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e Units for high-energy physics
e Examples of relativistic kinematics: scattering, collisions, decays

e Experimentally observed quantities



Units for high-energy physics

In relativistic physics, it is convenient to express masses as energy/c?

and momenta as energy/c

Energies are typically in units of

electronvolts, eV, or multiples of eV: 4|

1 eV = energy acquired by an electron
crossing a 1 V potential difference

1 Volt

1eV = (1.602x 10712 C) (1 V) =1.602x 1071 J

Typical multiples used in particle physics:

1 MeV = 10 eV, 1 GeV = 10% eV, 1 TeV = 1012 eV

Mass of an electron in energy units: 0.511 MeV/c?
Mass of a proton: 938.2 MeV/c?; of a neutron: 939.5 MeV/c?



Units for high-energy physics (2)

Using GeV for energies and 1 fm=10"'" m (approximately the size of a
proton) for lengths:

Quantity | HEP Units S| Units

Length 1 fm 1071 m

Energy | 1 GeV 1.602 x 1010 J

Mass 1 GeV/c? 1.78 x 10727 Kg

c 2.998 x 10*3 fm/s | 2.998 x 10% m/s

h 6.59 x 1072° GeV-s | 1.055 x 10734 J-s

hic 0.1975 GeV-fm 3.162 x 10726 J-m

. e? 1 . 5
Since — = « ~ ——, fine structure constant, e = ahc = 1.44 MeV-fm
hc 137

One often sets ¢ = 1 so masses and momenta are also measured in GeV.



Time Dilatation in action (2)

A typical energy of a muon produced in the
high atmosphere is £ ~ 50 GeV. lts mass is
m,, = 106 MeV, so v = E/mc* ~ 500, 8 ~ 1.

The half life of a muon is 7p = 2.2 x 1075 s in
Its reference frame.

In our reference frame: 7 = vy >~ 1.1 ms.
In this time, the muon travels a distance:
s~crt = (1.1 x1077s)(3 x 10°m/s)=330 km




Relativistic kinematics: summary

The energy-momentum four-vector p* for a particle of mass m moving

with velocity v is

E 1 v
H = | — p— C."vyv p— , = —
p ( c ) p) (m’Y , TTVY )7 Y \/1_—52 B c
with Lorentz invariant norm p#p, = —pé + |p|* = —m?c*.

For a photon of wave vector k and frequency v = w/27 (w = ck):

b hw
" = (—,p) = (—, hk) = (hk, hk)
C C
with Lorentz invariant norm p#p,, = 0. Note that the relation between E and

the frequency v, £ = hv, is purely quantum-mechanical.



Relativistic kinematics: collisions

During a collision process, the sum of energy-momentum four-vectors
of all particles P* =" pl'" is conserved.

A simple example: a photon hitting an
electron at rest (Compton scattering).

hk + mc hk'+ E/c
hk = Rk +p

One derives p = h(k — k') and F = h(k — k')c + mc?. Using E? =
m2c* 4+ p2c?, one finds Hikk'(1 — cos @) = mc(k — k'). In terms of the
2T h

wavelength A = —, one can finally write | A’ — A = —(1 — cos )
k mc

In this case, the nature of the particles does not change in the collision



Relativistic kinematics: collisions (2)

A more general case: a neutrino hits an

electron and produces a muon vik,)
v (k) /
v(ky) +e(pr) — viks) + 1(p2) m_\> i(p,)

In the following, we use units in which A = 1 and ¢ = 1 and the sign
convention p* = pj—p* = —p,p* for square module of four-vectors

ki = (w;, k;) with w? — k% = €% (very small for neutrinos!)
p1 = (E1,p1) with Ef — pf = m?; pp = (E2, p2) with E5 — p5 = m.,
(mass of the muon). In the laboratory (LAB) reference frame:

w1+ E1 = wo+ By
+p1 = ko+po



Relativistic kinematics: collisions (3)

A’_rz* L] —
. 7 P

In the Center of Mass (CM) reference frame:

k'
{ wi + B ws + E5 >
*k k - k *k
1 TP1 = Ko+ Py /
P>
The norm is conserved and is a Lorentz invariant:

s= (ki +p])" = (wi + E7)" — (k] + P1)* — Vs =w] + E]

because ki 4+ p; = 0 (we are in the CM). /s is the maximum energy

that can be transformed into mass: s = (w2 + E2)* > m?.

In general, for the sum over masses in the final state, | . my < VS |.

M = /s is also called the effective or invariant mass of a process.



Fixed target vs colliding targets

Assuming that the target is fixed vik) / ¥(2)
(p1 ~ 0 in this case): A

I(p,)

s = (ki+p)’=ki+pi 42k -pr=€+m’+2wFE —2ki - py

— 2+ m?+2wim

e ~ 0 and at high energies, m is also negligible: | \/s >~ \/2wim

The production of a muon (mass: m, = 106 MeV) is possible if the
invariant mass /s exceeds the mass of the muon m,,:

my, —m? 11200 — 0.26

MeV ~ 11GeV
2m 1.02

e2+m+2wim > mi — Wy >




Fixed target vs colliding targets (2)

Let us assume now a head-to-head collision as in the picture below.

— —

k] k2

We have ki = (w1, k1), k2 = (wo,ks), with w; = \/k? + m2. Invariant
mass:

s = (k1 + k2)2 = (w1 + w2)2 — (ky + k2)2 = (w1 + w2)2

because ki + ko = 0. At high energies w; >~ |k;| and | /s =~ 2]k |

Pairs of muons can be produced from an electron and a positron if

2|k;| > 2m,, — kq| ~ m,, = 106MeV ke, m N / k,m

Note the difference wrt the previous case! =



Decay of a particle into two particles

An unstable particle decays into two . =(&.5) M p,=(E,.p,)
particles. In the CM: < >

0 = p1+ P2, p = |p1| = |p2|
M = E1+E2:\/m%+p2+\/m§+p2, M > my 4+ ms

From E; = \/m? + p? one finds p> = E? —m? and Ex = M — E; =
\/m3 —m?2 + E?. After some algebra, one finds

E:M2—|—m%—m% E:MQ—I—m%—m%
1 N ’ 2 I ’
_ VM — (mg —me)?) (M2 — (m1 + me)?)

b IM

m72T + m?
Example: 7= — pu~ +v,, m; = 140 MeV, E,, ~ 5 E ~ 110 MeV
Lz




Decay of a particle into two particles (2)

As before, in the laboratory frame, with particle momentum along z:

— R =(£,, :Eill",pl:)
— Piz =+ P2z P=(E,0,0, p) _

0 = pir+Por [p“" ]

D — El + E2 P, =(E,, Por Ps.)

Let us use Lorentz transforms between LAB and CM. Note that:

y=E/M; =/ ~1/y=p/E

By =~ (ESM + ppSM) Ey =~ (ESY + gpgM)
p1. = (pTM + BEYM) p2. = (p5." + BES™M)
C M, CM

PiT = P17 P21 = Por



More cases of decay

Example: decay of a pion into two photons, 7 — ~4~. Invariant mass:
M? = (p1y + p2y)? = pi, + D5, + 2p1yP2y = 2E1 Ea(1 — cos 012)

Decay of a particle into three (or any number) particles:

A ser_ie§ of de.tectors P, = ( E1, Pl)
can distinguish different P, = (E )
particles, measure F and 2= 2, P2
p of all particles P3 = (E37 PS)

Let us build the quantity s = (E1 + Ey + E3)? — (p1 +p2 + p3)?. This
is a Lorentz invariant, that in the rest frame of the decaying particle can
be easily evaluated: s = M?, the invariant mass. Then one searches for
peaks in histograms of invariant mass.



Observables: cross sections, decay rates

e For scattering processes, the relevant quantity to be measured in
experiments Is the cross section o. The cross section has the units
of a surface (m?, or cm?; also used in high-energy physics, the barn,
10~%® m?, or 100 fm?)

e For decay processes, the relevant quantity to be measured in
experiments is the decay rate A\. The decay rate has the units
of an inverse of a time

Both quantities are related to the probability that the considered process
occurs



Cross-section
A

J = beam flux T

h

Il = target particle d
density

Definition of the (total) cross section: the number of scattering events
during time dt is dN = o(JAnd)dt, where J is the number of incident
particles per unit time per unit surface, A, n, d as in the picture.

The quantity L = JAnd is known as the luminosity (units: [¢]72[t]™1).



Decay time and Lifetime

ANO
NU
1
1 —t/t
P(f)dt =—e™"'" dt
12 Rt,, =0.693 7 T
1/e 4
t

If the decay rate is A, there are dN = N (t)Adt particle that decay in
time dt. This leads to the N(t) = Noe ! law.

We define 7 = A\~! as the mean life. T refers to the reference frame
where the particle is at rest, that is, to the proper time of the particle!
See the discussion about muons and cosmic rays.

For a particle with speed v = B¢, 7/ = 7 in the LAB reference frame



Mean life and decay width

If a particle has a finite lifetime with mean life 7, i.e. it decays with

h
probability 1/7, we can define the decay widthT" as|I' = — |.
T

The decay width has the dimension of an energy (7 = energy x time).
In high-energy units, & = 6.58 - 1072% MeV s.

Strongly decaying particles have short lifetimes and hence large decay
widths, e.g. the p(770) has 7 = 4.4-107%* s and I' = 151 MeV.

Weakly decaying particles have long lifetimes and small decay widths,
e.g. the K° meson has 7=0.9-10" sand I' = 7.3 - 10~ !* MeV



Mean life and decay width (2)

The decay width is a purely quantum phenomenon that can be
interpreted as a manifestation of the indeterminacy principle AEAt > h.
It appears as a finite width in experiments as a function of energy:

/4
(E-E,)*+I?/4

E Lorentzian line
>

Eo

with a typical Lorentzian form (FWHM=Full Width at Half Maximum).
If there are more possible decay processes with probability B,.(7)

(normalized: ) . B,(¢) = 1), then |I' =) .T'; |, where I'; = I' B,.(%)




