## Relativity 3

Paolo Giannozzi, DMIF, University of Udine, Italy

- Units for high-energy physics
- Examples of relativistic kinematics: scattering, collisions, decays
- Experimentally observed quantities


## Units for high-energy physics

- In relativistic physics, it is convenient to express masses as energy/ $c^{2}$ and momenta as energy/c

Energies are typically in units of electronvolts, eV , or multiples of eV :
$1 \mathrm{eV}=$ energy acquired by an electron crossing a 1 V potential difference
 $1 \mathrm{eV}=\left(1.602 \times 10^{-19} \mathrm{C}\right)(1 \mathrm{~V})=1.602 \times 10^{-19} \mathrm{~J}$

- Typical multiples used in particle physics: $1 \mathrm{MeV}=10^{6} \mathrm{eV}, 1 \mathrm{GeV}=10^{9} \mathrm{eV}, 1 \mathrm{TeV}=10^{12} \mathrm{eV}$
- Mass of an electron in energy units: $0.511 \mathrm{MeV} / c^{2}$ Mass of a proton: 938.2 $\mathrm{MeV} / c^{2}$; of a neutron: $939.5 \mathrm{MeV} / c^{2}$


## Units for high-energy physics (2)

Using GeV for energies and $1 \mathrm{fm}=10^{-15} \mathrm{~m}$ (approximately the size of a proton) for lengths:

| Quantity | HEP Units | SI Units |
| :--- | :--- | :--- |
| Length | 1 fm | $10^{-15} \mathrm{~m}$ |
| Energy | 1 GeV | $1.602 \times 10^{-10} \mathrm{~J}$ |
| Mass | $1 \mathrm{GeV} / c^{2}$ | $1.78 \times 10^{-27} \mathrm{Kg}$ |
|  |  |  |
| $c$ | $2.998 \times 10^{23} \mathrm{fm} / \mathrm{s}$ | $2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}$ |
| $\hbar$ | $6.59 \times 10^{-25} \mathrm{GeV} \cdot \mathrm{s}$ | $1.055 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$ |
| $\hbar c$ | $0.1975 \mathrm{GeV} \cdot \mathrm{fm}$ | $3.162 \times 10^{-26} \mathrm{~J} \cdot \mathrm{~m}$ |

Since $\frac{e^{2}}{\hbar c}=\alpha \simeq \frac{1}{137}$, fine structure constant, $e^{2}=\alpha \hbar c=1.44 \mathrm{MeV} \cdot \mathrm{fm}$
One often sets $c=1$ so masses and momenta are also measured in GeV .

## Time Dilatation in action (2)

A typical energy of a muon produced in the high atmosphere is $E \simeq 50 \mathrm{GeV}$. Its mass is $m_{\mu}=106 \mathrm{MeV}$, so $\gamma=E / m c^{2} \simeq 500, \beta \simeq 1$. The half life of a muon is $\tau_{0}=2.2 \times 10^{-6} \mathrm{~s}$ in its reference frame.

In our reference frame: $\tau=\gamma \tau_{0} \simeq 1.1 \mathrm{~ms}$.
In this time, the muon travels a distance:
$s \simeq c \tau=\left(1.1 \times 10^{-3} \mathrm{~s}\right)\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)=330 \mathrm{~km}$


## Relativistic kinematics: summary

The energy-momentum four-vector $p^{\mu}$ for a particle of mass $m$ moving with velocity $\mathbf{v}$ is

$$
p^{\mu}=\left(\frac{E}{c}, \mathbf{p}\right)=(m \gamma c, m \gamma \mathbf{v}), \quad \gamma=\frac{1}{\sqrt{1-\beta^{2}}}, \quad \beta=\frac{v}{c}
$$

with Lorentz invariant norm $p^{\mu} p_{\mu}=-p_{0}^{2}+|\mathbf{p}|^{2}=-m^{2} c^{2}$.
For a photon of wave vector $\mathbf{k}$ and frequency $\nu=\omega / 2 \pi(\omega=c k)$ :

$$
p^{\mu}=\left(\frac{E}{c}, \mathbf{p}\right)=\left(\frac{\hbar \omega}{c}, \hbar \mathbf{k}\right)=(\hbar k, \hbar \mathbf{k})
$$

with Lorentz invariant norm $p^{\mu} p_{\mu}=0$. Note that the relation between $E$ and the frequency $\nu, E=h \nu$, is purely quantum-mechanical.

## Relativistic kinematics: collisions

During a collision process, the sum of energy-momentum four-vectors of all particles $P^{\mu}=\sum_{i} p_{i}^{\mu}$ is conserved.

A simple example: a photon hitting an electron at rest (Compton scattering).

$$
\begin{aligned}
\hbar k+m c & =\hbar k^{\prime}+E / c \\
\hbar \mathbf{k} & =\hbar \mathbf{k}^{\prime}+\mathbf{p}
\end{aligned}
$$

One derives $\mathbf{p}=\hbar\left(\mathbf{k}-\mathbf{k}^{\prime}\right)$ and $E=\hbar\left(k-k^{\prime}\right) c+m c^{2}$. Using $E^{2}=$ $m^{2} c^{4}+p^{2} c^{2}$, one finds $\hbar k k^{\prime}(1-\cos \theta)=m c\left(k-k^{\prime}\right)$. In terms of the wavelength $\lambda=\frac{2 \pi}{k}$, one can finally write $\lambda^{\prime}-\lambda=\frac{h}{m c}(1-\cos \theta)$
In this case, the nature of the particles does not change in the collision

## Relativistic kinematics: collisions (2)

A more general case: a neutrino hits an electron and produces a muon

$$
\nu\left(k_{1}\right)+e\left(p_{1}\right) \rightarrow \nu\left(k_{2}\right)+l\left(p_{2}\right)
$$



In the following, we use units in which $\hbar=1$ and $c=1$ and the sign convention $p^{2}=p_{0}^{2}-\mathbf{p}^{2}=-p_{\mu} p^{\mu}$ for square module of four-vectors
$k_{i}=\left(\omega_{i}, \mathbf{k}_{i}\right)$ with $\omega_{i}^{2}-\mathbf{k}_{i}^{2}=\epsilon^{2}$ (very small for neutrinos!) $p_{1}=\left(E_{1}, \mathbf{p}_{1}\right)$ with $E_{1}^{2}-\mathbf{p}_{1}^{2}=m^{2} ; p_{2}=\left(E_{2}, \mathbf{p}_{2}\right)$ with $E_{2}^{2}-\mathbf{p}_{2}^{2}=m_{\mu}^{2}$ (mass of the muon). In the laboratory (LAB) reference frame:

$$
p_{1}+k_{1}=p_{2}+k_{2} \longrightarrow\left\{\begin{array}{l}
\omega_{1}+E_{1}=\omega_{2}+E_{2} \\
\mathbf{k}_{1}+\mathbf{p}_{1}=\mathbf{k}_{2}+\mathbf{p}_{2}
\end{array}\right.
$$

## Relativistic kinematics: collisions (3)

In the Center of Mass (CM) reference frame:

$$
\left\{\begin{aligned}
\omega_{1}^{*}+E_{1}^{*} & =\omega_{2}^{*}+E_{2}^{*} \\
\mathbf{k}_{1}^{*}+\mathbf{p}_{1}^{*} & =\mathbf{k}_{2}^{*}+\mathbf{p}_{2}^{*}
\end{aligned}\right.
$$



The norm is conserved and is a Lorentz invariant:

$$
s=\left(k_{1}^{*}+p_{1}^{*}\right)^{2}=\left(\omega_{1}^{*}+E_{1}^{*}\right)^{2}-\left(\mathbf{k}_{1}^{*}+\mathbf{p}_{1}^{*}\right)^{2} \longrightarrow \sqrt{s}=\omega_{1}^{*}+E_{1}^{*}
$$

because $\mathbf{k}_{1}^{*}+\mathbf{p}_{1}^{*}=0$ (we are in the CM ). $\sqrt{s}$ is the maximum energy that can be transformed into mass: $s=\left(\omega_{2}+E_{2}\right)^{2} \geq m_{\mu}^{2}$.

In general, for the sum over masses in the final state, $\sum_{f} m_{f} \leq \sqrt{s}$. $M=\sqrt{s}$ is also called the effective or invariant mass of a process.

## Fixed target vs colliding targets

Assuming that the target is fixed ( $\mathbf{p}_{1} \simeq 0$ in this case):


$$
\begin{aligned}
s & =\left(k_{1}+p_{1}\right)^{2}=k_{1}^{2}+p_{1}^{2}+2 k_{1} \cdot p_{1}=\epsilon^{2}+m^{2}+2 \omega_{1} E_{1}-2 \mathbf{k}_{1} \cdot \mathbf{p}_{1} \\
& =\epsilon^{2}+m^{2}+2 \omega_{1} m
\end{aligned}
$$

$\epsilon \sim 0$ and at high energies, $m$ is also negligible: $\sqrt{s} \simeq \sqrt{2 \omega_{1} m}$
The production of a muon (mass: $m_{\mu}=106 \mathrm{MeV}$ ) is possible if the invariant mass $\sqrt{s}$ exceeds the mass of the muon $m_{\mu}$ :
$\epsilon^{2}+m^{2}+2 \omega_{1} m \geq m_{\mu}^{2} \longrightarrow \omega_{1} \geq \frac{m_{\mu}^{2}-m^{2}}{2 m}=\frac{11200-0.26}{1.02} \mathrm{MeV} \simeq 11 \mathrm{GeV}$

## Fixed target vs colliding targets (2)

Let us assume now a head-to-head collision as in the picture below.


We have $k_{1}=\left(\omega_{1}, \mathbf{k}_{1}\right), k_{2}=\left(\omega_{2}, \mathbf{k}_{2}\right)$, with $\omega_{i}=\sqrt{\mathbf{k}_{i}^{2}+m_{i}^{2}}$. Invariant mass:

$$
s=\left(k_{1}+k_{2}\right)^{2}=\left(\omega_{1}+\omega_{2}\right)^{2}-\left(\mathbf{k}_{1}+\mathbf{k}_{2}\right)^{2}=\left(\omega_{1}+\omega_{2}\right)^{2}
$$

because $\mathbf{k}_{1}+\mathbf{k}_{2}=0$. At high energies $\omega_{i} \simeq\left|\mathbf{k}_{i}\right|$ and $\sqrt{s} \simeq 2\left|\mathbf{k}_{1}\right|$
Pairs of muons can be produced from an electron and a positron if
$2\left|\mathbf{k}_{1}\right| \geq 2 m_{\mu} \longrightarrow\left|\mathbf{k}_{1}\right| \sim m_{\mu}=106 \mathrm{MeV}$
Note the difference wrt the previous case!


## Decay of a particle into two particles

An unstable particle decays into two $p_{1}=\left(E_{1}, \vec{p}_{1}\right) \quad M \quad p_{2}=\left(E_{2}, \vec{p}_{2}\right)$ particles. In the CM:

$$
\begin{aligned}
0 & =\mathbf{p}_{1}+\mathbf{p}_{2}, \quad p=\left|\mathbf{p}_{1}\right|=\left|\mathbf{p}_{2}\right| \\
M & =E_{1}+E_{2}=\sqrt{m_{1}^{2}+p^{2}}+\sqrt{m_{2}^{2}+p^{2}}, \quad M \geq m_{1}+m_{2}
\end{aligned}
$$

From $E_{1}=\sqrt{m_{1}^{2}+p^{2}}$ one finds $p^{2}=E_{1}^{2}-m_{1}^{2}$ and $E_{2}=M-E_{1}=$ $\sqrt{m_{2}^{2}-m_{1}^{2}+E_{1}^{2}}$. After some algebra, one finds

$$
\begin{aligned}
E_{1} & =\frac{M^{2}+m_{1}^{2}-m_{2}^{2}}{2 M}, \quad E_{2}=\frac{M^{2}+m_{2}^{2}-m_{1}^{2}}{2 M} \\
p & =\frac{\sqrt{\left(M^{2}-\left(m_{1}-m_{2}\right)^{2}\right)\left(M^{2}-\left(m_{1}+m_{2}\right)^{2}\right)}}{2 M}
\end{aligned}
$$

Example: $\pi^{-} \rightarrow \mu^{-}+\nu_{\mu}, m_{\pi}=140 \mathrm{MeV}, E_{\mu} \simeq \frac{m_{\pi}^{2}+m_{\mu}^{2}}{2 m_{\pi}} \simeq 110 \mathrm{MeV}$

## Decay of a particle into two particles (2)

As before, in the laboratory frame, with particle momentum along $z$ :

$$
\begin{aligned}
p & =p_{1 z}+p_{2 z} \\
0 & =\mathbf{p}_{1 T}+\mathbf{p}_{2 T} \\
E & =E_{1}+E_{2}
\end{aligned}
$$



Let us use Lorentz transforms between LAB and CM. Note that: $\gamma=E / M ; \beta=\sqrt{\gamma^{2}-1} / \gamma=p / E$

$$
\begin{aligned}
E_{1}=\gamma\left(E_{1}^{C M}+\beta p_{1 z}^{C M}\right) ; & E_{2}=\gamma\left(E_{2}^{C M}+\beta p_{2 z}^{C M}\right) \\
p_{1 z}=\gamma\left(p_{1 z}^{C M}+\beta E_{1}^{C M}\right) ; & p_{2 z}=\gamma\left(p_{2 z}^{C M}+\beta E_{2}^{C M}\right) \\
\mathbf{p}_{1 T}=\mathbf{p}_{1 T}^{C M} ; & \mathbf{p}_{2 T}=\mathbf{p}_{2 T}^{C M}
\end{aligned}
$$

## More cases of decay

Example: decay of a pion into two photons, $\pi^{0} \rightarrow \gamma \gamma$. Invariant mass: $M^{2}=\left(p_{1 \gamma}+p_{2 \gamma}\right)^{2}=p_{1 \gamma}^{2}+p_{2 \gamma}^{2}+2 p_{1 \gamma} p_{2 \gamma}=2 E_{1} E_{2}\left(1-\cos \theta_{12}\right)$

Decay of a particle into three (or any number) particles:

A series of detectors can distinguish different particles, measure $E$ and p of all particles


Let us build the quantity $s=\left(E_{1}+E_{2}+E_{3}\right)^{2}-\left(\mathbf{p}_{1}+\mathbf{p}_{2}+\mathbf{p}_{3}\right)^{2}$. This is a Lorentz invariant, that in the rest frame of the decaying particle can be easily evaluated: $s=M^{2}$, the invariant mass. Then one searches for peaks in histograms of invariant mass.

## Observables: cross sections, decay rates

- For scattering processes, the relevant quantity to be measured in experiments is the cross section $\sigma$. The cross section has the units of a surface ( $\mathrm{m}^{2}$, or $\mathrm{cm}^{2}$; also used in high-energy physics, the barn, $10^{-28} \mathrm{~m}^{2}$, or $100 \mathrm{fm}^{2}$ )
- For decay processes, the relevant quantity to be measured in experiments is the decay rate $\lambda$. The decay rate has the units of an inverse of a time

Both quantities are related to the probability that the considered process occurs


Definition of the (total) cross section: the number of scattering events during time $d t$ is $d N=\sigma(J A n d) d t$, where $J$ is the number of incident particles per unit time per unit surface, $A, n, d$ as in the picture.

The quantity $L=J A n d$ is known as the luminosity (units: $[\ell]^{-2}[t]^{-1}$ ).

## Decay time and Lifetime



If the decay rate is $\lambda$, there are $d N=N(t) \lambda d t$ particle that decay in time $d t$. This leads to the $N(t)=N_{0} e^{-\lambda t}$ law.

We define $\tau=\lambda^{-1}$ as the mean life. $\tau$ refers to the reference frame where the particle is at rest, that is, to the proper time of the particle! See the discussion about muons and cosmic rays.

For a particle with speed $v=\beta c, \tau^{\prime}=\gamma \tau$ in the LAB reference frame

## Mean life and decay width

If a particle has a finite lifetime with mean life $\tau$, i.e. it decays with probability $1 / \tau$, we can define the decay width $\Gamma$ as $\Gamma=\frac{\hbar}{\tau}$.

The decay width has the dimension of an energy ( $\hbar=$ energy $x$ time). In high-energy units, $\hbar=6.58 \cdot 10^{-22} \mathrm{MeV}$ s.

Strongly decaying particles have short lifetimes and hence large decay widths, e.g. the $\rho(770)$ has $\tau=4.4 \cdot 10^{-24} \mathrm{~s}$ and $\Gamma=151 \mathrm{MeV}$.

Weakly decaying particles have long lifetimes and small decay widths, e.g. the $\mathrm{K}^{\circ}$ meson has $\tau=0.9 \cdot 10^{-10} \mathrm{~s}$ and $\Gamma=7.3 \cdot 10^{-12} \mathrm{MeV}$

## Mean life and decay width (2)

The decay width is a purely quantum phenomenon that can be interpreted as a manifestation of the indeterminacy principle $\Delta E \Delta t \geq \hbar$. It appears as a finite width in experiments as a function of energy:

with a typical Lorentzian form (FWHM=Full Width at Half Maximum). If there are more possible decay processes with probability $B_{r}(i)$ (normalized: $\sum_{i} B_{r}(i)=1$ ), then $\Gamma=\sum_{i} \Gamma_{i}$, where $\Gamma_{i}=\Gamma B_{r}(i)$

