

MAGNETIC MOMENT OF CHARMED BARYON

Patrick Robbe for Emi KOU (LAL)

Workshop on electromagnetic dipole moments of unstable particles, 3-4 October 2019, at LAL

MAGNETIC MOMENT OF ELEMENTARY PARTICLES LEPTON, PROTON AND QUARK

 The spin 1/2 particle such as leptons (electron, muon...) have a magnetic moment of the form

$$\mu = \frac{g}{2} \frac{|e|Q}{2m}$$

 $g_{electron} = 2.00231930436182 \pm (2.6 \times 10^{-13})$

where Q and m are the charge and mass of the particle.

- The g factor is 2 at the classic level while it is slightly modified by the quantum effect. This correction is called anomalous magnetic moment and defined as a=(g-2)/2.
- There is a longstanding question of muon anomalous magnetic moment: the experiment is 3.6 sigma away from experiment (hint of new physics?)

 $\begin{array}{ll} a_{\mu}{}^{e\times p.} = 116592091(54)(33) \times 10^{-11} \\ a_{\mu}{}^{\text{the.}} = 116591803(1)(42)(26) \times 10^{-11} \end{array} \begin{array}{c} \textbf{3.6\sigma effect!} \\ \textbf{3.6\sigma effect!} \end{array}$

MAGNETIC MOMENT OF ELEMENTARY PARTICLES LEPTON, PROTON AND QUARK

 $\mu = \frac{g}{2} \frac{|e|Q}{2m}$

 The spin 1/2 particle such as leptons (electron, muon...) have a magnetic moment of the form

where Q and m a

- The g factor is the quantum ef moment and de

 $a_{\mu}^{e \times p}$ = 116592091(54)(33) × 10⁻¹¹ . 3.60 effect! a_{μ}^{the} = 116591803(1)(42)(26) × 10⁻¹¹

 $g_{electron} = 2.00231930436182 \pm (2.6 \times 10^{-13})$

hodified by

s magnetic

MAGNETIC MOMENT OF ELEMENTARY PARTICLES LEPTON, PROTON AND QUARK

- The proton magnetic moment is also measured very precisely. But how do we interpret this result?
 gproton=5.585694702(17)
- If we consider the proton to be a fundamental particle, the magnetic moment can be written as

$$u = \frac{g_P}{2} \frac{|e|}{2m_P}$$

- g>>2 can be understood by a large strong interaction effect?
- The proton is not a fundamental particle. So this may not be the solution...

PROTON MAGNETIC MOMENT IN QUARK MODEL

 In quark model, magnetic moment of proton is a sum of the magnetic moment of the constituent quark (up-up-down) with fully symmetric spin configuration.

$$\mathbf{M} = \sum_{q} \mathbf{M}_{q} \qquad \mathbf{M}_{q} = \mu \frac{e_{q}}{e} \sigma_{q} \qquad \mu = |e|/2\mathbf{M}_{q}|$$

here q is the constituent quark and σ is the spin operator
$$\Psi_{\text{spin+flavor}}^{\text{proton}} = [2u \uparrow u \uparrow d \downarrow - u \downarrow u \uparrow d \uparrow - u \uparrow u \downarrow d \uparrow + 2u \uparrow d \downarrow u \uparrow - u \downarrow d \uparrow u \downarrow - u \downarrow d \uparrow u \downarrow u \uparrow - u \uparrow d \uparrow u \downarrow u \uparrow + 2d \downarrow u \uparrow u \uparrow - d \uparrow u \downarrow u \uparrow - d \uparrow u \downarrow u \uparrow - d \uparrow u \downarrow u \downarrow]/\sqrt{18},$$

Then the magnetic moment of proton is computed as

Similar to the previous result but now, the denominator is not proton mass but quark mass!

wł

$$\mu_{p} = \langle \phi_{P} | \mathbf{M}_{u} + \mathbf{M}_{u} + \mathbf{M}_{d} | \phi_{P} \rangle$$

$$= \frac{1}{18} (4 \times 3(2e_{u} - e_{d}) + 6 \times e_{d}) \mu$$

$$= \mu = \frac{|e|}{18}$$

Using the constituent quark mass $m_q=1/3 m_P$, we find $g_q=1.86$

 $2m_q$

PROTON MAGNETIC MOMENT IN QUARK MODEL

- In addition, since it is known that the large portion of the proton spin is actually carried by the gluons, gluon contributions to the magnetic moment has to be considered.
- On the other hand, the quark model can predict the relation of proton and neutron/Lambda magnetic moment without quark mass dependence

$$\mu_N = -\frac{2}{3}\mu_p, \qquad \mu_\Lambda = -\frac{1}{3}\mu_p \qquad \begin{array}{l} g_{\text{proton}} = 5.585694702(17) \\ g_{\text{neutron}} = -3.82608545(90) \\ g_{\text{lambda}} = -1.226(8) \end{array}$$

which is satisfied well by the experiment.

 In any case, the proton magnetic moment is an input for various theoretical computations, it is important to measure it very precisely.

CHARMED BARYON MAGNETIC MOMENT

• Proposal to measure directly MDM of charm baryons discussed during the workshop

- It will be the first direct measurement of the magnetic moment of the charmed baryon.
- Different from light baryon, spin is known to be carried mostly by the heavy quark (charm quark) —> direct connection to the charm quark (anomalous) magnetic moment.
- LHCb are producing many new results on charmed baryon (e.g. discovery of doubly charged charmed baryon!) and charmed baryon spectroscopy is becoming very interesting.

BARYON SPECTROSCOPY CHARMED BARYONS

• Let us now include charm quark. SU(4) symmetry for 3 quark states

 $4\otimes 4\otimes 4=20_s\oplus 20_s\oplus 20_a\oplus 4_a$

- Considering charmed baryons, this results in 6 spin 3/2 baryons and 9 spin 1/2 baryons.
- Different from the light baryons, not only Λ_c (*udc*) and Σ_c^+ (*udc*), but also Ξ_c^+ (*usc*) and Ξ_c^0 (*dsc*) are no longer degenerated.
- New names are NOT given to these particles but to distinguish them, they are sometimes called (Ξ_{c1}, Ξ_{c2}) or (Ξ_{c}, Ξ_{c}) .

QUESTION OF TWO $\equiv_{C1^+}, \equiv_{C2^+???}$

At heavy quark limit :

o: the anti-symmetric $1/2 (\Lambda c, \Xi_{c1}^+, \Xi_{c1}^0)$

•: the symmetric 1/2 ($\Sigma c^0, \Xi_{c2}^+, \Xi_{c2}^0$)

 $\blacksquare: the symmetric 3/2 (\Sigma c^{0*}, \Xi c^{+*}, \Xi c^{0*})$

But this has never been confirmed... The observed state can be a mixture of Ξ_{c1} and Ξ_{c2} . How can we distinguish?

We show below that

magnetic moment, which measures directly the quark spin-configuration, is the most powerful tool to distinguish different charmed baryon states!

∧_C MAGNETIC MOMENT

• We compute the Λ_c (*udc*, spin anti-symmetric state) magnetic moment in the quark model. The result turns out that Λ_c magnetic moment is equal to the charm quark magnetic moment.

$$\mu_{\Lambda_c} = \langle \phi_{\Lambda_c} | \mathbf{M}_u + \mathbf{M}_d + \mathbf{M}_c | \phi_{\Lambda_c} \rangle$$

• Using the definition $= \mu_c$

$$\mu_{\Lambda_c} \left(= \frac{g_{\Lambda_c}}{2} \frac{|e|Q_c}{2m_P} \right) = \mu_c \left(= \frac{g_c}{2} \frac{|e|Q_c}{2m_c} \right)$$

the measurement of $g_{\Lambda c}/2$ can be translated to the charm quark magnetic moment $g_c/2$ $a_{\Lambda} = m_{\Lambda} = a_c$

$$rac{g_{\Lambda_c}}{2} = rac{m_{\Lambda_c}}{m_c} rac{g_c}{2}$$

- If the measured $g_{\Lambda c}/2$ is far from $m_{\Lambda c}/m_c \sim 1.3-1.9$ (m_c=1.2-1.8 GeV) then, that is an indication of large anomalous magnetic moment of charm quark.
- Nevertheless, the quantitative statement is model-dependent (interactions of heavy quark and photons inside the hadron, ...).

$$\frac{\mu(\Lambda_c^+)}{\mu_N} = 0.37 - 0.42,$$
Brown mock argument...

OTHER CHARMED BARYON MAGNETIC MOMENT

Spin anti-symmetric state

~0.39N.M

$$\mu_{\Xi_c^{0,+}}=\mu_c$$

which is the same as Λc magnetic moment

• Spin symmetric state

Corrections to the relation Savage et al PLB326 ('94) Banuls et al PRD61 ('00)

$$\mu_{\Sigma_{c}^{+}} = -\frac{1}{3}\mu_{c} + \frac{2}{3}\mu_{u} + \frac{2}{3}\mu_{d}, \quad \mu_{\Sigma_{c}^{0}} = -\frac{1}{3}\mu_{c} + \frac{4}{3}\mu_{d}$$

$$\stackrel{\circ 0.54\text{N.M}}{\underset{}{}^{-}} = -\frac{1}{3}\mu_{c} + \frac{2}{3}\mu_{u} + \frac{2}{3}\mu_{s}, \quad \mu_{\Xi_{c}^{\prime 0}} = -\frac{1}{3}\mu_{c} + \frac{2}{3}\mu_{d} + \frac{2}{3}\mu_{s}$$

If heavy quark limit is correct and $\exists c (\exists c') \text{ state is purely anti-symmetric}$ (symmetric) state, we would observe $\mu \wedge c = \mu \exists c^0 \gg \mu \exists c^{0'}$

PREDICTING AC MAGNETIC MOMENT WITH BESIII RESULT

 $\begin{array}{c} \mathsf{C} \\ \overline{\mathsf{C}} \\ \hline \mathsf{C} \\ (\frac{\vec{r}}{2}, \frac{\vec{v}}{2}, \vec{\sigma_1}) \\ (-\frac{\vec{r}}{2}, -\frac{\vec{v}}{2}, \vec{\sigma_2}) \end{array}$

The charm quark magnetic moment can be determined by the charmonium radiative decays

Karl et al PR D13 '76

5 angles to disentangle different contributions (θ , ϕ , θ' , $\theta_{\gamma'\gamma}$, $\phi_{\gamma'\gamma}$)

PREDICTING \wedge_{C} MAGNETIC MOMENT WITH BESIII RESULT

a_i^J , b_i^J = helicity amplitudes

arXiv: 1701.01197 (also see CLEO 0910.0046)

TABLE I. Fit results for $a_{2,3}^J$ and $b_{2,3}^J$ for the process of $\psi(3686) \rightarrow \gamma_1 \chi_{c1,2} \rightarrow \gamma_1 \gamma_2 J/\psi$; the first uncertainty is statistical, and the second is systematic. The $\rho_{a_{2,3}b_{2,3}}^J$ are the correlation coefficients between $a_{2,3}^J$ and $b_{2,3}^J$.

$$\begin{split} \chi_{c1} & a_2^1 = -0.0740 \pm 0.0033 \pm 0.0034, \ b_2^1 = 0.0229 \pm 0.0039 \pm 0.0027 \\ & \rho_{a_2b_2}^1 = 0.133 \\ \hline & a_2^2 = -0.120 \pm 0.013 \pm 0.004, \ b_2^2 = 0.017 \pm 0.008 \pm 0.002 \\ & \chi_{c2} & a_3^2 = -0.013 \pm 0.009 \pm 0.004, \ b_3^2 = -0.014 \pm 0.007 \pm 0.004 \\ & \rho_{a_2b_2}^2 = -0.605, \ \rho_{a_2a_3}^2 = 0.733, \ \rho_{a_2b_3}^2 = -0.095 \\ & \rho_{a_3b_2}^2 = -0.422, \ \rho_{b_2b_3}^2 = 0.384, \ \rho_{a_3b_3}^2 = -0.024 \end{split}$$

theory

$$b_2^1/b_2^2 = 1.35 \pm 0.72, \quad \leftarrow 1.000 \pm 0.015$$

 $a_2^1/a_2^2 = 0.617 \pm 0.083. \quad \leftarrow 0.676 \pm 0.071$

error from charm mass mc=1.5±0.3 GeV

Extracting anomalous magnetic moment

$$\begin{aligned} 1+\kappa &= -\frac{4m_c}{E_{\gamma_2}[\chi_{c1}\to\gamma_2 J/\psi]}a_2^1 \\ &= 1.140\pm 0.051\pm 0.053\pm 0.229, \end{aligned} = \frac{g_c}{2} \end{aligned}$$

13

PREDICTING AC MAGNETIC MOMENT

Using the BES III data, we can predict magnetic moment of Λc

 $g_c/(2m_c) = 0.76 \pm 0.05 \text{ GeV}^{-1} \rightarrow \mu_{\Lambda c} = (0.48 \pm 0.03)\mu_N$

without charm mass ambiguity.

This value should be compared with theoretical predictions (where charm quark mass is often obtained from other observable)

 $rac{\mu(\Lambda_c^+)}{\mu_N} = 0.37 ext{--}0.42,$

which implies a slightly higher charm anomalous magnetic moment (g_c>2?).

Higher precision measurements on BOTH at a few % precision desired! magnetic moment of ∧c & charm radiative decays

CONCLUSIONS

- Charm quark magnetic moment has never been measured directly.
- A new idea to measure the magnetic moment of charmed baryon $\mu_{\Lambda c}$, using the bent-crystal is proposed (a hight precision expected). $\mu_{\Lambda c}$ can be translated to the magnetic moment of charm quark, μ_{c} .
- We showed that the measurement of various charmed baryon, such as Ξ_c can provide important information on the charmed baryon spectroscopy.
- Charmonium radiative decay can indirectly provide the charm quark magnetic moment. Using BESIII result, we made an estimate on $\mu_{\Lambda c}$. We found that the obtained value of $\mu_{\Lambda c}$ is slightly higher than the theory predictions.
- Thus, we conclude that a few % level precision for both Λ_c polarisation and the radiative charmonium decays are desired.
- We are currently working on LHCb measurement of polarisation and weak parameter of Λ_c , which is a crucial factor for $\mu_{\Lambda c}$ determination.

BARYON SPECTROSCOPY LIGHT BARYONS

• Let us start with the light baryons. SU(3) symmetry for 3 quark states

$3\otimes 3\otimes 3=10_s\oplus 8_s\oplus 8_a\oplus 1_a$

where s and a corresponds to symmetric and anti-symmetric of flavour, e.g.

 $Symmetric: \quad uuu, ddd, \frac{1}{\sqrt{2}} [ud + du] u, \frac{1}{\sqrt{2}} [us + su] u \cdots$ $Anti - Symmetric: \qquad \frac{1}{\sqrt{2}} [ud - du] u, \frac{1}{\sqrt{2}} [us - su] u \cdots$ $\bullet \text{ This results in 10 spin 3/2 baryons and 8 spin 1/2 baryons}$

BARYON SPECTROSCOPY LIGHT BARYONS

• Let us start with the light baryons. SU(3) symmetry for 3 quark states

$3\otimes 3\otimes 3=10_s\oplus 8_s\oplus 8_a\oplus 1_a$

where s and a corresponds to symmetric and anti-symmetric of flavour, e.g. NOTE ON OCTET STATES:

8s and 8a states are mixed.

The qqq' sates (like proton=uud), multiplying with the spin symmetry, they turn out to have exactly the same wave function.
For ∧ and Σ⁰ (uds states), the wave function is different: ∧ is antisymmetric and Σ⁰ is symmetric.

This

J=3/2 totally-symmetric decuplet

17

J=1/2 mixed-symmetry octet