

Stand-alone reconstruction and trigger with the SciFi detector

Louis Henry Milano, 04/10/2019

Introduction: the LHCb trigger system

- Rates of charm and beauty hadron production unmanageable by hardware trigger
 - Need fast event reconstruction
- Additionally, Run 2 has shown that it is possible to reach offline levels of quality at trigger stage
 - Need best event reconstruction
- Current trigger scheme in the upgrade will then follow two steps:
 - Fast rec. (HLT1) of long tracks to reduce rate from 30 MHz
 - Best rec. of all tracks at ~1 MHz rate.
- This poses two challenges to any analysis:
 - Can we run the seeding at the Fast level to have a specific selection of our events?
 - We need to make sure we can write trigger lines in the Best level, or else our tracks are lost (no full event saved anymore).

We need to speed-up HLT2-level reconstruction to ensure we can even perform the analysis

If we could have access to Λ in HLT1, we could boost statistics

Introduction: track types and trigger

- T-tracks = tracks with hit only in the forward-most tracker (SciFi, for Scintillating Fiber).
- They are necessary for:
 - Building some long tracks
 - Building "downstream tracks"
 - For electron PID
 - By themselves $\rightarrow \Lambda$ EDM/MDM measurement
 - See Salvatore's slides

Reconstruction of these segments needs to be improved and made faster anyway.

Getting stand-alone T-tracks at trigger level is not obvious. This talk will be about the reconstruction, not the selection (much further down the road)

The SciFi detector: overview

The SciFi detector: overview

- Upgrade to scintillating fibers, each 2.5m long.
 - No information along the fiber

Need to account for missing hits; residual magnetic field → tracks are not straight.

	Spacial resolution	Hit efficiency	Field
VeloPixel	12 μm	> 99%	Negligible
SciFi	42-100 μm	~ 99%	Significant

Much different environment than VELO reconstruction, which is the benchmark for "fast" reconstruction

Choosing the track model

- Reconstructing a track gives information about its (x,y) position as a function of z and its momentum (through curvature).
- Relies heavily on chosen track model. In SciFi, $B_y > B_x$, and so the chosen track model is:

$$x(z) = a_x + b_x dz + c_x dz^2 (1 + d_{\text{ratio}} dz)$$

$$y(z) = a_y + b_y dz$$

- Note: this c_x parameter also serves as a stand-alone momentum measurement! (~1/P)
- $d_{ratio} \rightarrow cubic$ correction, depending on stray fields and so track position in the (x,y) plane.
 - Possible to account for this during the full fit.
 - Very simulation-dependent!
- Possibilities for improvement:
 - Parabolic y model

Stand-alone reconstruction: principle

- Stand-alone reconstruction of a given track will follow the following steps:
 - Looking for hits in x-stations to build a XZ candidate from pairs of hits in first/last layer.
 - Look for compatible hits in U/V layers and build a full candidate
- These steps are repeated 3 times ("cases") with different first and last layer (to cover for hit inefficiency) and wider momentum windows.

• Right: 0 (X-candidate case 0), 1 (adding UV case 0).

Seeding first treats easy (= high-momentum) tracks and then goes to smaller p.

Hybrid seeding: looking for x hits

- Combinatorics are extremely difficult to beat → any bit counts.
- Cascading hypotheses:
 - Take a hit in the first layer.
 - "If it came from the origin, where would it end up?" → projection on the last layer.
 - "Obviously, there is a magnet. In which interval would a particle with a momentum larger than minP end up?" → family of compatible hits in the last layer.
 - "Where would hits in the second station be if it were a line?" \rightarrow projection on T2.
 - "Wait there is a magnet, and we already know a bit about curvature" → small window
 - For each hit in T2, make a parabola and look for hits in remaining 3 layers. If total > 4, keep candidate and fit it.

- However, the more hypotheses are made, the more specialised/simulation-dependent the seeding becomes.
 - Ex: "tracks come from the origin" would kill any downstream-track reconstruction.

X projected

Hybrid seeding: adding u/v hits

- Each XZ candidate has a projected x position on all 6 U/V layers
 → each time, several fibers are compatible with that projection
- Collect all compatible hits: they correspond to different projected y coordinates: y(proj) = (xproj xAt0)/DyDx.
- "Tracks are straight in y and come from the origin" \rightarrow all U/V hits for a given track candidate should have $t_v = y(z)/z = k$.
- Hough clustering:
 - collect all hits from all layers, put them in a container sorted by t_v.
 - sliding window reading of that container → shows accumulation of hits if there is a track

Hough cluster

- This phase of the tracking is so reliant on the track coming from the origin that there needs to be a dedicated recovery step for downstream tracks.
 - Recovery step: $\sim 10\%$ of the timing \rightarrow costly.

Hybrid seeding: current state

- Current timing share of the seeding in full reconstruction: 5%
 - → gain of a factor 2 since two months.
- Still need some gains as the whole trigger is still too slow for normal operations.
- Efficiencies:
 - On normal, long tracks: 91.7%
 - On normal, long tracks with P > 5 GeV: 94.9%
 - On tracks from K_s: 91.8%
 - On tracks from Λ: 89%
 - → Quite good efficiencies on T-tracks from displaced vertices already, still some percents to gain.
- No clear technical obstacle to writing dedicated trigger lines in HLT2 \rightarrow no roadblock to be able to reconstruct and analyse long-lived particles from K_s and Λ .

Looking for HLT1-compatible reconstruction

- Current reconstruction is barely compatible with HLT2 standards of timing, why even talk about HLT1?
- HLT2 reconstruction needs to be extremely efficient and the highest quality possible.
 - Most of the timing spent on high-hanging fruits
 - Low-hanging fruits (aka 12-hits, high-momentum tracks) are **much** easier to go for.
- Possibility to run a specialised seeding much faster
 - High-momentum? No hit inefficiency?
 - HLT1 needs to run at 30k evts/sec/node* running current seeding with only the first case gives roughly 22k evts/sec/node*

(*: unofficial numbers.)

- Work is advancing in collaboration with other groups, as seeding in the Fast step would greatly benefit downstream reconstruction.
 - Downstream reconstruction \rightarrow access to Λ baryons and K_S mesons.

Looking for HLT1-compatible reconstruction

• Current work is following 4 directions, each of them with someone working on it.

• Changing the tuning of the algorithm.

- Less simulation-dependent, improve efficiencies and timings.
- Allow for the creation of extra cases with different momentum thresholds if needed.

Changing the Hough Cluster approach

- Current Hough cluster needs sorting and then iterative fit with hit removal → takes a third of the timing.
- U/V hit adding is not very different from VELO reconstruction (straight line) → can draw inspiration.

Changing inputs of the algorithm

- ScifFit hit classes are being reevaluated in LHCb, as many attributes are layer-dependent (e.g. z position, dyDx).
- Allows to optimise cache locality.

Vectorise the algorithm

- Most operations performed are rather simple, costly because of shere combinatorics.
- Vectorised algorithms deal with combinatorics differently so it could allow to loosen tunings.

Conclusion

- Stand-alone T-track reconstruction is necessary both for the physics programme of LHCb and for our EDM/MDM projects.
- In the upgrade, it is ran at the trigger level, with different challenges:
 - "Best" level: must improve timing by some factors, could improve efficiencies.
 - Current thoughput of the "best" sequence: ~100Hz. Must be 1kHz.
 - "Fast" level: must improve timing by at least a factor 2, possible to setup a specialised version of the reconstruction.
 - Typical throughput needed: 30 kHz, currently a dedicated, unoptimised version is at ~23kHz.
- Two-pronged effort: we need "best" reconstruction to make our analyses even possible in the upgrade... but if we could run reconstruction at "fast" level, much better potential in the upgrade than Run 1 and 2.