths

 $\overline{m} \qquad m_{\rm V} > m_{\rm W} \implies \Gamma_{\rm td} = \Gamma_{\rm ts} = \Gamma_{\rm tb} = 0$ 

To compute widths in qq one should take into account for

- factor 3 since 3 colors
- mixing matrix

Two types of decays:

same family

different families (small width)

All non diagonal elements are small, so *W* decays to different families are suppressed

$$|V_{ub}| <<1 \implies \Gamma_{ub} \approx 0 \quad |V_{db}| <<1 \implies \Gamma_{db} \approx 0$$

$$\Gamma_{us} \equiv \Gamma(W \rightarrow \overline{u}s) = 3 \times |V_{us}|^2 \Gamma_{ev} = 3 \times 0.224^2 \times \Gamma_{ev} \approx 35 \text{ MeV}$$
Three  
colors  

$$\Gamma_{cd} \equiv \Gamma(W \rightarrow \overline{c}d) = 3 \times |V_{cd}|^2 \Gamma_{ev} = 3 \times 0.22^2 \times \Gamma_{ev} \approx 33 \text{ MeV}$$

$$\Gamma_{ud} \equiv \Gamma(W \rightarrow \overline{u}d) = 3 \times |V_{ud}|^2 \Gamma_{ev} = 3 \times 0.974^2 \times \Gamma_{ev} = 2.84 \times \Gamma_{ev} \approx 640 \text{ MeV}$$

$$\Gamma_{cs} \equiv \Gamma(W \rightarrow \overline{c}s) = 3 \times |V_{cs}|^2 \Gamma_{ev} = 3 \times 0.99^2 \times \Gamma_{ev} \approx 660 \text{ MeV}$$

$$\Gamma_{W} \approx 2.04 \text{ GeV}$$



## W resonant production

### Both W and Z can be produced at a collider quark-(anti)quark

 $\Rightarrow$  UA1 (CERN). Discovery in 1983

CM energy of quarks

$$\sqrt{\hat{S}} = X_q X_{\overline{q}} \sqrt{S}$$

Main process:

 $\overline{u} + d \to e^{-} + \overline{v}_{e}$  $u + \overline{d} \to e^{+} + v_{e}$ 

They must have same **color** They must have same **chirality** 





W resonant production

Close to resonance  $\Rightarrow$  Breit Wigner (like  $e^+e^-$ )

 $\overline{u} + d \rightarrow e^{-} + \overline{v}_{e}$ 

$$\sigma \left( \overline{u}d \rightarrow e^{-} \overline{v}_{e} \right) = \frac{1}{9} \frac{3\pi}{\hat{s}} \frac{\Gamma_{ud} \Gamma_{ev}}{\left( \sqrt{\hat{s}} - M_{w} \right)^{2} + \left( \Gamma_{w} / 2 \right)^{2}}$$

Probability for same colors

$$\sigma_{\max}(\overline{u}d \rightarrow e^{-}\overline{v}_{e}) = \sigma_{\max}(u\overline{d} \rightarrow e^{+}v_{e})$$

$$= \frac{4\pi}{3} \frac{1}{M_W^2} \frac{\Gamma_{ud}\Gamma_{ev}}{\Gamma_W^2} = \frac{4\pi}{3} \frac{1}{81^2} \frac{0.640 \times 0.225}{2.04^2} \left[ \text{GeV}^{-2} \right] \times 388 \left[ \frac{\mu b}{\text{GeV}^{-2}} \right] \approx 8.8 \text{ nb}$$

Small  $\sigma_{max} <<< \sigma_{tot} \approx 100$  mb. Weak interactions ... are weak!



### Cross sections

#### Beam of $\overline{p}$ = partons (q, g, and some q)





Consider fusion of a valence quark and antiquark

if  $\sqrt{s}$ =630 GeV, momentum fraction needed

$$< X > \approx \frac{M_W}{\sqrt{s}} \approx \frac{M_Z}{\sqrt{s}} \approx 0.15$$

OK. A lot!





## W production from pp

Laboratory frame is the cm frame of  $p\overline{p}$ , not of  $q\overline{q}$ ; this pair, and so also the W (Z) originated from it, have a different longitudinal motion from event to event

$$\hat{S} = X_d X_{\overline{u}} S$$



The cross section prediction (QCD and structure function uncertainties) was predicted to be  $\sqrt{s}$ =630 GeV:

 $\sigma(\overline{p}p \to W \to e_{v_e}) = 530^{+170}_{-90} \text{ pb} \quad \text{(plus the analogue from } u\overline{d}\text{)}$ 

@  $\sqrt{s}$ =630 GeV <*x*> =  $M_w/\sqrt{s}$ ≈0.15, valence quarks

#### dominate over sea quarks

Cross sections grow rapidly with energy, along with the posiibility to have some longitudinal moment for the boson



## Resonant production of W and Z

In 1978 Cline, McIntire and Rubbia proposed to transform the proton collider SpS at CERN into a *pp* one, in which protons and antiprotons could flow in opposite directions, within the same (existing) magnetic structure, **thanks to CPT symmetry**.

The major problem which Rubbia and Van der Meer were able to solve was the "cooling" of particle beam bunches to dimensions small enough in the collision point.

In 1983 a luminosity of L=1032 m-2 s-1 was reached, sufficient to discover W and Z.



Signals

IVB production is a rare process  $10^{-8} - 10^{-9}$  ( $\sigma_{tot}(pp) \approx 70 \text{ mb} = 7 \times 10^{10} \text{ pb}$ ) [weak interaction is ...weak !] Rejection power of the detector must be >  $10^{10}$ 

Most frequent final state:  $q\overline{q}$ 

$$\sigma \cdot B(W \rightarrow q\overline{q}) = 3\sigma \cdot B(W \rightarrow l\nu_l)$$
 3 = numero di colori

Experimentally:  $q \Rightarrow jet$ 

Huge background from  $gg \rightarrow gg, gq \rightarrow gq, \{g\overline{q} \rightarrow g\overline{q}, \}q\overline{q} \rightarrow q\overline{q}$ 

Important kinematical quantity to neasure: *trasverse* momentum  $p_{\tau}$  = component of the momentum perpendicular to the beams

#### Leptonic states have a better S/B

$$\begin{array}{ll} W \to e \ v_e & e & \text{isolated, high } p_T \\ W \to \mu \ v_\mu & \mu & \text{isolated, high } p_T \end{array} \right\} \begin{array}{l} \label{eq:weyline} & \text{high } p_\tau \ v = \text{high missing } p_\tau \end{array}$$









## UA1. Central detector in the

## way to the museum





## UA1. First W production

EVENT 2958. 1279.



 $W \rightarrow e \overline{\nu}$ 





W appear in electromagnetic calorimeters as localised energy deposits in the opposite direction of the missing momentum

Vetoing tracks with  $p_{\tau}$ < 1 GeV cleans completely the event: what only survives are the electron and the "neutrino"



Fig. 16b. The same as picture (a), except that now only particles with  $p_T > 1$  GeV/c and calorimeters with  $E_T > 1$  GeV are shown.





 $W \rightarrow I v_{I}$ 

Transverse momenta of q and e  $\overline{q}$  are small, such that also that of the W is small.



 $p_{\tau}^{e}$  is the same in the two reference frames =  $(m_{w}/2) \sin \theta^{*}$ 

The angular distribution of the decay in the CM is known:



Transverse motion of  $W(p_{\tau}^{w}\neq 0)$  smears the peak, but it doesn't cancel it.  $m_{w}$  measurement is based on the measurement of the peak energy (or the decreasing profile)



Ws @ UA1



UA1  $M_{W}$  = 82.7±1.0(stat)±2.7(syst) GeV  $\Gamma_{W}$  < 5.4 GeV  $M_{W}$  = 80.2±0.8(stat)±1.3(syst) GeV  $\Gamma_{W}$  < 7 GeV UA2



How to extract m

(figures from Abbott et. al. (D0 Collaboration), PRD 58, 092003 (1998))



Alternatively can fit to

Lepton  $p_{T}$  or missing  $E_{T}$ 

Sensitivity different to different systematics

Very powerful checks in this analysis:

Electrons vs muons

Z mass

 $m_T vs p_T vs ME_T$  fits

The redundancy is the strength of this difficult high precision analysis



LHC signals of W's



0.2-0.3 pb<sup>-1</sup> yield clean signals of W's and Z's



## W spin and polarisation

In the W c.m. reference frame, electron's energy >> than its mass  $m_e$ . so chirality  $\approx$  helicity  $V-A \Rightarrow W$  couples only to

### fermions with helicity antifermions with helicity +

Tot ang. mom. 
$$J=S_w=1$$
  
 $J_z(\text{iniz.}) = \lambda = -1$   $\frac{d\sigma}{d\Omega} \propto \left[d_{-1,-1}^1\right]^2 = \left[\frac{1}{2}\left(1+\cos\theta^*\right)\right]^2$ 

N.B. if instead V+A:

$$\frac{d\sigma}{d\Omega} \propto \left[d_{1,1}^{1}\right]^{2} = \left[-\frac{1}{2}\left(1 + \cos\theta^{*}\right)\right]^{2}$$

The forward backward asymmetry is a consequence of *P* violation

In order to distinguish *V*–*A* from *V*+*A* it is necessary to measure the electron polarization



