

Introduction

In late XIX century, classical mechanics proved to be unable to explain some well known phenomena:

- Black body radiation
- Stability of the atom
- Spectral series of Hydrogen

"On the theory of the Energy distribution law of the Normal Spectrum"

1900. Max Planck

This was the start of a big revolution in Physics, i.e. of Quantum Mechanics.

Black Body Spectrum

Light behaves as a wave ...

Black Body Spectrum

< 1900 K: Candle light 2700–3300 K: Warm white 2200–3400 K: Incandescent light bulbs > 3900 K: Fluorescent lamps 4000–5000 K: Neutral white 5100–5400 K: Midday sun in summer 6500 K: Standard light C (xenon test lamp) 5000–6800 K: Daylight white

> 9000 K: Midday blue sky in December

$$B \stackrel{?}{\longleftrightarrow} T$$

 $\binom{\mathsf{Output\ power/unit\ wavelenght}}{\approx \mathsf{Intensity\ spectrum}}$

Temperature

Black Body Spectrum

Assuming light is a wave, classical mechanics predicts:

$$B(\lambda) = \frac{2ck_BT}{\lambda^4} \propto \frac{T}{\lambda^4}$$

 $"Ultra-violet\ catastrophe"$

Planck's proposal

Light is emitted in quanta of energy $F = h \nu$

- ν (Greek letter: "nu") is the light's fequency $(\nu = \frac{c}{\lambda})$
- h is the Planck's constant

$$h = 6.62606957 \times 10^{-34} Js$$

Planck's proposal

Light is emitted in quanta of energy

$$F = h \nu$$

Predicted spectrum becomes:

$$B(\lambda) = \frac{2hc^2}{\lambda^5} \frac{1}{e^{\frac{hc}{\lambda k_B T}} - 1}$$

- Same behaviour at high λ
- Dumping factor
 - heals $\lambda \to 0$

Planck's proposal

Light is emitted in quanta of energy

$$F = h \nu$$

Predicted spectrum becomes:

$$B(\lambda) = \frac{2hc^2}{\lambda^5} \frac{1}{e^{\frac{hc}{\lambda k_B T}} - 1}$$

- Same behaviour at high λ
- Dumping factor
 - heals $\lambda \to 0$
 - agrees with observations

Plank & Einstein

- Plank's proposed $E = h\nu$ as a mathematical assumption
- Einstein even further: light *is composed* by quanta, later called "photons"

• Photoelectric effect, Nobel Prize 1921

Photoelectric Effect

- Shining ultraviolet light on the metal plate
 - gives flow of negative charge (Hertz, 1887)

- Flow can be stopped with a specific voltage V_0
 - independent of the brightness
 - depends only on the frequency (Lenard, 1902)

Photoelectric Effect

- Light is actually made up out of particles "photons" (Einstein, 1905)
 - of energy $E = h\nu$
- Kinetic energy of the emitted electrons is the energy left over after the electron has been lifted over the work function barrier

Wave or particle?

So we have seen that light behaves

- as a wave (interference, diffraction ...)
- and also is made of particles (photoelectric effect, black body radiation, ...)

"Wave-particle duality"

...not yet the end of the story!

Atom structure

early 20th century

Rutherford, 1911, atom seen as

- diffuse cloud of e⁻
- dense positively charges nucleus

How can be an atom stable?

- Electrons on circular (accelerated!) orbit
 - Radiates photons (Larmor formula)
- loose energy. Catastrophe!

Failure of Classical Physics

Atom structure

Bohr

Hot hydrogen emits light in a set of spectral lines ("Balmer series")

 \Rightarrow set of lines in the visible spectrum

Solution (Bohr, 1913)

 \Rightarrow Electron's **angular momentum** *L* **quantized** in units of $\hbar = \frac{h}{2\pi}$

Bohr's radius

in one slide!

So if we start from the classical relation for electron's motion:

$$F_{em} = m_e a, \quad \left(a = \frac{v^2}{r}\right)$$

(circular orbit), and remembering Coulomb's law

$$F_{em} = k_C \frac{Ze^2}{r^2}$$

we get

$$F_{em} = k_C \frac{Ze^2}{r^2} = m_e \frac{v^2}{r} = m_e a$$

And finally using Bohr's assumption $L = m_e vr = n\hbar$:

Quantized Bohr's radii

$$r_n = \frac{n^2 \hbar^2}{Z k_C e^2 m_e}$$

Put together:

- 1 Photons are quanta of light, with $E=pc=h\nu=\frac{hc}{\lambda}$ \Rightarrow light has also a particle behaviour
- 2 Electrons have quantized angular momenta $L=n\hbar$

But then also **particles** can behave as waves: "matter-waves" with wavelength

De Broglie wavelength
$$\lambda = \frac{h}{p} = \frac{h}{mv}$$

Davisson and Germer **measured** $\lambda_e = \frac{h}{m_e \nu}$ using diffraction.

Electrons as waves

Further reading and bibliography here

Wave-like nature of light/particles described by

$$\psi(t, \mathbf{x}) \neq \psi^*(t, \mathbf{x})$$

Probability:

$$P \propto |\psi(t, \mathbf{x})|^2$$
, $\int dx \ dt \ |\psi(t, \mathbf{x})|^2 = 1$

Uncertainty principle

Heisenberg

Only one of the "position" or "momentum" can be measured accurately at a single moment within the instrumental limit.

It is impossible to measure both the position and momentum simultaneously with unlimited accuracy.

$$\Delta x
ightarrow$$
 uncertainty in position

$$\Delta p_{x} \rightarrow$$
 uncertainty in momentum

then

..or

$$\Delta x \ \Delta p_x \ge \frac{\hbar}{2} \qquad \left(\hbar = \frac{h}{2\pi}\right)$$

The product $\Delta x \ \Delta p_x$ of an object is greater than or equal to 2

(equivalent to state that interference is intrinsic)

Spin

Stern & Gerlach, 1922:

- Electrons are deviated by a magnetic field, in different directions
- Two "types" of electrons \Leftrightarrow spin $s = \pm \frac{1}{2}$

- Fermions: half-integer spin (electrons, ...)
- Bosons: integer spin (photons, ...)

Scalars have zero spin (Higgs)