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• Space-time and Lorentz transforms

• Four-vectors formalism

• Relativistic kinematics: the energy-momentum four-vector



The concept of Space-Time

• Let us define an event as a point in the space (x, y, z) at time t (in

a given inertial reference frame)

• Let us represent an event as a vector in a four-dimensional space:

a four-vector. It is convenient to use (ct, x, y, z) as dimensionally

consistent coordinates

• A moving particle describes a line in the space-time, called world line

• Light rays passing through origin at t = 0 define a surface called light

cone.



Light cone

In the figure, a typical example of a

light cone, projected over two space

coordinates and with the time axis in the

vertical direction (Minkowski diagram)

The world line of a physical object always

stays “inside” the cone; at time t = 0 it

goes from the “cone of the past” (below)

to the “cone of the future” (above); the

tangent to the curve in any point is always

“inside” the cone (because the speed v <

c). This is called a “time-like” world line.



Lorentz transforms in space-time

• Lorentz transforms are generalized rotations in space-time, that

modify the relative directions of the axis, expand or contract them.

• Contrary to usual rotations, they do not leave the usual square module

of vectors: x2 + y2 + z2 + (ct)2, unchanged. The invariant quantity

is I = x2 + y2 + z2 − (ct)2: the square module of four-vectors

• Lorentz transforms move a point over the set of points with constant

I: an hyperbole in t and x, a rotation hyperboloid in t, x, y, with

asymptotes on the light cone.



Lorentz transforms in space-time (2)

A graphical representation of a Lorentz transform in the (xt) plane:



Events in space-time

• Let us consider two events in space-time:

x1 = (ct1, x1, y1, z1), x2 = (ct2, x2, y2, z2)

and their four-vector difference (interval): ∆x = x1−x2. Depending

upon the value of I = (∆x)2 + (∆y)2 + (∆z)2 − (c∆t)2, we can

distinguish the interval into

– Type space: I > 0. The two events may be simultaneous in some

reference frame

– Type light: I = 0. The two events are “connected” by a ray of

light

– Type time: I < 0. The two events cannot be simultaneous in any

reference frame



Four-vector formalism

Let us introduce notations: x0 = ct, x1 = x, x2 = y, x3 = z
(x0)′ = γ(x0 − βx1)
(x1)′ = γ(x1 − βx0)
(x2)′ = x2

(x3)′ = x3

where β = V/c. Lorentz transforms in matrix form:
(x0)′

(x1)′

(x2)′

(x3)′

 =


γ −γβ 0 0

−γβ γ 0 0

0 0 1 0

0 0 0 1



x0

x1

x2

x3


In general, a four-vector is an object whose components follow Lorentz

transforms



Four-vector formalism (2)

Alternatively, Lorentz transforms may be written as:

(xi)′ =

3∑
j=0

Λijx
j, i = 0÷ 3

where Λij is the matrix earlier defined (the reason for “high” and “low”

indices will be clarified soon; note that the matrix has unit determinant)

It is easily verified that such transform conserves the square module I

of four-vectors:

I = (x1)
2

+ (x2)
2

+ (x3)
2 − (x0)

2

and in general, the four-vector analogue of the scalar product:

x · y ≡ x1y1 + x2y2 + x3y3 − x0y0



Covariant and contravariant indices

It is practical to introduce covariant components:

x0 = −ct, x1 = x, x2 = y, x3 = z

in addition to those (known as contravariant) already introduced. The

only difference is in the sign of the time component. The square module

and scalar product of four-vectors become:

I =

3∑
i=0

xix
i, x · y =

3∑
i=0

xiy
i =

3∑
i=0

xiyi

The Einstein convention is used: repeated indices are understood to

be summed. In all physical quantities, covariant indices are summed

with contravariant indices. This guarantees both the correct form and

the correct invariance properties with respect to a change of reference

frame.



Relativistic kinematics

Let us consider a particle moving with velocity v in an inertial frame S.

The time dt in S and the time dτ in a reference frame moving with the

particle are connected by

dτ =

√
1− v

2

c2
dt =

dt

γ

The quantity dτ is called proper time.

The proper velocity u is thus defined as

u ≡ dr

dτ
=

1√
1− v2

c2

dr

dt
= γv

Note that dr refers to the frame S, but the proper velocity u differs

from the usual definition of velocity, v = dr/dt, by a factor γ



Proper time and velocity

What is the rationale behind the introduction of these quantities?

• The proper time dτ is invariant (or scalar), by construction

• One may define a four-vector: the four-velocity uµ =
dxµ

dτ
, where:

u0 =
dx0

dτ
= c

dt

dτ
=

c√
1− v2

c2

= γc

u = (γc, γv) transforms according to Lorentz rules, by construction:

it is a four-vector, divided by an invariant

Note that dxµ/dt follows transformation laws that are actually more complex than

those for the proper velocity dxµ/dτ !



Relativistic momentum

In Classical Mechanics one defines the momentum pcl:

pcl = mv,
dpcl
dt

= F

What is the equivalent of p in the relativistic case? A good candidate

for the space part is

p = mu =
mv√
1− v2

c2

(note that m is an invariant)

Both Newton’s second law and the conservation of momentum are still

valid if we use the relativistic expression for the four-vector momentum



Energy-momentum four-vector

p is the space part of a four-vector: what is p0?

p0 = mu0 =
mc√
1− v2

c2

≡ E

c

where E = γmc2 plays the role of relativistic energy. If v = 0, we

obtain the famous Einstein’s formula for the energy of a particle at rest:

E0 = mc2

What is the relation between relativistic energy and classical kinetic

energy?

E − E0 '
1

2
mv2 +

3

8
m
v4

c2
+ ...,

v

c
<< 1

For an isolated system the energy-momentum four-vector pµ is conserved



Energy-momentum four-vector (2)

The square module of the energy-momentum four-vector is of course a

Lorentz invariant and is related to the mass of the particle via:

pµp
µ = −(p0)2 + p · p = −m2c2

alternatively: E2 − p2c2 = m2c4, from which one obtains E(p):

E =
√
m2c4 + p2c2 = c

√
m2c2 + p2

Classical limit: p << mc and E(p) ' mc2 +
p2

2m
.

Ultrarelativistic limit: p >> mc and E(p) ' pc

The latter expression is exactly true, E(p) = pc, in the case of massless

(m = 0) particles traveling at the speed of light: the photons.


