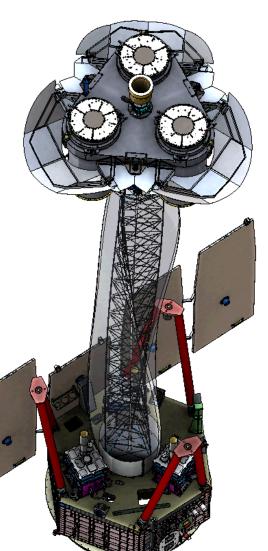


IXPE Status and Prospects

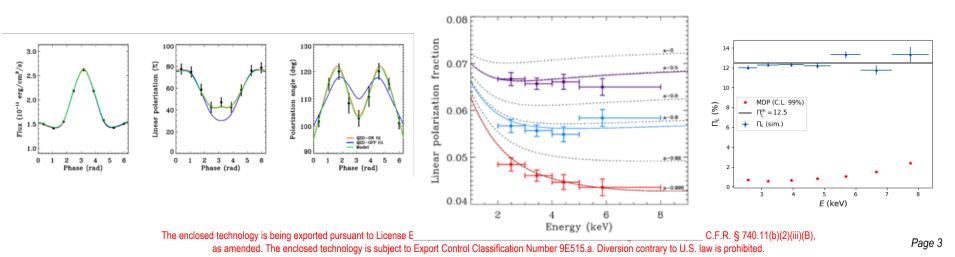
Luca Latronico, INFN-Torino


Meeting Gruppo2 – Torino, 13 Giugno 2019

IXPE Mission Overview

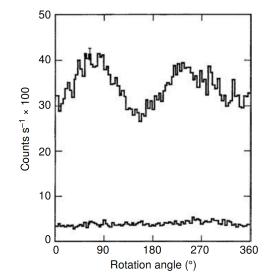
• IXPE is a NASA SMEX mission:

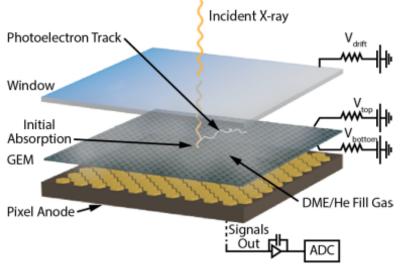
- Selected January 2017
- Italian contribution due December 2019
- Launch April 2021
- Cost-capped (200M\$) rigid aggressive schedule
- Italian Contribution supported by ASI, INAF, INFN
 - ASI manages funding through 3 direct contracts to Institues and industry
 - OHB-I (FCW, DSU)
 - INFN (DU)
 - INAF (System Engineering and Calibration)

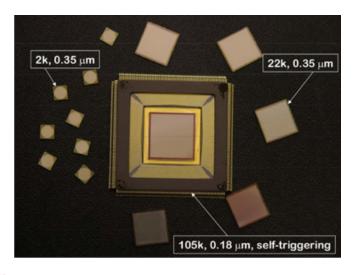


Export Control Notice

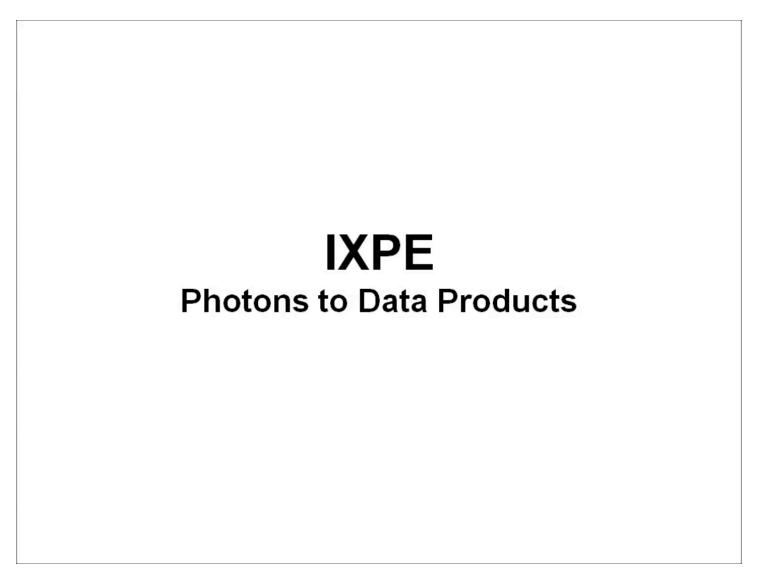
Why X-ray Polarimetry ?


- Polarized X-rays expected from most astrophysical systems
 - Anything non spherical
- Polarized X-rays bring insight into
 - emission processes
 - synchrotron, non-thermal bremsstrahlung, Inverse Compton
 - geometry
 - scattering in aspherical geometries, propagation in magnetized plasmas
 - fundamental physics
 - strong gravitation/magnetic fields (BH spin), QED vacuum birefringence, propagation through cosmological distances (LIV), unexpected polarization from photon-ALP mixing (Clusters)



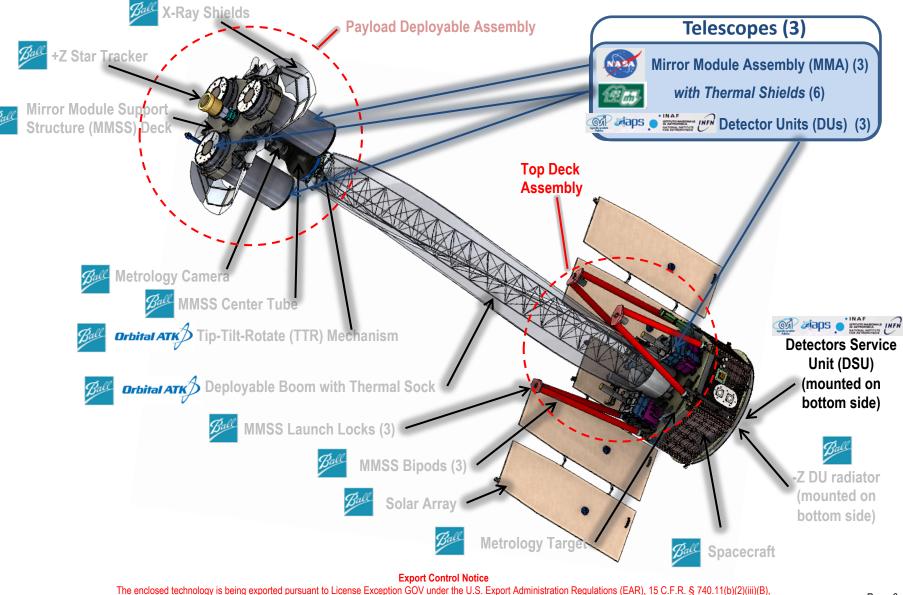


- Single historical (1978) measurement from the Crab Nebula
 - Through rotating angle-selective Bragg crystals in need of long exposure to achieve required large photon statistics
- INFN Gas Pixel Detector opens the way to X-ray polarimetry
 - 10+ years development of key detector parts (GEM, ASIC)
 - Measures direction of every single X-ray absorbed
 - Several mission proposals before IXPE

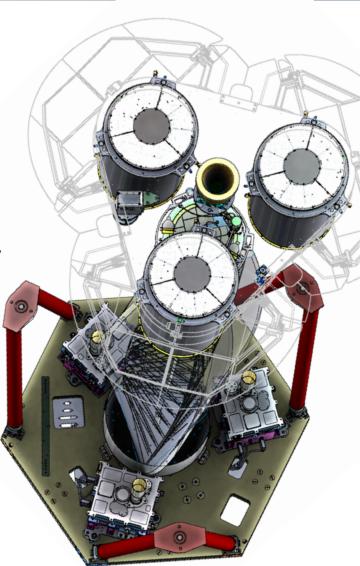


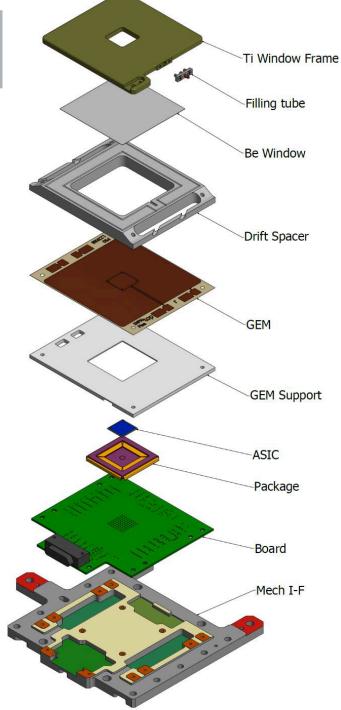
Export Control Notice

IXPE – From photons to data products



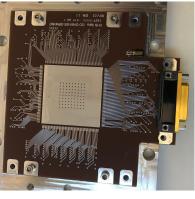
Export Control Notice


IXPE Observatory


IXPE Focal Plane Systems

- Design, Integration and Test at INFN
 - ~6.5M from ASI to INFN
 - INFN provides in-kind personnel (~1.5M) and facilities (CR, workshop), ~1M from CSN2
- Gas Pixel Detectors enabling technology for X-ray polarimetry invented at INFN
 - Luca Baldini Italian Co-PI
 - Luca Latronico Detector Unit Project Manager
- System level calibration, including Detector Service Unit, managed by INAF/IAPS
 - Paolo Soffitta Italian PI

,∠)(iii)(B)



GPD - Gas Pixel Detector

Designed and integrated at INFN

Control Notice Inder the U.S. Export Administration Regulations (EAR), 15 C.F.R. § 740.11(b)(2)(iii)(B), Classification Number 9E515.a. Diversion contrary to U.S. law is prohibited.

GPD production and performance testing

Fit model: ixpeFe55 Chisguare: 485.0 / 82

Amplitude0: 2755 ± 27

Amplitude1: 608 ± 55 Peak: 5801.8 ± 8.5

Resolution: 0.1763 ± 0.0021

Sigma: 434.5 ± 5.2

3500

3000

2500

1000

500

0

105

55Fe peak [adc]

104

460

470

480

0

1000

2000

3000

4000

5000

Pulse Invariant Inorm. ADC counts1

GPD 31 Gain Scan

490

ΔV GEM [V]

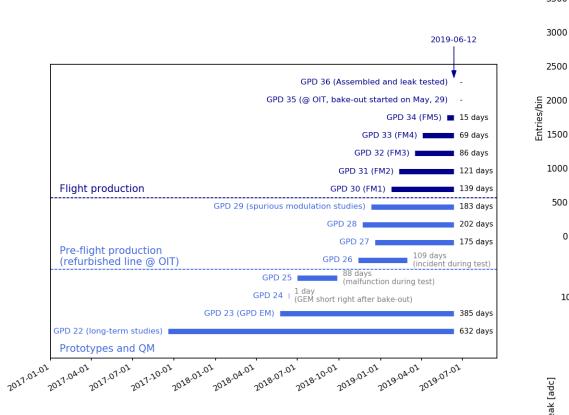
500

510

6000

7000

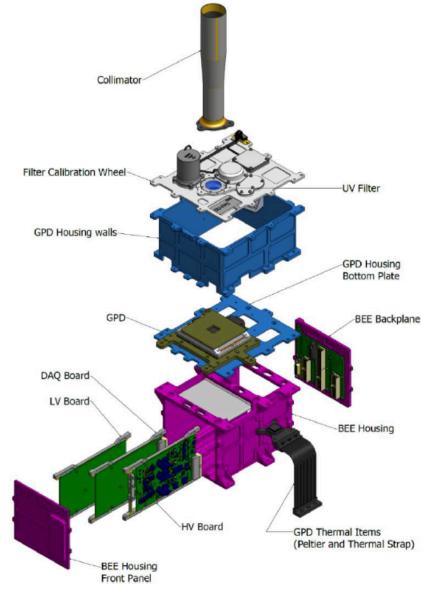
•


8000

BOT= 450 V

BOT= 400 V

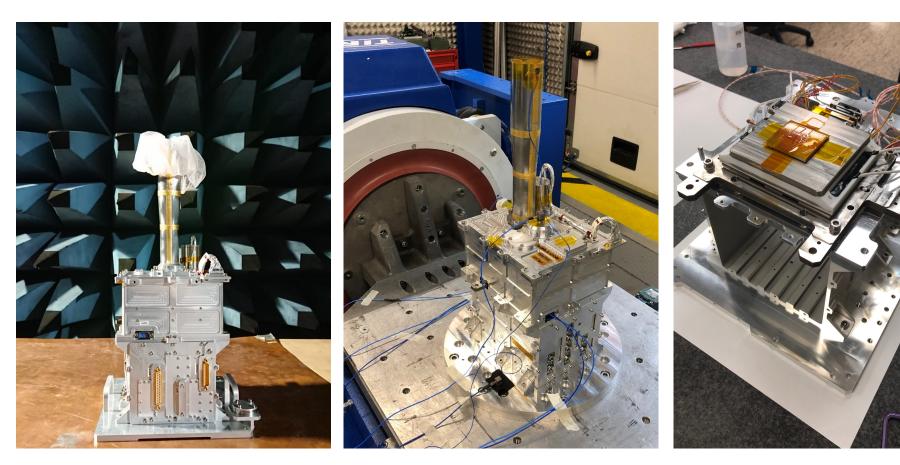
9000


Acceptance and performance tests at INFN and IAPS, full calibration at DU level

520

DU - Detector Unit

• INFN


- GPD and associated thermal control
- DAQ, Low-Voltage boards and associated backplane (OHB-I through INFN contract)
- Stray-light collimator
- DU Integration & Test
- IAPS
 - Calibration sources
 - UV filter
- OHB-I (through ASI contract)
 - High-voltage board
 - Filter and calibration wheel

I ne enclosed technology is being exported pursuant to License Exception GOV under the U.S. Export Administration Regulations (EAR), 15 C.F.R. § 740.11(b)(2)(iii)(B), as amended. The enclosed technology is subject to Export Control Classification Number 9E515.a. Diversion contrary to U.S. law is prohibited.

ontrol Notice

DU Assembly Integration & Test

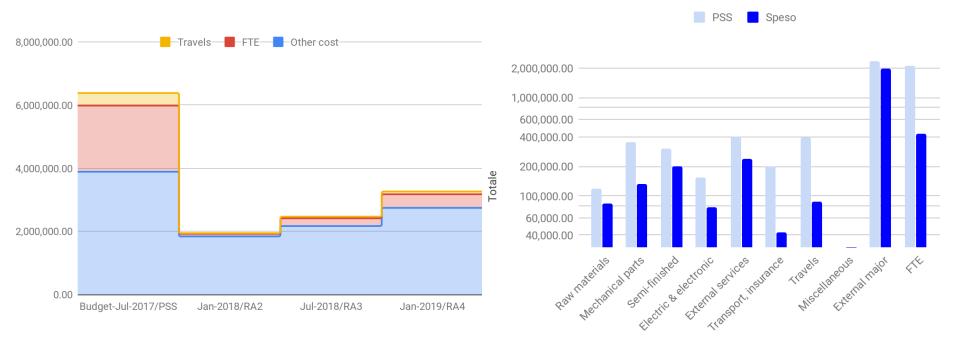
DU Engineering Model EMC Test

DU Structural Model Vibrational qualification DU Flight Model 1 Integration

Export Control Notice

The enclosed technology is being exported pursuant to License Exception GOV under the U.S. Export Administration Regulations (EAR), 15 C.F.R. § 740.11(b)(2)(iii)(B), as amended. The enclosed technology is subject to Export Control Classification Number 9E515.a. Diversion contrary to U.S. law is prohibited.

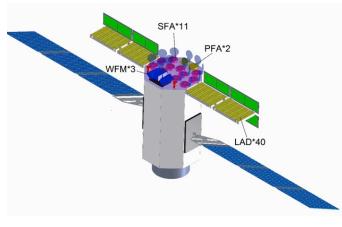
0

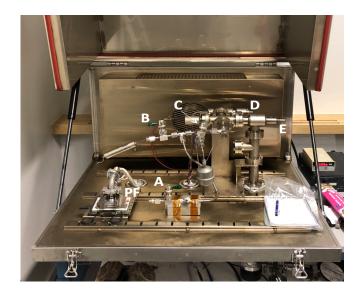


			2018		ĺ	2019 first half-year										2019 second half-year									Τ	2020 first half-year									
	10/1	10/2	11/1	12/1	12/2	01/1	02/1	02/2	03/1	03/2	04/1	04/2 05/1	05/2	06/1	07/1	07/2	08/1	08/2	09/2	10/1	10/2	11/1	11/2	12/1	01/1	01/2	02/1	02/2	03/1	03/2	04/1 04/2	05/1	05/2	06/1	06/2
Instrument Implementation Phase (C/D1)					-															1					┢						+	+	H	H	٦
Mission CDR - June 24th 2019 (TBR)																									┢	T		1			1	Π	Π		
Instrument Delivery to MSFC- December 2nd 2019					_																			7	┢						+		Η	\square	-
Telescope Delivery To Ball - March 5th 2020					-		+	+	-		-		+		+		\vdash	-	+	+	-				┢	+	+	+ -		-	+	+	Η	\vdash	-
Completion of top deck integration - April 6th 2020	+	_	-		-		-	+	-		_			_	+			-	+	+	-		_		┢	+	-	-	Ť	+	┍┼╴	┯	Н	\vdash	-
Completion of top deck integration - April 6th 2020																							_		╋						⊢⊢	ш		Щ	4
																													1		1				
Detector Unit 1 Proto-Flight Model (DU1-PFM)																													Γ	Т	Т	\Box		Π	-
GPD Production							GPD	Prod																							1				
DU Mech. Mating											DU M	lat																			1				
DU El. Mating											DU M	lat																			J				
DU El Test & Characterization												DU E	&C			L	Ш														L			Щ	
DU Environmental Test													DU	Env		Ĺ	Ц							Ц					μI		Ļ		\square	Ц	
DU Calibration															DU Ca		Ш												ĽI	_[L			Щ	
Detector Unit 2 Flight Model (DU2-FM)																Ш	Ц																	Щ	
GPD Production									GP	D Pro	bd					11													li l		J			Ц	
DU Mech. Mating												DI	J Mat																1						
DU El. Mating												DL	J Mat																1						
DU EI Test & Characterization														DU E&C																					
DU Environmental Test															DU En	v															1				
DU Calibration																	DU Ca	l I													J				
Detector Unit 3 Flight Model (DU3-FM)																													1						
GPD Production												GPD F	rod			11													1					Ц	
DU Mech. Mating														DU M	lat	11															1			Ц	
DU El. Mating														DU M	lat	11														1	1			Ц	
DU El Test & Characterization															DU	<mark>6&C</mark>													i.					Ц	
DU Environmental Test																Ш	DU Er	v											1		L			Ц	
DU Calibration																Ш_			DU C	al									1		⊢			Ц	
Detector Unit 4 Flight Model (DU4-FM)																																		Ц	
GPD Production														GP	D Pro	d															1			Ц	
DU Mech. Mating															DU	Mat				Ш									li l		4	\square		Ц	
DU El. Mating															DU	Mat				Ш									1		L			Ц	
DU El Test & Characterization																DL	J E&C			Ш									1		⊢			Ц	
DU Environmental Test															_	Ш.		OU Env											Ľ		4	\square		Ц	
DU Calibration																Ц					DU	Cal									1			Ц	
Instrument E2E Test																ł		×			,		¥						i.					Ц	
E2E Test																		-	_	E2E	1	-	_						1		L			Ц	
Margin of Instrument delivery to Ball (60 w.d.)																					┫			Ļ	-11	Mar	gin	-			⊢			Ц	
Margin of DU 2 or DU 3 delivery to MSFC (30 w.d.)															1_		Ц			1		Marg	in	\square							4	\perp	Ш	Щ	_
Telescope Calibration @ MSFC															1_		Ц			1											1	\perp	Ш	Щ	_
Telescope calibration															1_		Ц			1				Te	Cal				ļi ļ		1	\perp	Ш	Щ	_
MSFC Margin															1_		Ц			1							Mar	gin			L.	\perp	Ш	Щ	_
Telescope to Payload Integration @ Ball															1		Ц												 ↓		⊢	\perp	\square	Ц	_
DU/DSU integration preparation																	Ц																	Щ	
DUs Integration																	Ц																	Щ	
DSU Integration																					1											\square		ட	

Export Control Notice

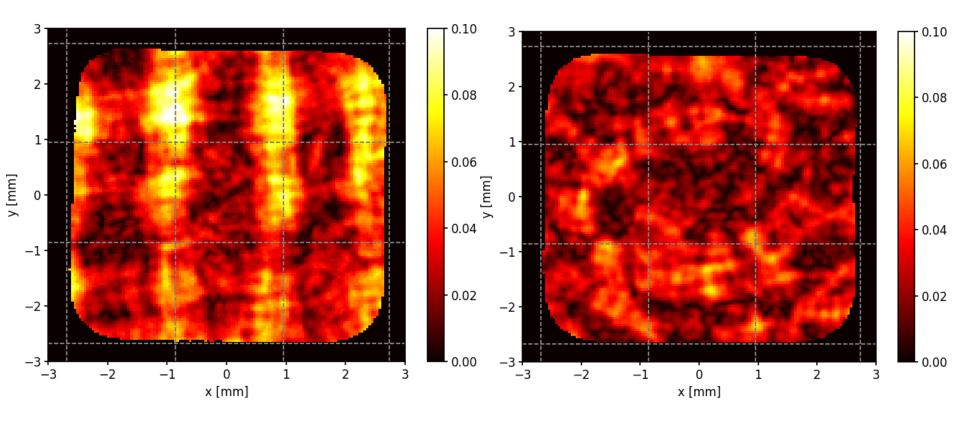
IXPE Cash flow – ASI funds


Descrizione


Procurement (tenders, orders) and personnel contacts managed through INFN administration

Prospects – beyond IXPE – call for volunteers

- Improve GPD performance for future missions
 - First window in 2026 with eXTP (China)
 - Large mission with several instruments for spectroscopy, imaging, timing and polarimetry
- 1. Solve systematics from spurious modulation
 - Complete test and qualification of alternative GEMs
 - Test new ASIC with dedicated readout systems
 - Evaluate new ASIC design and production
- 2. Consolidate GPD production line at INFN
 - Mechanics: build on existing design and derive more flexible parts for prototypes
 - Integration: build baking and sealing facility

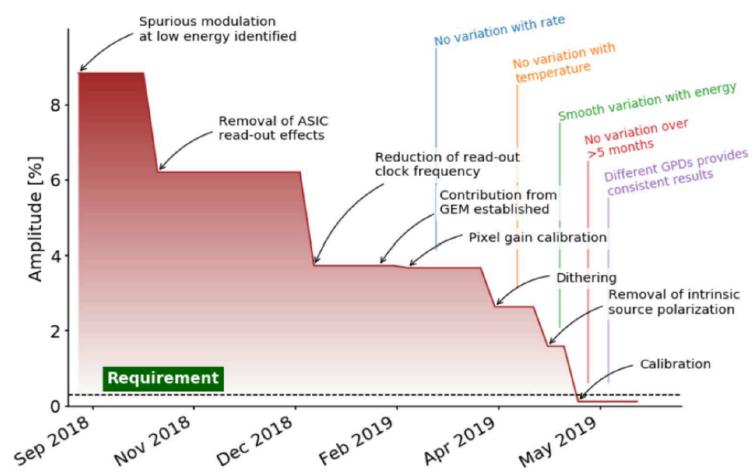

Export Control Notice

- IXPE GPDs exhibit energy- and position- dependent residual modulation of few % from unpolarized beams
- Measurements indicate a complex mixture of many tiny effects
 - GEM geometry (holes, pitch) and processing
 - ASIC (trigger digital lines activity, pedestal and gain pixel variations)
 - Readout electronics and processing software global effects
 - Residual source polarization
- Dedicated, successful effort to recover science requirements for IXPE
 - Through dedicated calibration and observation strategies (dithering and clocking)
- Beyond IXPE understand root cause inside GPD
 - Two years R&D program in parallel to IXPE mission


GPD Residual Modulation – GEM studies

- GPD modulation correlates with GEM gain structures
 - after gain calibration
- Different GEM manufacturing technologies induce different modulation patterns

GPD Residual modulation – measured ASIC effects



- Readout (charge injection / physics) leaves few ADC counts asimmetries
- Tiny but coherent effect can produce ~% modukation
 - 2/3 ADC counts vs ~10 noise cts, vs ~1000 signal cts

IXPE GPD Residual modulation recovery

All data referred to the flight-like GPD#29

• Final goal is to solve root cause with new generation of GPDs for future missions

- <u>https://ixpe.msfc.nasa.gov/</u> and papers therein
- Lectures on x-ray polarimetry and IXPE from
 - <u>https://www2.pd.infn.it/astro/pers/asiago2018/index.html</u>