Radiation-Matter Interaction I

Dott. Michele Pinamonti Prof. Marina Cobal 以のの文字会会大学

Radiation – matter interaction

- Processes at the base of **particle-detector** operations
- The <u>energy lost</u> by the particles is converted in <u>electrical signal</u> to *measure* the various observables (positions, energy, momentum...)
- Any observable is measured with a specific detector
- Different particles, different interactions
 - Heavy charged particles
 - Electrons
 - Photons

Interaction and effects diversity

 Interaction (energy loss, effects target) depend on:

4

Matter composition and structure

Charged particles

Main phenomena

Energy loss

Anelastic collisions with electrons or atomic nuclei

Deflection

Elastic diffusion from nuclei

Other phenomena Cherenkov emission, Transition radiation

Bethe-Bloch formula

$$-\frac{dE}{dx} = 2\pi N_A r_e^2 m_e c^2 \rho \frac{Z}{A} \frac{z^2}{\beta^2} \left[\ln \frac{2m_e c^2 \gamma^2 \beta^2 W_{\text{max}}}{I^2} - 2\beta^2 - \delta - 2\frac{C}{Z} \right]$$

Valid for $\beta > 0.1$

7

I = average ionization potential

Z, A, ρ = characteristics of the material

z, β , γ = characteristics of the incident particles

 W_{max} = max energy transferred in one collision

$$r_{e}$$
 = classical radius of the electron

- $m_{\rho} = electron mass$
- N_a = Avogadro number
- C = shell correction
- δ = density effect

- Zone A: fast decrease proportional to 1/β²
- Point B: minimum of the energy loss
- Zone C: slow relativistic increase proportional to lnγ

• **Zone D:** constant energy loss per unit length, ionization limited by *density effects*

 $-(dE/dX) \sim ZN$

A **dense** material and with **high atomic number** gains more energy from the incident particle

The energy released does not depends on the mass of the incident particle

- A <u>fast</u> particle releases *less energy*
- A particle with higher <u>charge</u>, releases *more energy*

- **Density effects** (important at high energies): atom polarization screens the electrical field for the electrons which are far away, so that the collisions with these electrons contribute less to the total energy loss
- Shell corrections (important at low energies): when particle velocity ~ orbital electron velocity ⇒ stationary-electron assumption not valid anymore
- <u>Channeling</u> in materials with a symmetric atomic structure:

the energy loss is smaller if the particles move through a

This happens when the angle is smaller than a critical value

Relativistic limit: v = 0.96 c

Ionization minimum: dE / dx ~ 2 MeV cm²/g

First part of the curve

- Small β and γ ~1
- Non-relativistic particle
 E ~ mc² + mv² / 2, p = mv
- The term $1/\beta^2$ is dominant
- dE/dx as a function of energy and momentum

particle discrimination

Second part of the curve

- Large β~1 and γ
- Relativistic particle:
 E ~ pc E = myc² >> mc²
- The term ln(γ²β²) is dominant
- Logarithmic growth as a function of energy

equal for all the particles

Minimum Ionization

- The energy which corresponds to the ionization minimum depends from the mass of the incident particle.
- Heavier particles reach the minimum at higher energies
- The relativistic raise is the same for all the particles.

Dependency on the material

- Energy loss increases as Z/A increases
- Particles with the same velocity have about the same energy loss in different materials
- Linear absorbing power: (dE/dx)*(1/p) normalize materials with different mass density

 ϱ =mass density, l=thickness, ϱ *l= mass thickness Different materials with the same *mass thickness* have the same effect $\iota_{0.1}$

- When particle slows down it loses more energy
- Most of the energy is deposited at the end: this is important for medical application
- The curve goes to zero for the electrons **pick up** (particle becomes neural)

Penetration depth

Penetration Depth (Range)

Range: distance crossed by the particle in the material

Heavy charged particles

Outgoing/ingoing particles as a function of the material thickness

- Beam degraded in energy
- Many collisions
- No large deflections: range defined

ma

NB: In general the range does not coincide exactly with the thickness of the material needed to stop the particle, due to the presence of the scattering

Statistical fluctuations

Bethe-Bloch: <dE/dx> = average value of the energy loss in a material via ionization

Statistical fluctuations on:

- 1. Number of collisions
- 2. Energy transfer in each collision

Thin absorbers Large energy transfer are possible in one single collision

Landau distribution Large tails at high energy

Thick absorbers

Large number of collisions

Gauss distribution

Electron – matter interaction

- Coulomb interactions with:
 - *Nuclei* (elastic collisions, deflession)
 - Atomic electrons (anelastic collisions, energy losses)
- Energy transfers in a single collision larger than in the case of

heavy charged particles:

 ⇒ electrons less penetrating than heavy charged particles since they lose energy in a smaller number of collisions
 ⇒ trajectories perturbed → can just extrapolate the range

Modifications to the Bethe-Bloch formula:

Bremsstrahlung

 $e^-N \rightarrow e^-N\gamma$

- Radiation emission for diffusion electrical field of the nucleus (*bremsstrahlung* = braking)
- The energy is not transferred to material but to the emitted photon(s)

Electron energy loss

(dE/dx)tot = (dE/dx)rad + (dE/dx)coll

- IONIZATION \rightarrow up to few MeV
- BREMSSTRAHLUNG \rightarrow from tenths of MeV

There is a <u>critical energy</u> above which Bremsstrahlung dominates

The critical energy strongly depends from the absorbing material $Ec \approx \frac{600 \text{MeV}}{Z}$

For each material, one defines a critical energy E_c at which the energy loss by radiation is equal to the energy loss due to collisions.

(dE/dx)rad = (dE/dx)coll

Energy loss electron vs. proton

hic sunt futura

Mass thickness

• It is useful to introduce the quantity

Mass thickness =
$$x = \rho \cdot L$$

$$[x] = g \cdot cm^{-2}$$
Material density
Material thickness

- Mass thickness useful to "normalize" thickness of material to its mass density
- Normally, equal mass thicknesses of different materials have same effect on same type of radiation

Bethe-Bloch

