

PARTICLE PHYSICS 粒子物

Relativity 3

Paolo Giannozzi, DMIF, University of Udine, Italy

- Units for high-energy physics
- Examples of relativistic kinematics: scattering, collisions, decays
- Experimentally observed quantities

Units for high-energy physics

• In relativistic physics, it is convenient to express masses as $energy/c^2$ and momenta as energy/c

Energies are typically in units of *electronvolts*, eV, or multiples of eV:

1 eV = energy acquired by an electron crossing a 1 V potential difference

 $1 \text{ eV} = (1.602 \times 10^{-19} \text{ C}) (1 \text{ V}) = 1.602 \times 10^{-19} \text{ J}$

- Typical multiples used in particle physics: $1 \text{ MeV} = 10^6 \text{ eV}, 1 \text{ GeV} = 10^9 \text{ eV}, 1 \text{ TeV} = 10^{12} \text{ eV}$
- Mass of an electron in energy units: 0.511 MeV/ c^2 Mass of a proton: 938.2 MeV/ c^2 ; of a neutron: 939.5 MeV/ c^2

Units for high-energy physics (2)

Using GeV for energies and 1 fm= 10^{-15} m (approximately the size of a proton) for lengths:

Quantity	HEP Units	SI Units
Length	1 fm	10^{-15} m
Energy	1 GeV	$1.602 \times 10^{-10} \ \mathrm{J}$
Mass	$1 \; { m GeV}/c^2$	$1.78 imes 10^{-27} { m ~Kg}$
С	$2.998 imes 10^{23} { m ~fm/s}$	$2.998 imes10^8~{ m m/s}$
\hbar	$6.59 imes 10^{-25} \text{ GeV} \cdot \text{s}$	$1.055 imes 10^{-34} \ \mathrm{J}\cdot\mathrm{s}$
$\hbar c$	$0.1975 \mathrm{GeV} \cdot \mathrm{fm}$	$3.162 imes 10^{-26} \ \mathrm{J} \cdot \mathrm{m}$

Since $\frac{e^2}{\hbar c} = \alpha \simeq \frac{1}{137}$, fine structure constant, $e^2 = \alpha \hbar c = 1.44$ MeV·fm

One often sets c = 1 so masses and momenta are also measured in GeV.

Time Dilatation in action (2)

A typical energy of a muon produced in the high atmosphere is $E \simeq 50$ GeV. Its mass is $m_{\mu} = 106$ MeV, so $\gamma = E/mc^2 \simeq 500$, $\beta \simeq 1$.

The half life of a muon is $\tau_0 = 2.2 \times 10^{-6}$ s in its reference frame.

In our reference frame: $\tau = \gamma \tau_0 \simeq 1.1$ ms. In this time, the muon travels a distance: $s \simeq c\tau = (1.1 \times 10^{-3} \text{s})(3 \times 10^8 \text{m/s})=330 \text{ km}$

Relativistic kinematics: summary

The energy-momentum four-vector p^{μ} for a particle of mass m moving with velocity ${\bf v}$ is

$$p^{\mu} = (\frac{E}{c}, \mathbf{p}) = (m\gamma c, m\gamma \mathbf{v}), \qquad \gamma = \frac{1}{\sqrt{1-\beta^2}}, \qquad \beta = \frac{v}{c}$$

with Lorentz invariant norm $p^{\mu}p_{\mu} = -p_0^2 + |\mathbf{p}|^2 = -m^2c^2$.

For a photon of wave vector ${\bf k}$ and frequency $\nu = \omega/2\pi$ ($\omega = ck$):

$$p^{\mu} = (\frac{E}{c}, \mathbf{p}) = (\frac{\hbar\omega}{c}, \hbar\mathbf{k}) = (\hbar k, \hbar \mathbf{k})$$

with Lorentz invariant norm $p^{\mu}p_{\mu} = 0$. Note that the relation between E and the frequency ν , $E = h\nu$, is purely quantum-mechanical.

Relativistic kinematics: collisions

During a collision process, the sum of energy-momentum four-vectors of all particles $P^{\mu} = \sum_{i} p_{i}^{\mu}$ is conserved.

A simple example: a photon hitting an electron at rest (*Compton scattering*).

$$\hbar k + mc = \hbar k' + E/c$$
$$\hbar \mathbf{k} = \hbar \mathbf{k}' + \mathbf{p}$$

One derives $\mathbf{p} = \hbar(\mathbf{k} - \mathbf{k}')$ and $E = \hbar(k - k')c + mc^2$. Using $E^2 = m^2c^4 + p^2c^2$, one finds $\hbar kk'(1 - \cos\theta) = mc(k - k')$. In terms of the wavelength $\lambda = \frac{2\pi}{k}$, one can finally write $\lambda' - \lambda = \frac{h}{mc}(1 - \cos\theta)$

In this case, the nature of the particles does not change in the collision

Relativistic kinematics: collisions (2)

A more general case: a neutrino hits an electron and produces a muon

$$\nu(k_1) + e(p_1) \to \nu(k_2) + l(p_2)$$

In the following, we use units in which $\hbar = 1$ and c = 1 and the sign convention $p^2 = p_0^2 - \mathbf{p}^2 = -p_\mu p^\mu$ for square module of four-vectors

 $k_i = (\omega_i, \mathbf{k}_i)$ with $\omega_i^2 - \mathbf{k}_i^2 = \epsilon^2$ (very small for neutrinos!) $p_1 = (E_1, \mathbf{p}_1)$ with $E_1^2 - \mathbf{p}_1^2 = m^2$; $p_2 = (E_2, \mathbf{p}_2)$ with $E_2^2 - \mathbf{p}_2^2 = m_{\mu}^2$ (mass of the muon). In the laboratory (LAB) reference frame:

$$p_1 + k_1 = p_2 + k_2 \longrightarrow \begin{cases} \omega_1 + E_1 &= \omega_2 + E_2 \\ \mathbf{k}_1 + \mathbf{p}_1 &= \mathbf{k}_2 + \mathbf{p}_2 \end{cases}$$

Relativistic kinematics: collisions (3)

In the Center of Mass (CM) reference frame:

$$\begin{cases} \omega_1^* + E_1^* = \omega_2^* + E_2^* \\ \mathbf{k}_1^* + \mathbf{p}_1^* = \mathbf{k}_2^* + \mathbf{p}_2^* \end{cases}$$

The norm is conserved and is a Lorentz invariant:

$$s = (k_1^* + p_1^*)^2 = (\omega_1^* + E_1^*)^2 - (\mathbf{k}_1^* + \mathbf{p}_1^*)^2 \longrightarrow \sqrt{s} = \omega_1^* + E_1^*$$

because $\mathbf{k}_1^* + \mathbf{p}_1^* = 0$ (we are in the CM). \sqrt{s} is the maximum energy that can be transformed into mass: $s = (\omega_2 + E_2)^2 \ge m_{\mu}^2$.

In general, for the sum over masses in the final state, $\left|\sum_{f} m_{f} \leq \sqrt{s}\right|$. $M = \sqrt{s}$ is also called the *effective* or *invariant* mass of a process.

Fixed target vs colliding targets

 $s = (k_1 + p_1)^2 = k_1^2 + p_1^2 + 2k_1 \cdot p_1 = \epsilon^2 + m^2 + 2\omega_1 E_1 - 2\mathbf{k}_1 \cdot \mathbf{p}_1$ $= \epsilon^2 + m^2 + 2\omega_1 m$

 $\epsilon \sim 0$ and at high energies, m is also negligible: $\left\lfloor \sqrt{s} \simeq \sqrt{2\omega_1 m} \right\rfloor$

The production of a muon (mass: $m_{\mu} = 106$ MeV) is possible if the invariant mass \sqrt{s} exceeds the mass of the muon m_{μ} :

$$\epsilon^2 + m^2 + 2\omega_1 m \ge m_\mu^2 \longrightarrow \omega_1 \ge \frac{m_\mu^2 - m^2}{2m} = \frac{11200 - 0.26}{1.02} \text{MeV} \simeq 11 \text{GeV}$$

Fixed target vs colliding targets (2)

Let us assume now a head-to-head collision as in the picture below.

We have $k_1 = (\omega_1, \mathbf{k}_1)$, $k_2 = (\omega_2, \mathbf{k}_2)$, with $\omega_i = \sqrt{\mathbf{k}_i^2 + m_i^2}$. Invariant mass:

$$s = (k_1 + k_2)^2 = (\omega_1 + \omega_2)^2 - (\mathbf{k}_1 + \mathbf{k}_2)^2 = (\omega_1 + \omega_2)^2$$

because $\mathbf{k}_1 + \mathbf{k}_2 = 0$. At high energies $\omega_i \simeq |\mathbf{k}_i|$ and $\sqrt{s} \simeq 2|\mathbf{k}_1|$ Pairs of muons can be produced from an electron and a positron if $2|\mathbf{k}_1| \ge 2m_\mu \longrightarrow |\mathbf{k}_1| \sim m_\mu = 106 \text{MeV}$ \vec{k}, m

Note the difference wrt the previous case!

Decay of a particle into two particles

An unstable particle decays into two $p_1 = (E_1, \vec{p}_1) \quad M \quad p_2 = (E_2, \vec{p}_2)$ particles. In the CM:

$$0 = \mathbf{p}_1 + \mathbf{p}_2, \qquad p = |\mathbf{p}_1| = |\mathbf{p}_2|$$

$$M = E_1 + E_2 = \sqrt{m_1^2 + p^2} + \sqrt{m_2^2 + p^2}, \qquad M \ge m_1 + m_2$$

From $E_1 = \sqrt{m_1^2 + p^2}$ one finds $p^2 = E_1^2 - m_1^2$ and $E_2 = M - E_1 = \sqrt{m_2^2 - m_1^2 + E_1^2}$. After some algebra, one finds

$$E_{1} = \frac{M^{2} + m_{1}^{2} - m_{2}^{2}}{2M}, \qquad E_{2} = \frac{M^{2} + m_{2}^{2} - m_{1}^{2}}{2M},$$
$$p = \frac{\sqrt{(M^{2} - (m_{1} - m_{2})^{2})(M^{2} - (m_{1} + m_{2})^{2})}}{2M}$$

Example: $\pi^- \to \mu^- + \nu_\mu$, $m_\pi = 140$ MeV, $E_\mu \simeq \frac{m_\pi + m_\mu}{2m_\pi} \simeq 110$ MeV

Decay of a particle into two particles (2)

As before, in the laboratory frame, with particle momentum along z:

$$p = p_{1z} + p_{2z}$$

$$0 = \mathbf{p}_{1T} + \mathbf{p}_{2T}$$

$$E = E_1 + E_2$$

$$P = (E, 0, 0, p)$$

$$P_1 = (E_1, \vec{p}_{1T}, p_{1z})$$

$$\vec{p}_T \text{ 2-vettori}$$

$$P_2 = (E_2, \vec{p}_{2T}, p_{2z})$$

Let us use Lorentz transforms between LAB and CM. Note that: $\gamma=E/M;\,\beta=\sqrt{\gamma^2-1}/\gamma=p/E$

$$E_{1} = \gamma \left(E_{1}^{CM} + \beta p_{1z}^{CM} \right); \qquad E_{2} = \gamma \left(E_{2}^{CM} + \beta p_{2z}^{CM} \right)$$
$$p_{1z} = \gamma \left(p_{1z}^{CM} + \beta E_{1}^{CM} \right); \qquad p_{2z} = \gamma \left(p_{2z}^{CM} + \beta E_{2}^{CM} \right)$$
$$p_{1T} = \mathbf{p}_{1T}^{CM}; \qquad \mathbf{p}_{2T} = \mathbf{p}_{2T}^{CM}$$

More cases of decay

Example: decay of a pion into two photons, $\pi^0 \to \gamma\gamma$. Invariant mass: $M^2 = (p_{1\gamma} + p_{2\gamma})^2 = p_{1\gamma}^2 + p_{2\gamma}^2 + 2p_{1\gamma}p_{2\gamma} = 2E_1E_2(1 - \cos\theta_{12})$

Decay of a particle into three (or any number) particles:

A series of detectors can distinguish different particles, measure E and p of all particles

Let us build the quantity $s = (E_1 + E_2 + E_3)^2 - (\mathbf{p}_1 + \mathbf{p}_2 + \mathbf{p}_3)^2$. This is a Lorentz invariant, that in the rest frame of the decaying particle can be easily evaluated: $s = M^2$, the *invariant mass*. Then one searches for peaks in histograms of invariant mass.

Observables: cross sections, decay rates

- For scattering processes, the relevant quantity to be measured in experiments is the cross section σ . The cross section has the units of a surface (m², or cm²; also used in high-energy physics, the barn, 10^{-28} m², or 100 fm²)
- For decay processes, the relevant quantity to be measured in experiments is the *decay rate* λ . The decay rate has the units of an inverse of a time

Both quantities are related to the *probability* that the considered process occurs

Definition of the (total) cross section: the number of scattering events during time dt is $dN = \sigma(JAnd)dt$, where J is the number of incident particles per unit time per unit surface, A, n, d as in the picture.

The quantity L = JAnd is known as the *luminosity* (units: $[\ell]^{-2}[t]^{-1}$).

If the decay rate is λ , there are $dN = N(t)\lambda dt$ particle that decay in time dt. This leads to the $N(t) = N_0 e^{-\lambda t}$ law.

We define $\tau = \lambda^{-1}$ as the *mean life*. τ refers to the reference frame where the particle is at rest, that is, to the *proper time* of the particle! See the discussion about muons and cosmic rays.

For a particle with speed $v = \beta c$, $\tau' = \gamma \tau$ in the LAB reference frame

Mean life and decay width

If a particle has a finite lifetime with mean life τ , i.e. it decays with probability $1/\tau$, we can define the *decay width* Γ as $\Gamma = \frac{\hbar}{\tau}$.

The decay width has the dimension of an energy (\hbar = energy x time). In high-energy units, $\hbar = 6.58 \cdot 10^{-22}$ MeV s.

Strongly decaying particles have short lifetimes and hence large decay widths, e.g. the $\rho(770)$ has $\tau=4.4\cdot10^{-24}$ s and $\Gamma=151$ MeV.

Weakly decaying particles have long lifetimes and small decay widths, e.g. the K° meson has $\tau = 0.9 \cdot 10^{-10}$ s and $\Gamma = 7.3 \cdot 10^{-12}$ MeV

Mean life and decay width (2)

The decay width is a purely quantum phenomenon that can be interpreted as a manifestation of the indeterminacy principle $\Delta E \Delta t \geq \hbar$. It appears as a finite width in experiments as a function of energy:

with a typical Lorentzian form (FWHM=Full Width at Half Maximum). If there are more possible decay processes with probability $B_r(i)$ (normalized: $\sum_i B_r(i) = 1$), then $\Gamma = \sum_i \Gamma_i$, where $\Gamma_i = \Gamma B_r(i)$