Gauge Bosons the W boson

Giancarlo Panizzo

Università di Udine

2808818381414 min

- The wave function describing a decaying state is:

$$
\psi(t)=\psi(0) e^{-i \omega_{R} t} e^{-t / 2 \tau}=\psi(0) e^{-t\left(i E_{R}+\Gamma / 2 \mid\right.}
$$

with $E_{R}=$ resonance energy and $\tau=$ lifetime

- The Fourier transform gives:

$$
g(\omega)=\int_{0}^{\infty} \psi(t) e^{i \omega t} d t
$$

The amplitude as a function of E is then:
$\chi(E)=\int \psi(t) e^{i E t} d t=\psi(0) \int e^{-t\left[\left(\frac{\Gamma}{2}\right)+i\left(E_{R}-E\right)\right]} d t=\frac{K}{\left(E-E_{R}\right)-i \Gamma 2}$
$K=$ constant,$E_{R}=$ central value of the energy of the state
But:

- The value of the peak cross-section $\sigma_{\max }$ can be found using arguments from wave optics:

$$
\sigma_{\max }=4 \pi \lambda^{2}(2 J+1)
$$

With $\lambda=$ wavelenght of scattered/scattering particle in cms

- Including spin multiplicity factors, one gets the Breit-Wigner formula:

$$
\sigma=\frac{4 \pi \hbar^{2}(2 J+1)}{\left(2 s_{a}+1\right)\left(2 s_{b}+1\right)} \frac{\Gamma^{2} 4}{\left[\left(E-E_{R}\right)^{2}+\Gamma^{2} 4\right]}
$$

s_{a} and s_{b} : spin s of the incident and target particles
$\mathrm{J}:$ spin of the resonant state

- Mean value of the Breit-Wigner shape is the mass of the resonance:
$M=E_{R} . \Gamma$ is the width of a resonance and is inverse mean lifetime of a particle at rest: $\Gamma=1 / \tau$
- Missing energy is not a good quantity in a hadron collider as much energy from the proton remnants are lost near the beampipe
- Missing transverse energy $\left(\mathrm{E}_{\mathrm{T}}\right)$ much better quantity
- Measure of the loss of energy due to neutrinos
- Definition:
$-\mathbb{E}_{T} \equiv-\sum_{i} E_{T}^{i} \hat{n}_{i}=-\sum_{\text {all visible }} \overrightarrow{\mathrm{E}}_{\mathrm{T}}$
- Best missing E_{T} reconstruction
-Use all calorimeter cells with true signal
- Use all calibrated calorimeter cells
- Use all reconstructed particles not fully reconstructed in the calorimeter
- e.g. muons from the muon spectrometer

This is where new physics may sit

Masses (approximately)

$$
M_{W}=\left(\frac{g^{2} \sqrt{2}}{8 G_{F}} \div\right)^{1 / 2}=\sqrt{\frac{\pi \alpha}{\sqrt{2} G_{F}}} \frac{1}{\sin \theta_{w}}=\frac{37.3}{\sin \theta_{w}} \mathrm{GeV}
$$

$$
\frac{M_{w}}{M_{z}}=\cos \theta_{w}
$$

From the measured value of θ_{w}

$$
\mathrm{M}_{\mathrm{w}}=80 \mathrm{GeV} \quad M_{z}^{\&} 91 \mathrm{GeV}
$$

W. leptonic widths (equal one to each other, universality). From theory:

$$
\Gamma_{e v}=\Gamma_{\mu \nu}=\Gamma_{\tau v}=\left(\frac{g}{\sqrt{2}}\right)^{2} \frac{M_{W}}{24 \pi}=\frac{1}{2} \frac{G_{F} M_{W}^{3}}{3 \sqrt{2} \pi} \% 225 \mathrm{MeV}
$$

NB. In general, withds of interaction bosons are proportional to the cube of the mass

$$
m_{\tau}>m_{v} \Rightarrow \Gamma_{t t}=\Gamma_{t}=\Gamma_{t 0}=0
$$

To compute widths in $q q$ one should take into account for

- factor 3 since 3 colors
- mixing matrix

Two types of decays:

same family

different families (small width)
All non diagonal elements are small, so W decays to different families are suppressed

$$
\left|V_{u b}\right| \ll 1 \Rightarrow \Gamma_{u b} \approx 0 \quad\left|V_{c b}\right| \ll 1 \Rightarrow \Gamma_{c b} \approx 0
$$

$$
\Gamma_{u s} \equiv \Gamma(W \rightarrow \overline{U S})=3 \times\left|V_{u s}\right|^{2} \Gamma_{e v}=3 \times 0.224^{2} \times \Gamma_{e v} \approx 35 \mathrm{MeV}
$$

Three
colors
$\Gamma_{c d} \equiv \Gamma(W \rightarrow \bar{c} d)=3 \times\left|V_{c d}\right|^{2} \Gamma_{e r}=3 \times 0.22^{2} \times \Gamma_{e r} \approx 33 \mathrm{MeV}$
$\Gamma_{u d} \equiv \Gamma(W \rightarrow \overline{u d})=3 \times\left|V_{u d}\right|^{2} \Gamma_{e^{v}}=3 \times 0.974^{2} \times \Gamma_{e^{v}}=2.84 \times \Gamma_{e v} \approx 640 \mathrm{MeV}$
$\Gamma_{C S} \equiv \Gamma(W \rightarrow \overline{C S})=3 \times\left|V_{C S}\right|^{2} \Gamma_{e v}=3 \times 0.99^{2} \times \Gamma_{e v} \approx 660 \mathrm{MeV}$

$$
\Gamma_{w} \approx 2.04 \mathrm{GeV}
$$

hic sunt futura
Both W and Z can be produced at a collider quark-(anti)quark \Rightarrow UA1 (CERN). Discovery in 1983

CM energy of quarks $\quad \sqrt{\hat{S}}=X_{q} X_{\bar{q}} \sqrt{S}$

Main process:

$$
\begin{aligned}
& \bar{u}+d \rightarrow e^{-}+\bar{v}_{e} \\
& u+\bar{d} \rightarrow e^{+}+v_{e}
\end{aligned}
$$

They must have same color

They must have same chirality

$$
\begin{aligned}
& \bar{u}+d \rightarrow e^{-}+\bar{v}_{e} \\
& \sigma\left(\overline{\text { ud }} \rightarrow e^{-} \bar{v}_{e}\right)=\frac{1}{9} \frac{3 \pi}{\hat{s}} \frac{\Gamma_{u d} \Gamma_{e v}}{\left(\sqrt{\hat{s}}-M_{W}\right)^{2}+\left(\Gamma_{W} / 2\right)^{2}} \\
& \text { Probability for same colors } \\
& \sigma_{\text {max }}\left(\overline{u d} \rightarrow e^{-} \bar{v}_{e}\right)=\sigma_{\text {max }}\left(u \bar{d} \rightarrow e^{+} v_{e}\right) \\
& =\frac{4 \pi}{3} \frac{1}{M_{W}^{2}} \frac{\Gamma_{u d} \Gamma_{e v}}{\Gamma_{W}^{2}}=\frac{4 \pi}{3} \frac{1}{81^{2}} \frac{0.640 \times 0.225}{2.04^{2}}\left[\mathrm{GeV}^{-2}\right] \times 388\left[\mu \mathrm{~b} / \mathrm{GeV}^{-2}\right] \approx 8.8 \mathrm{nb}
\end{aligned}
$$

Small $\sigma_{\max } \lll \sigma_{\text {tot }} \approx 100 \mathrm{mb}$. Weak interactions.. are weak!

UNIVERSITÀ
 DEGLI STUDI

Beam of $\bar{p}=$ partons $(q, g$, and some q)

Consider fusion of a valence quark and antiquark
if $\sqrt{ } s=630 \mathrm{GeV}$, momentum fraction needed

$$
<x>\approx \frac{M_{w}}{\sqrt{S}} \approx \frac{M_{z}}{\sqrt{S}} \approx 0.15
$$

OK. A lot!

Laboratory frame is the cm frame of $p \bar{p}$, not of $q \bar{q}$; this pair, and so also the $W(Z)$ originated from it, have a different longitudinal motion from event to event

$$
\hat{s}=x_{d} x_{u} S
$$

The cross section prediction (QCD and structure
 function uncertainties) was predicted to be $\sqrt{ } \mathrm{s}=630 \mathrm{GeV}$:
$\sigma\left(\bar{p} p \rightarrow W \rightarrow e_{e}\right)=530 \quad{ }_{-90}^{+170} \mathrm{pb} \quad$ (plus the analogue from $u \bar{d}$)
$@ \sqrt{ } s=630 \mathrm{GeV}<x>=M_{w} / \sqrt{ } s \approx 0.15$, valence quarks dominate over sea quarks
Cross sections grow rapidly with energy, along with the posiibility to have some longitudinal moment for the boson

UNIVERSITÀ DEGLI STUDI DI UDINE

hic sunt futura
In 1978 Cline, McIntire and Rubbia proposed to transform the proton collider SpS at CERN into a $p \bar{p}$ one, in which protons and antiprotons could flow in opposite directions, within the same (existing) magnetic structure, thanks to CPT symmetry.

The major problem which Rubbia and Van der Meer were able to solve was the "cooling" of particle beam bunches to dimensions small enough in the collision point.

In 1983 a luminosity of $L=1032 \mathrm{~m}-2 \mathrm{~s}-1$ was reached, sufficient to discover \mathbf{W} and Z.

IVB production is a rare process $10^{-8}-10^{-9} \quad\left(\sigma_{\text {tot }}(p p) \approx 70 \mathrm{mb}=7 \times 10^{10} \mathrm{pb}\right)$ [weak interaction is ...weak !] Rejection power of the detector must be $>10^{10}$
Most frequent final state: $q \bar{q}$

$$
\sigma \cdot B(W \rightarrow q \bar{q})=3 \sigma \cdot B\left(W \rightarrow l v_{l}\right) \quad 3=\text { numero di colori }
$$

Experimentally: $q \Rightarrow$ jet
Huge background from $\quad g g \rightarrow g g, g q \rightarrow g q,\{g \bar{q} \rightarrow g \bar{q}\}, q \bar{q} \rightarrow q \bar{q}$

Important kinematical quantity to neasure: trasverse momentum $\boldsymbol{p}_{T}=$ component of the momentum perpendicular to the beams

Leptonic states have a better S/B
$\left.\begin{array}{lll}W \rightarrow e v_{e} & e & \text { isolated, high } p_{T} \\ W \rightarrow \mu v_{\mu} & \mu & \text { isolated, high } p_{T}\end{array}\right\} \quad+\quad$ high $p_{T} v=$ high missing p_{T}
hic sunt futura

(4) Heweasiril DI UDINE
 hic sunt futura

EVENT 2958. 1279.

$$
W^{-} \rightarrow e \bar{v}
$$

Vetoing tracks with $p_{T}<1 \mathrm{GeV}$ cleans

completely the event: what only survives are the electron and the"neutrino"

Fig. 16b. The same as picture (a), except that now only particles with $\mathrm{p}_{\mathrm{T}}>1 \mathrm{GeV} / \mathrm{c}$ and calorimeters with $\mathrm{E}_{\mathrm{T}}>1 \mathrm{GeV}$ are shown.

W appear in electromagnetic calorimeters as localised energy deposits in the opposite direction of the missing momentum

M_{w} measurement

Transverse momenta of q and $\mathrm{e} \bar{q}$ are small, such that also that of the W is small.

LAB

$$
p^{e}=m_{w} / 2
$$

$\boldsymbol{p}_{\boldsymbol{T}}{ }^{e}$ is the same in the two reference frames $=\left(m_{W} / 2\right) \sin \theta^{*}$
The angular distribution of the decay in the CM is known:

$$
\frac{d n}{d q} \overline{\text { coordinate transf } \cdot} \frac{d n}{d p_{T}}=\frac{d n}{d q} \frac{d q}{d p_{T}}
$$

"Jacobian" peak for $p_{T}^{e}=m_{w} / 2$
"Jacobian" peak for $p_{T}{ }^{m i s s i n g}=m_{w} / 2$
Transverse motion of $W\left(p_{T}^{w} \neq 0\right)$ smears the peak, but it doesn't cancel it. m_{w} measurement is based on the measurement of the peak energy (or the decreasing profile)

UNIVERSITÀ
 DEGLI STUDI DI UDINE

hic sunt futura

UA1 $\quad M_{W}=82.7 \pm 1.0$ (stat) ± 2.7 (syst) $\mathrm{GeV} \quad \Gamma_{W}<5.4 \mathrm{GeV}$

UA2 $\quad M_{W}=80.2 \pm 0.8$ (stat) ± 1.3 (syst) $\mathrm{GeV} \quad \Gamma_{W}<7 \mathrm{GeV}$
(figures from Abbott et. al. (D0 Collaboration), PRD 58, 092003 (1998))

Alternatively can fit to
Lepton p_{T} or missing E_{T}
Sensitivity different to different systematics
Very powerful checks in this analysis:
Electrons vs muons
Z mass
m_{T} vs p_{T} vs $M E_{T}$ fits
The redundancy is the strength of this difficult high precision analysis

UNIVERSITÀ
 DEGLI STUDI DI UDINE

hic sunt futura

$0.2-0.3 \mathrm{pb}^{-1}$ yield clean signals of W's and Z's

In the W c.m. reference frame, electron's energy >> than its mass m_{e}. so chirality \approx helicity $V-A \Rightarrow W$ couples only to

fermions with helicity antifermions with helicity +

Tot ang. mom. $\quad J=S_{W}=1$
J_{z} (iniz.) $=\lambda=-1 \quad \frac{d \sigma}{d \Omega} \propto\left[d_{-1,-1}^{1}\right]^{2}=\left[\frac{1}{2}\left(1+\cos \theta^{*}\right)\right]^{2}$
$J_{z^{\prime}}($ fin. $)=\lambda^{\prime}=-1$
N.B. if instead $V+A$:

$$
\frac{d \sigma}{d \Omega} \propto\left[d_{1,1}^{1}\right]^{2}=\left[-\frac{1}{2}\left(1+\cos \theta^{*}\right)\right]^{2}
$$

The forward backward asymmetry is a consequence of P violation

In order to distinguish $V-A$ from $V+A$ it is necessary to measure the electron
 polarization

