Experimental proposal for MDM/EDM of strange baryons in LHCb

Jinlin Fu University of Milano on behalf of the SELDOM Collaboration

Workshop on electromagnetic dipole moments of unstable particles October 3-4, 2019, Milano

Established by the European Commission

Introduction

• Electromagnetic dipole moments are static properties of particles

EDM:
$$\vec{\delta} = d\mu_B \vec{s}/2$$

MDM: $\vec{\mu} = g\mu_B \vec{s}/2$
Gaussian units
 $\mu_B = e\hbar/(2mc)$

 EDM violates P and T, thus violates CP. EDM searches are sensitive to new physics

• MDM measurement of particle and anti-particle allows to test CPT

How to access EDM/MDM

 Spin precession induced by interaction of its EDM and MDM with external EM field

T-BMT equation:

$$\Omega = \Omega_{\text{MDM}} + \Omega_{\text{EDM}} + \Omega_{\text{TH}}$$

$$\Omega_{\text{MDM}} = \frac{g\mu_B}{\hbar} \left(\mathbf{B} - \frac{\gamma}{\gamma+1} (\boldsymbol{\beta} \cdot \mathbf{B}) \boldsymbol{\beta} - \boldsymbol{\beta} \times \mathbf{E} \right)$$

$$\Omega_{\text{EDM}} = \frac{d\mu_B}{\hbar} \left(\mathbf{E} - \frac{\gamma}{\gamma+1} (\boldsymbol{\beta} \cdot \mathbf{E}) \boldsymbol{\beta} - \boldsymbol{\beta} \times \mathbf{B} \right)$$

$$\Omega_{\text{TH}} = \frac{\gamma^2}{\gamma+1} \boldsymbol{\beta} \times \frac{d\boldsymbol{\beta}}{dt} = \frac{q}{mc} \left[\left(\frac{1}{\gamma} - 1 \right) \mathbf{B} + \frac{\gamma}{\gamma+1} (\boldsymbol{\beta} \cdot \mathbf{B}) \boldsymbol{\beta} - \left(\frac{1}{\gamma+1} - 1 \right) \boldsymbol{\beta} \times \mathbf{E} \right]$$

 Known polarised sample, intense E and B inducing sizeable precision angle

Experimental status

- Last direct measurement in 70's,80's from E761@Fermilab
 - ✓ Fixed target experiment with 300GeV proton beam on Be
 - ✓ Reconstructed $3x10^6 \Lambda \rightarrow p\pi^-$ decays
 - ✓ Small transverse polarisation ~8%
 - ✓ Magnet: 5m,±15Tm
 - ✓ Momentum direction fixed to be perpendicular to \vec{B}

 $d_{\Lambda} < 1.5 \times 10^{-16} e \text{ cm } @95\% \text{ C.L.}$ Phys. Rev. D23 (1981) 814

 $\mu_{\Lambda} = (-0.613 \pm 0.004) \,\mu_N$ Phys. Rev. Lett. 41 (1978) 1348

- ✓ No measurement for $\overline{\Lambda}$, hence no CPT test via MDM
- Prediction using experimental upper limit of neutron EDM

 d_{Λ} < 4.4 x 10⁻²⁶ e cm @95% C.L.

plenty of scopy to improve direct measurement

JHEP 12 (2012) 097 PLB291 (1992) 293 Nucl. Phys. B367(1991) 313 Phys.Rev.D61 (2000) 114017

OBSERVE

Advantages in LHCb

- Single arm forward detector, optimised for c and b hadron physics with large pseudorapidity (2< $\eta{<}5$)

Perfect tracking, vertex determination, particle identification

- Production
 - ✓ from weak decays of c and b baryons
 - $\checkmark\,$ compatible Λ and $\overline{\Lambda}$
- Large initial longitudinal polarisation
- Magnet
 - ✓ a tracking dipole magnet providing $D_v \approx \pm 4$ Tm over 10 meters
 - \checkmark allow sizeable Λ spin precession

Challenges in LHCb

- Significant backgrounds and limited resolution on measurement of Λ momentum and decay point
- LHCb Upgrade for Run3 (2021~2023):
 - ✓ $2 \times 10^{33} cm^{-2} s^{-1}$ (14TeV) 5 times than Run2 (13TeV), 50fb⁻¹ end Run3
 - ✓ Only software trigger
 - ✓ 40 MHz readout
 - ✓ Real-time alignment and calibration
 - ✓ Offline quality reconstruction at the online level
- Details of trigger and reconstructions, see talks from Salvatore and Louis

LHCb upgraded detector

LHCb Magnet

LHCb-INT-2015-034

Λ procession in LHCb

LHCb charged tracks

- Long track: reconstructed in VELO and T-stations. Perfect reconstruction
- Downstream track: UT + T-stations. Good reconstruction
- T track: T-stations. Worse reconstructed, not used in physics analysis yet. Need to improve. (details see Salvatore's talk)

Long + Downstream tracks to measure polarisation before Magnet

T tracks to measure polarisation after Magnet

T–BMT for Λ in LHCb

- Negligible field gradient effects, $\mathbf{B} = (0, B_y, 0)$, E=0, q=0
- Specific case: Λ and heavy baryon flying along z axis in lab system $\mathbf{s}_0 = (0, 0, s_0)$

 $\mathbf{x} = \frac{t}{\mathbf{x}} = -s_0 \sin \Phi$ $\mathbf{x} = \frac{s_x = -s_0 \sin \Phi}{s_y = -s_0 \frac{d\beta}{g} \sin \Phi}$ $\mathbf{x} = \frac{s_x = -s_0 \sin \Phi}{s_y = -s_0 \frac{d\beta}{g} \sin \Phi}$ $\mathbf{x} = \frac{s_z = s_0 \cos \Phi}{s_z = s_0 \cos \Phi}$ $\Phi = \frac{D_y \mu_B}{\beta \hbar c} \sqrt{d^2 \beta^2 + g^2} \approx \frac{g D_y \mu_B}{\beta \hbar c}$ $\approx \pm \pi/4$

- Main precession (MDM) in xz plane
- Non zero S_v indicates EDM
- Sizeable spin precession achieved

 $D_y \equiv D_y(l) = \int_0^l B_y dl' \approx 4 \text{ Tm}$

Initial Λ polarisation in LHCb

- Λ directly produced from *pp* collisions via strong interactions:
 - ✓ Initial transversal polarisation perpendicular to production plane, $\overrightarrow{p}_{beam} \times \overrightarrow{p}_{\Lambda}$
 - ✓ polarisation increase with Pt_{Λ}
 - not within LHCb angular acceptance
- Λ produced from heavy baryon weak decays:
 - ✓ large longitudinal polarisation: ~90% in $\Lambda_c^+ \to \Lambda \pi^+$
 - ✓ polarisation measured via analysis angular distribution of $\Lambda \rightarrow p\pi^-$ decay

Source and production of Λ

- Consider c baryon decays and charged final particles
- At least one particle from heavy baryon decay vertex

$$N_{\Lambda} = 2\mathcal{L}\sigma_{q\overline{q}}f(q \to H)\mathcal{B}(H \to \Lambda X')$$
$$\times \mathcal{B}(\Lambda \to p\pi^{-})\mathcal{B}(X' \to \text{charged})$$

 $\sigma_{qar{q}}$: c,b cross section pp@14TeV

EPJC77(2017)181

 $f(q \rightarrow H)$:fragmentation fraction into heavy baryon

short-lived (SL)	1.5×10^{11}
SL events	$N_A/{\rm fb}^{-1} \; (\times 10^{10})$
$\Xi_c^0 \to \Lambda K^- \pi^+$	7.7
$\Lambda_c^+ \to \Lambda \pi^+ \pi^+ \pi^-$	3.3
$\Xi_c^+ \to \Lambda K^- \pi^+ \pi^+$	2.0
$\Lambda_c^+ \to \Lambda \pi^+$	1.3
$\Xi_c^0 \to \Lambda K^+ K^- $ (no ϕ) 0.2
$\Xi_c^0 \to \Lambda \phi(K^+K^-)$	0.1

long-lived (LL)	3.8×10^{11}
LL events, $\Xi^- \to \Lambda \pi^- N_\Lambda / \text{fb}^{-1} (\times 10^{10})$	
$\Xi_c^0 ightarrow \Xi^- \pi^+ \pi^+ \pi^-$	23.6
$\Xi_c^0 ightarrow \Xi^- \pi^+$	7.1
$\Xi_c^+ ightarrow \Xi^- \pi^+ \pi^+$	6.1
$\Lambda_c^+ \to \Xi^- K^+ \pi^+$	0.6
$\Xi_c^0 \to \Xi^- K^+$	0.2
Prompt Ξ^-	$0.13 \times \sigma_{pp \rightarrow \Xi^-} \ [\mu b]$

Geometry efficiency

Experimental yield: $N_{\Lambda}^{\text{reco}} = \epsilon_{\text{geo}} \epsilon_{\text{trigger}} \epsilon_{\text{reco}} N_{\Lambda}$

Geometry eff. for SL topology estimated from simulation

R1: measure initial polarisation

R2: measure polarisation as decay length in $B^{'}$

M3: most sensitivity to MDM/EDM

Sensitivity

- Pseudo-experiments using simplified detector geometry
- *d*-factor uncertainty: $\sigma_d \propto 1/(s_0\sqrt{N_A^{\text{reco}}})$

- With 50 fb⁻¹ (end Run3) :
 - ✓ $\sigma_d \approx 3 \times 10^{-4}$, $\delta(\Lambda) \leq 1.3 \times 10^{-18}$ e cm, 2 orders of magnitude improve
 - First $\overline{\Lambda}$ MDM measurement at similar precision
 - $\checkmark\,$ First CPT test via Λ MDM at 10^{-3} level

Polarisation measurement before magnet

- Program starting with Run 2 (6 fb⁻¹)
- Λ reconstructed using long and downstream tracks
- $\Xi_c^0 \to \Lambda h^{\pm} h^{\mp}, \Lambda_c^+, \Xi_c^+ \to \Lambda h^{\pm} h^{\pm} h^{\mp}$

small fraction of data, not optimal selection

Still in tuning

Summary

- Proposed Λ EDM/MDM measurements in LHCb
- With 50 fb⁻¹ in LHCb, expect 100 improvement of EDM, first $\overline{\Lambda}$ MDM measurement with similar precision as EDM ~10⁻⁴, and first CPT test via MDM at 10⁻³ level
- Measurement of polarisation before Magnet starting from Run2 data
- Hard work needed to improve Λ reconstructions: trigger, T-track reconstruction...

Probability Distribution Function

- spin-polarisation can be analysed through angular distribution of $\Lambda \to p\pi^ \frac{dN}{d\Omega'} \propto 1 + \alpha \mathbf{s} \cdot \hat{\mathbf{k}}$,
 - Angular distribution
 - \rightarrow extract initial polarization \textbf{s}_{0}

 $PDF(\theta',\phi',\boldsymbol{H},\boldsymbol{\beta}) = \frac{1}{4\pi} \Big[1 + \alpha_{\Lambda} \boldsymbol{s}_{z} \cos \theta' + \alpha_{\Lambda} (\boldsymbol{s}_{x} \cos \phi' + \boldsymbol{s}_{y} \sin \phi') \sin \theta' \Big]$

Combining with spin precession

(**TT** events)

• Adding equations of spin motion subjected to EM field (solved analytically by assuming an average B field along the Λ path, $H \approx \overline{B}/$)

$$egin{aligned} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin$$

and

$$\boldsymbol{\Omega}'(\boldsymbol{H},\boldsymbol{\beta}) = \frac{\mu_{\boldsymbol{N}}}{\hbar\beta\boldsymbol{c}} \left[\boldsymbol{g} \left(\boldsymbol{H} - \frac{\gamma - 1}{\gamma} (\boldsymbol{u} \cdot \boldsymbol{H}) \boldsymbol{u} \right) + \boldsymbol{d}\beta\boldsymbol{u} \times \boldsymbol{H} \right].$$

 \rightarrow PDF with 5 parameters $\{d, g, s_0\}$ and 8 variables $\{\theta', \phi', H, \beta\}$