
PARTICLE PHYSICS  粒子物 

Relativity 1

Paolo Giannozzi, DMIF, University of Udine, Italy

• Introduction to Einstein’s special relativity

• Consequences: relativity of simultaneity, time and space dilatation

• Lorentz transforms



Why Special Relativity

Why do we need special relativity to describe the behavior of elementary

particles in accelerators?

• Because elementary particles typically have large kinetic energies and

speeds, often approaching c = 2.998 × 108 m/s, the speed of light.

In such regime, classical mechanics no longer applies.

• Because reactions leading to creation or destruction of particles may

occur. The rest energy, proportional to the mass of the particles,

must be taken into account in the global balance of energies. Such

concept is unknown to classical mechanics.

Einstein’s special relativity is the theory that properly describes the

kinematics and energetics of elementary particles in accelerators.



Einstein’s Relativity Principle

Special relativity is based upon Einstein’s Relativity Principle:

• The laws of physics are valid in all inertial reference frames, and

• The speed of light in vacuum is the same in all inertial reference

frames, independently upon the speed of the source

Such principle is not compatible with Galilean transforms (valid only as

limit case for speeds v << c), and with Newton’s idea of absolute time.

If we accept such principle, there is no reason to assume that the light

propagates into a medium (the “ether”) in order to reconcile Maxwell’s

equations with Galilean transforms.

We need to introduce Lorentz transforms and the concept of space-time.



Reminder: Galilean Transforms

Transformation rules between an inertial system S (described by

x, y, z, t) and another one, S ′ (described by x′, y′, z′, t′) traveling with

velocity V along x with respect to S:


x′ = x− V t
y′ = y

z′ = z

t′ = t

(origins are assumed to coincide at t = 0). The velocity addition rules

follows: a particle with velocity v in S has velocity v′ = v −V in S ′

The inverse transform from S ′ to S is obtained reversing the sign of V .



Consequences of Relativity Principle

Einstein’s Relativity Principle has rather surprising consequences, that

can be demonstrated on the basis of simple gedankenexperimente

(“though experiments”):

• Relativity of simultaneity: Two events that are simultaneous

(happen at the same time) in an inertial system may not be

simultaneous in another inertial system

In the reference frame of the moving observer, the ray of light hits

simultaneously the two walls; in the laboratory (observer at rest)

reference frame, this does not happen.



Consequences of Relativity Principle (2)

• Time Dilatation: A moving clock runs slower

Let us consider a ray of light that hits the floor. This happen after

∆t′ = h/c in the reference frame of the moving observer, in ∆t =√
h2 + (V∆t)2/c in the reference frame for the fixed observer. Thus:

∆t′ =
√

1− V 2/c2∆t ≡ γ−1∆t < ∆t

where we have introduced the factor γ = 1/
√

1− V 2/c2.



Time Dilatation in action: cosmic rays

Muons (µ+, µ−): components of cosmic rays,

generated by heavier particles (mesons) in the

high atmosphere (∼ 15 Km)

Muons’ energy is such that v ∼ c. The half

life of a muon is τ0 = 2.2µs. During such

time, a muon with speed c travels a distance:

s = cτ0 = 2.2× 10−6s·3× 108m/s = 660m.

The flux of muons is however easily measurable

at ground level. How is that possible?
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The half life of muons refers to the reference frame of the muon (that

is: moving with it). In a laboratory reference frame (fixed on the Earth):

τ =
τ0√

1− v2/c2
= γτ0 >> τ0!



Consequences of Relativity Principle (3)

• Length contraction: A moving object becomes shorter

(only in the direction of velocity)

A light ray is reflected by the wall in a time ∆t′ = 2∆x′/c for

the moving observer, ∆t = ∆t1 + ∆t2, where ∆t1 = (∆x + v∆t1)/c,

∆t2 = (∆x−v∆t2)/c, for the fixed observer. One finds ∆t = 2γ2∆x/c.

Finally, since ∆t = γ∆t′:

∆x′ = γ∆x =
1√

1− V 2/c2
∆x



Lorentz Transforms

Transformation rules between an inertial system S (described by

x, y, z, t) and a S ′ one (described by x′, y′, z′, t′) traveling with speed

V along x with respect to S:


x′ = γ(x− V t)
y′ = y

z′ = z

t′ = γ(t− V
c2
x)

(origins are assumed to coincide at t = 0)

In the limit γ = 1, V/c << 1, we recover Galilean transforms. The

inverse transform from S ′ to S is obtained by reversing the sign of V .



Velocity addition rules

Let us assume that a particle travels in S for a distance dx in a time

dt: vx = dx/dt. In S ′ it travels for a a distance dx′ = γ(dx− V dt) in

a time dt′ = γ
(
dt− (V/c2)dx

)
. It follows that:

v′x =
dx′

dt′
=

γ(dx− V dt)
γ (dt− (V/c2)dx)

=
vx − V

1− vxV/c2

The is Einstein’s velocity addition rule. In the limit V/c << 1, it

reduces to the usual (Galilean) rule: v′x = vx − V . If vx = c, also

v′x = c. In no case can one exceed the speed of light c.

Einstein’s second Relativity Principle can actually be reformulated as

follows:

• For all inertial reference frames, there is a finite limit speed c for

physical objects


