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In 10 years from now ?
✤ A great opportunity to discover 

the QCD axion !

Time now to get prepared and 
rethink the QCD axion
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Figure 25: Overall panorama plot in the (ga�,ma) plane. As usual laboratory, helioscopes and haloscopes
areas are colored in black, blue and green respectively. Some prospect regions shown in previous plots
are here collected in semi-transparent colors.

ga� well beyond benchmark models to gain some margin. In such eventuality, theoretical predictions
on ma are also moved to higher values by a factor of approximately %̃�1

a , and so there is a strong moti-
vation to push haloscope sensitivities to even higher masses and helioscopes to lower masses along the
QCD band, and try bridge the gap between them. Although perhaps comparatively less motivated, one
cannot exclude a ma of much lower values deep into the anthropic window. The LC circuit concept,
and especially in its broadband mode, is an ingenious idea best suited for this mass range. We need to
follow the progress on small scale prototypes by the experimental groups active there to better assess
its future prospects. The same is to be said on the emerging activity on the new detection concepts
involving other axion couplings like the NMR techniques, the atomic transitions, 5th forces, etc. We
evolution of the ongoing demonstrating experimental activity in small test setups will be crucial to
assess their future potential. The confirmation that QCD axion sensitivity is really reachable by one or
more of these complementary channels would be of the utmost importance.
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[Irastorza & Redondo, 1801.08127]
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1.  Strong CP problem

2.  QCD axion

3.  Current limits and search strategies 

4.  Beyond standard axion scenarios

Based on: 
LDL, Mescia, Nardi 1610.07593 (PRL) + 1705.05370 (PRD)
LDL, Mescia, Nardi, Panci, Ziegler 1712.04940 (PRL) + … 
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• CP violation in QCD

The strong CP problem
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• CP violation in QCD

The strong CP problem

- QCD instantons

• GGtilde is a total derivative (no effects in PT)

[Belavin, Polyakov, Schwarz, Tyupkin PLB59 (1975), ’t Hooft PRL37 + PRD14 (1976)] 
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under color (C 6= 1), but otherwise generic.

I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
arbitrary width, chosen to include representative models like those in Refs. [14–16]. In this Letter we put
forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
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[Fujikawa, PRL 42 (1979)] 
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• Non-trivial role of quark fields: under a chiral transformation

from non-invariance of path integral measure 
(chiral anomaly)
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TABLE I. Field content of the general KSVZ axion model. (C, I,Y) denote irreps of the SM gauge group nontrivial
under color (C 6= 1), but otherwise generic.

I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
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TABLE I. Field content of the general KSVZ axion model. (C, I,Y) denote irreps of the SM gauge group nontrivial
under color (C 6= 1), but otherwise generic.

I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,

Why axions?

Strong CP problem

LQCD � ✓

32⇡2
Tr Gµ⌫

eGµ⌫ dn ⇡ 3.6⇥ 10�16✓ e cmMoore’s Law for Neutron EDM Searches

6

Why so small?
✓ . 10�10

[B. Fillipone]

Axion can dynamically relax 

LQCD �
✓
✓ � a

fa

◆
1

32⇡2
Tr Gµ⌫

eGµ⌫

✓
[Peccei & Quinn, Phys. Rev. Lett. 1977]

• Non-zero neutron EDM

The strong CP problem

3

|✓̄| < 10�11 (28)

✓̄ (29)

GG̃ (30)

✓̄ 2 [�⇡,⇡) (31)

LQCD �!
X

q

 q

�
i /D �mq

�
 q � 1

4
Gµ⌫

a Ga
µ⌫ � (✓ �Arg Det Mq)

↵s

8⇡
Gµ⌫

a G̃a
µ⌫ (32)

 q ! e�i�5✓q/2 q (33)

LQCD =
X

q

 q

�
i /D �mqe

i✓q
�
 q � 1

4
Gµ⌫

a Ga
µ⌫ � ✓

↵s

8⇡
Gµ⌫

a G̃a
µ⌫ (34)

LQCD =
X

q

q
�
i /D �mqe

i✓q
�
q � 1

4
Gµ⌫

a Ga
µ⌫ � ✓

↵s

8⇡
Gµ⌫

a G̃a
µ⌫ (35)

ma ⇠ f⇡m⇡

fa
(36)

axion couplings ⇠ 1/fa (37)

z = mu/md (38)

fa =
p
2V� (39)

(4⇡)2��H
=

�
12y2t � 3g02 � 9g2

�
�H � 6y4t +

3

8

⇥
2g4 + (g02 + g2)2

⇤
+ 23�2H +

nX

2
�2XH (40)

�Ve↵(�, T ) � �nXT

12⇡


⇧X(T ) +M2

X +
�XH

2
�2

�3/2
, (41)

V = VSM +M2
X |X2|+ �XH |X|2|H|2 + . . . (42)

|�| (43)

Abs� (44)

Arg � (45)

Hu, Hd,� (46)

. 10 meV (47)

• CP violation in QCD

2

I. INTRODUCTION

L� � dn n�µ⌫�
5

nFµ⌫ (1)

Z =

Z
�Ge�

1
4

R
GG�i✓ ↵s

8⇡

R
G ˜G ⇠ e

� 8⇡
g2s ei✓

I + AI����! e
� 8⇡

g2s cos ✓ (2)

E(0)  E(✓
e↵

= hai) (3)

e (4)

e (5)

p (6)

p (7)

n (8)

n (9)

a (10)

⇡0 (11)

E(0)  E(a) (12)

ma ⇠ ⇤2

QCD

/fa ' 6 meV

✓
109 GeV

fa

◆
(13)

mUV

u 6= m�PT

u (14)

⇢ ⇠ 1/⇤
QCD

(15)

Z =

Z
�G�q�q e�S✓=0�i✓ ↵s

8⇡

R
G ˜G ⇠ e

� 8⇡
g2s ei✓ �! e

� 8⇡
g2s cos ✓ (16)

[See e.g. 1810.03718]

 L. Di Luzio (Pisa U.) - Rethinking the QCD axion                                                                         03/29



“Small value” problems
• Strong CP: qualitatively different from other small value problems of the SM

 L. Di Luzio (Pisa U.) - Rethinking the QCD axion                                                                         04/29



“Small value” problems

1. theta is radiatively stable (unlike                )
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act with each other. We are therefore led to contemplate diagrams where the fermion 
line is festooned with non-interacting bosons. The diagram will have a factor from 
the q~-boson vertices of  the generic form 

Tr(Ut  rn nt Um n2 U? m n3 Umn4 ) , (4.1) 

and a logarithmic divergence which will be identical for diagrams of identical topo- 
logy, but will in general differ for different topologies. 

It is easy to satisfy oneself using the Feynman rules of  fig. 8 that the powers 
nl ... n4 in the generic expression (4.1) must all be even, and there will be a phase 
and hence CP violation only if they are all >~2. The expression (4.1) will be sym- 
metric, and hence no phase CP violation will arise, from any of  the following low- 
order combinations of  the hi: 
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lation are therefore 
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Tr(Utma 2 UrnacUtm4aUm2c). (4.3b) 

We see from (4.3) that the lowest order in which a phase is potentially available is 
12th order. To get a divergence in this order all the quark mass factors in (4.3)would 
have to come from Higgs couplings, and there would be no vector boson couplings. 
But for every diagram on a catho-quark [29] line giving an expression of  type (4.3a) 
there will be a diagram on an ano-quark [29] fine giving an expression of  type (4.3b). 
When we add these together, the phases will cancel and there will be no CP violation. 
To get something non-zero, we need to add to twelfth-order diagrams which yield 
expressions of  the type (4.3) at least one U(1) boson line with at least one end on a 
right-handed fermion line so as to differentiate between ano- and catho-quarks. 
Therefore, the lowest order in which we may possibly find a logarithmically diver- 
gent contribution to 0 renormalization is the 14th. 

We should emphasize at this point that we cannot demonstrate that there is 

Fig. 9. Generic topology of a class of divergent CP violating 14th-order diagrams in the 
Kobayashi-Maskawa model [21,22]. 

• Strong CP: qualitatively different from other small value problems of the SM
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“Small value” problems

2. it evades anthropic explanations (unlike        and                            )
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TABLE I. Field content of the general KSVZ axion model. (C, I,Y) denote irreps of the SM gauge group nontrivial
under color (C 6= 1), but otherwise generic.

I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical

• Strong CP: qualitatively different from other small value problems of the SM

[See e.g. Ubaldi, 0811.1599]

[Ellis, Gaillard NPB 150 (1979), 
Khriplovich, Vainshtein NPB 414 (1994)]
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Solution of strong CP likely unrelated to other small value problems in the SM ?  



“Small value” problems
• Strong CP: qualitatively different from other small value problems of the SM

• More than a small value problem ?  

(imagine a theory of flavour generating Yukawas: would expect O(1) phases like CKM)
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
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Solutions
• Do we really understand QCD vacuum structure ?

- attempts in this direction failed (so far) to solve eta’ problem !

Goldtones, mη′ ≈ 958 MeV. As was shown by Weinberg in the pre-QCD era, were
the η′ a Goldstone, its mass would be constrained by mη′ <

√
3mπ. This suggests

that, unlike the octet of the Goldstone bosons, the η′ is not massless in the chiral
limit (unless chiral expansion is invalid). This is the only fact we will need.

An extra contribution to the η′ mass comes from nonperturbative effects due to
the axial anomaly, as was exemplified [20] by the same instantons.

To quantify the effect on the theoretical side, let us introduce the correlator of
the topological charge densities (in the literature it is referred to as the topological
susceptibility)

X = − i
∫

d4x ⟨0|T Q(x) Q(0) |0⟩ , (24)

where

Q ≡ 1

32 π2
Ga

µν G̃a
µν . (25)

According to the low-energy theorem derived in Refs. [21, 22] in the leading
approximation of the 1/Nc expansion, the quantity X is saturated by the η′ contri-
bution implying the following formula for the η′ mass:

m2
η′ =

6X
f 2

π

+ O (mq) + O
(

1

N2
c

)

, (26)

where the topological susceptibility X on the right-hand side is evaluated in pure
gluodynamics, the Yang-Mills theory with no light quarks. In order for the η′ mass
to be nonzero in the chiral limit, X should be nonzero in pure gluodynamics.

A substantial amount of theoretical evidence is accumulated in the last 20 years
showing that the topological susceptibility in pure Yang-Mills does not vanish. The
lattice [23] and the QCD sum rule studies [24] yield X ≃ (180 MeV)4 ̸= 0. This
successfully takes care of the U(1) problem.

Having nonzero topological susceptibility in pure gluodynamics means, per se,
that there is a sensitivity to the parameter θ in this theory. Indeed, X is nothing
but the second derivative of the vacuum energy with respect to θ taken at θ = 0

X = − ∂2

∂ θ2

(

ln Zθ

V

)
∣

∣

∣

∣

∣

θ=0

. (27)

In the theory with the light quarks included, the topological susceptibility can be
calculated by applying the chiral perturbation theory (see e.g. [17]). As expected
on general grounds, in this case X ∝ mq provided the η′ is split from the octet
of the Goldstones; otherwise the η′ contribution cancels the O(mq) term in the
topological susceptibility. However, in the theory with the light quarks it is much
more instructive to calculate directly CP odd decay rates, for instance the rate of
η → π+ π−. This amplitude is forbidden by CP . In the same way as with the
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• A massless quark would make the theta term unphysical (excluded at 20σ by Lattice)
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Solutions
• Do we really understand QCD vacuum structure ?

-         in the CP limit

• Spontaneous CP (or P) violation [Nelson PLB 136 (1983), PLB 143 (1984)]
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.

- need to generate CKM (and CP violation for BAU) without inducing a too large  

- non-trivial model building + no clear experimental signature

[Barr PRD 30 (1984)]
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Field Spin SU(3)C SU(2)L U(1)Y U(1)PQ

QL 1/2 CQ IQ YQ XL

QR 1/2 CQ IQ YQ XR

� 0 1 1 0 1

TABLE I. Field content of the general KSVZ axion model. (C, I,Y) denote irreps of the SM gauge group nontrivial
under color (C 6= 1), but otherwise generic.
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
arbitrary width, chosen to include representative models like those in Refs. [14–16]. In this Letter we put
forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
type of models [17, 18], the resulting window encompasses also the DFSZ axion [19, 20] and many of its
variants [15].

II. Hadronic axion models. The basic ingredient of any renormalizable axion model is a global U(1)PQ

symmetry. The associated Nöether current must have a color anomaly and, although not required for solving
the strong CP problem, in general it has also an electromagnetic anomaly:

@µJPQ
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N↵s

4⇡
G · G̃+

E↵

4⇡
F · F̃ , (66)

where G, F are the color and electromagnetic field strength tensors, G̃, F̃ their duals, and N and E are the
color and electromagnetic anomaly coe�cients. In a generic axion model of KSVZ type [17, 18] the anomaly
is induced by pairs of heavy fermions QL, QR which must transform non-trivially under SU(3) and chirally
under U(1)PQ. Their mass arises from a Yukawa interaction with a SM singlet scalar field � which develops
a PQ breaking VEV, so that their PQ charges XL,R ⌘ X (QL,R), normalized to X (�) = 1, must satisfy

|XL � XR| = 1 . (67)

We denote the (vectorlike) representations of the SM gauge group GSM=SU(3)C⇥SU(2)I⇥U(1)Y to which
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
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(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
arbitrary width, chosen to include representative models like those in Refs. [14–16]. In this Letter we put
forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
type of models [17, 18], the resulting window encompasses also the DFSZ axion [19, 20] and many of its
variants [15].
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TABLE I. Field content of the general KSVZ axion model. (C, I,Y) denote irreps of the SM gauge group nontrivial
under color (C 6= 1), but otherwise generic.
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parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
arbitrary width, chosen to include representative models like those in Refs. [14–16]. In this Letter we put
forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
type of models [17, 18], the resulting window encompasses also the DFSZ axion [19, 20] and many of its
variants [15].

• PQ mechanism

- assume a global U(1)PQ : i) QCD anomalous and ii) spontaneously broken

- axion: pNGB of U(1)PQ breaking

set to zero by QCD dynamics

[Peccei, Quinn PRL 38 (1977), PRD 16 (1997)]

[Weinberg PRL 40 (1978), Wilczek PRL 40 (1978)]

• A massless quark would make the theta term unphysical (excluded at 20σ by Lattice)

• Spontaneous CP (or P) violation 
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θ-dependence of QCD vacuum
• Ground state energy in Euclidean V4
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ä+ 3Hȧ+m2

a(T )fa sin

✓
a

fa

◆
= 0 (10)
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θ-dependence of QCD vacuum
• Ground state energy in Euclidean V4 [Vafa, Witten PRL 53 (1984)]
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• theta term dynamically relaxed to zero on the axion ground state 

- aGGtilde not a total derivative (effects in PT)



Axion properties [EFT]
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- generates “model independent” axion couplings to photons, nucleons, electrons, …

[From NLO Chiral Lagrangian, 
Grilli di Cortona et al., 1511.02867]
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[iē�5e] + ...

a

p

p

a a

n

n

e

e

KSVZ

DFSZ1

DFSZ2

Ca� ' �1.92

Ca� ' 8

3
� 1.92

Ca� ' 2

3
� 1.92

Ca� ' E

N
� 2

3

4md +mu

md +mu

Cap ' [Cau � md

mu +md
]�u+ [Cad �

mu

mu +md
]�d

Can ' [Cau � md

mu +md
]�d+ [Cad �

mu

mu +md
]�u

Ca(u,d,e) = 0

Cau =
1

3
sin2 �

Ca(d,e) =
1

3

cos

2 �

Ca(u,e) =
1

3
sin2 �

Cad =

1

3

cos

2 �

QCD

2

I. INTRODUCTION

a (1)

⇡0 (2)

E(0)  E(a) (3)

ma ⇠ ⇤2

QCD

/fa ' 6 meV

✓
109 GeV

fa

◆
(4)

mUV

u 6= m�PT

u (5)

⇢ ⇠ 1/⇤
QCD

(6)

Z =

Z
�G�q�q e�S✓=0�i✓ ↵s

8⇡

R
G ˜G ⇠ e

� 8⇡
g2s ei✓ �! e

� 8⇡
g2s cos ✓ (7)

cu � cd =
Xu �Xd

N| {z }
c2��s2�

� md �mu

mu +md| {z }
' 1

3

= 0 (8)

Lq (9)

LN (10)

sµ�q = hN |q�µ�5|Ni (11)

ga� < 6.6 10�11 GeV�1 (12)

aF F̃ (13)

afi�
5

f (14)

fa & 4⇥ 108 GeV (15)

K ! ⇡a (16)

2

I. INTRODUCTION

a (1)

⇡0 (2)

E(0)  E(a) (3)

ma ⇠ ⇤2

QCD

/fa ' 6 meV

✓
109 GeV

fa

◆
(4)

mUV

u 6= m�PT

u (5)

⇢ ⇠ 1/⇤
QCD

(6)

Z =

Z
�G�q�q e�S✓=0�i✓ ↵s

8⇡

R
G ˜G ⇠ e

� 8⇡
g2s ei✓ �! e

� 8⇡
g2s cos ✓ (7)

cu � cd =
Xu �Xd

N| {z }
c2��s2�

� md �mu

mu +md| {z }
' 1

3

= 0 (8)

Lq (9)

LN (10)

sµ�q = hN |q�µ�5|Ni (11)

ga� < 6.6 10�11 GeV�1 (12)

aF F̃ (13)

afi�
5

f (14)

fa & 4⇥ 108 GeV (15)

K ! ⇡a (16)

2

I. INTRODUCTION

e (1)

e (2)

p (3)

p (4)

n (5)

n (6)

a (7)

⇡0 (8)

E(0)  E(a) (9)

ma ⇠ ⇤2

QCD

/fa ' 6 meV

✓
109 GeV

fa

◆
(10)

mUV

u 6= m�PT

u (11)

⇢ ⇠ 1/⇤
QCD

(12)

Z =

Z
�G�q�q e�S✓=0�i✓ ↵s

8⇡

R
G ˜G ⇠ e

� 8⇡
g2s ei✓ �! e

� 8⇡
g2s cos ✓ (13)

cu � cd =
Xu �Xd

N| {z }
c2��s2�

� md �mu

mu +md| {z }
' 1

3

= 0 (14)

Lq (15)

LN (16)

2

I. INTRODUCTION

e (1)

e (2)

p (3)

p (4)

n (5)

n (6)

a (7)

⇡0 (8)

E(0)  E(a) (9)

ma ⇠ ⇤2

QCD

/fa ' 6 meV

✓
109 GeV

fa

◆
(10)

mUV

u 6= m�PT

u (11)

⇢ ⇠ 1/⇤
QCD

(12)

Z =

Z
�G�q�q e�S✓=0�i✓ ↵s

8⇡

R
G ˜G ⇠ e

� 8⇡
g2s ei✓ �! e

� 8⇡
g2s cos ✓ (13)

cu � cd =
Xu �Xd

N| {z }
c2��s2�

� md �mu

mu +md| {z }
' 1

3

= 0 (14)

Lq (15)

LN (16)

2

I. INTRODUCTION

p (1)

p (2)

n (3)

n (4)

a (5)

⇡0 (6)

E(0)  E(a) (7)

ma ⇠ ⇤2

QCD

/fa ' 6 meV

✓
109 GeV

fa

◆
(8)

mUV

u 6= m�PT

u (9)

⇢ ⇠ 1/⇤
QCD

(10)

Z =

Z
�G�q�q e�S✓=0�i✓ ↵s

8⇡

R
G ˜G ⇠ e

� 8⇡
g2s ei✓ �! e

� 8⇡
g2s cos ✓ (11)

cu � cd =
Xu �Xd

N| {z }
c2��s2�

� md �mu

mu +md| {z }
' 1

3

= 0 (12)

Lq (13)

LN (14)

sµ�q = hN |q�µ�5|Ni (15)

ga� < 6.6 10�11 GeV�1 (16)

2

I. INTRODUCTION

p (1)

p (2)

n (3)

n (4)

a (5)

⇡0 (6)

E(0)  E(a) (7)

ma ⇠ ⇤2

QCD

/fa ' 6 meV

✓
109 GeV

fa

◆
(8)

mUV

u 6= m�PT

u (9)

⇢ ⇠ 1/⇤
QCD

(10)

Z =

Z
�G�q�q e�S✓=0�i✓ ↵s

8⇡

R
G ˜G ⇠ e

� 8⇡
g2s ei✓ �! e

� 8⇡
g2s cos ✓ (11)

cu � cd =
Xu �Xd

N| {z }
c2��s2�

� md �mu

mu +md| {z }
' 1

3

= 0 (12)

Lq (13)

LN (14)

sµ�q = hN |q�µ�5|Ni (15)

ga� < 6.6 10�11 GeV�1 (16)

QCD

2

I. INTRODUCTION

a (1)

⇡0 (2)

E(0)  E(a) (3)

ma ⇠ ⇤2

QCD

/fa ' 6 meV

✓
109 GeV

fa

◆
(4)

mUV

u 6= m�PT

u (5)

⇢ ⇠ 1/⇤
QCD

(6)

Z =

Z
�G�q�q e�S✓=0�i✓ ↵s

8⇡

R
G ˜G ⇠ e

� 8⇡
g2s ei✓ �! e

� 8⇡
g2s cos ✓ (7)

cu � cd =
Xu �Xd

N| {z }
c2��s2�

� md �mu

mu +md| {z }
' 1

3

= 0 (8)

Lq (9)

LN (10)

sµ�q = hN |q�µ�5|Ni (11)

ga� < 6.6 10�11 GeV�1 (12)

aF F̃ (13)

afi�
5

f (14)

fa & 4⇥ 108 GeV (15)

K ! ⇡a (16)

QCD

2

I. INTRODUCTION

a (1)

⇡0 (2)

E(0)  E(a) (3)

ma ⇠ ⇤2

QCD

/fa ' 6 meV

✓
109 GeV

fa

◆
(4)

mUV

u 6= m�PT

u (5)

⇢ ⇠ 1/⇤
QCD

(6)

Z =

Z
�G�q�q e�S✓=0�i✓ ↵s

8⇡

R
G ˜G ⇠ e

� 8⇡
g2s ei✓ �! e

� 8⇡
g2s cos ✓ (7)

cu � cd =
Xu �Xd

N| {z }
c2��s2�

� md �mu

mu +md| {z }
' 1

3

= 0 (8)

Lq (9)

LN (10)

sµ�q = hN |q�µ�5|Ni (11)

ga� < 6.6 10�11 GeV�1 (12)

aF F̃ (13)

afi�
5

f (14)

fa & 4⇥ 108 GeV (15)

K ! ⇡a (16)

2

I. INTRODUCTION

a (1)

⇡0 (2)

E(0)  E(a) (3)

ma ⇠ ⇤2

QCD

/fa ' 6 meV

✓
109 GeV

fa

◆
(4)

mUV

u 6= m�PT

u (5)

⇢ ⇠ 1/⇤
QCD

(6)

Z =

Z
�G�q�q e�S✓=0�i✓ ↵s

8⇡

R
G ˜G ⇠ e

� 8⇡
g2s ei✓ �! e

� 8⇡
g2s cos ✓ (7)

cu � cd =
Xu �Xd

N| {z }
c2��s2�

� md �mu

mu +md| {z }
' 1

3

= 0 (8)

Lq (9)

LN (10)

sµ�q = hN |q�µ�5|Ni (11)

ga� < 6.6 10�11 GeV�1 (12)

aF F̃ (13)

afi�
5

f (14)

fa & 4⇥ 108 GeV (15)

K ! ⇡a (16)

- generates axion mass 

2

I. INTRODUCTION

ma . 10T? (1)

ma . 3T (2)

GF m2

e ' 10�12 (3)

me

fa
' 10�12

✓
108 GeV

fa

◆
(4)

ma ⇠ ⇤2

QCD

/fa ' 0.1 eV

✓
108 GeV

fa

◆
(5)

ma ⇠ ⇤2

QCD

/fa ' 6 meV

✓
109 GeV

fa

◆
(6)

mUV

u 6= m�PT

u (7)

⇢ ⇠ 1/⇤
QCD

(8)

Z =

Z
�G�q�q e�S✓=0�i✓ ↵s

8⇡

R
G ˜G ⇠ e

� 8⇡
g2s ei✓ �! e

� 8⇡
g2s cos ✓ (9)

cu � cd =
Xu �Xd

N| {z }
c2��s2�

� md �mu

mu +md| {z }
' 1

3

= 0 (10)

Lq (11)

LN (12)

sµ�q = hN |q�µ�5|Ni (13)

ga� < 6.6 10�11 GeV�1 (14)

aF F̃ (15)

afi�
5

f (16)

2

I. INTRODUCTION

⇠ ⇤4

QCD

f2

a

(1)

|✓ � arg det (YuYd)| < 10�10 (2)

✓ = ✓ � arg det (YuYd) (3)

L� � dn n�µ⌫�
5

nFµ⌫ (4)

Z =

Z
�Ge�

1
4

R
GG�i✓ ↵s

8⇡

R
G ˜G ⇠ e

� 8⇡
g2s ei✓

I + AI����! e
� 8⇡

g2s cos ✓ (5)

E(0)  E(✓
e↵

= hai) (6)

e (7)

e (8)

p (9)

p (10)

n (11)

n (12)

a (13)

⇡0 (14)

E(0)  E(a) (15)

ma ⇠ ⇤2

QCD

/fa ' 6 meV

✓
109 GeV

fa

◆
(16)

2

I. INTRODUCTION

↵

8⇡

C�

fa
aFµ⌫ F̃

µ⌫ (1)

Cn (2)

Cp (3)

Ce (4)

Ce ' 0 (5)

C� = �1.92(4) (6)

C� = E/N � 1.92(4) (7)

Cp = �0.47(3) (8)

Cn = �0.02(3) (9)

Cn = 0 (10)

Cp = �0.5 (11)

n, (12)

Ce = 1/6 (13)

C� = �1.92 (14)

ma . 10T? (15)

ma . 3T (16)

GF m2

e ' 10�12 (17)

2

I. INTRODUCTION

 = p, n, e (1)

m
 

a

fa
[i �

5

 ] (2)

⇠ ⇤4

QCD

f2

a

(3)

|✓ � arg det (YuYd)| < 10�10 (4)

✓ = ✓ � arg det (YuYd) (5)

L� � dn n�µ⌫�
5

nFµ⌫ (6)

Z =

Z
�Ge�

1
4

R
GG�i✓ ↵s

8⇡

R
G ˜G ⇠ e

� 8⇡
g2s ei✓

I + AI����! e
� 8⇡

g2s cos ✓ (7)

E(0)  E(✓
e↵

= hai) (8)

e (9)

e (10)

p (11)

p (12)

n (13)

n (14)

a (15)

⇡0 (16)

(              )

Axion properties [EFT]

2

I. INTRODUCTION

 = p, n, e (1)

C
 

m
 

a

fa
[i �

5

 ] (2)

⇠ ⇤4

QCD

f2

a

(3)

|✓ � arg det (YuYd)| < 10�10 (4)

✓ = ✓ � arg det (YuYd) (5)

L� � dn n�µ⌫�
5

nFµ⌫ (6)

Z =

Z
�Ge�

1
4

R
GG�i✓ ↵s

8⇡

R
G ˜G ⇠ e

� 8⇡
g2s ei✓

I + AI����! e
� 8⇡

g2s cos ✓ (7)

E(0)  E(✓
e↵

= hai) (8)

e (9)

e (10)

p (11)

p (12)

n (13)

n (14)

a (15)

⇡0 (16)

 L. Di Luzio (Pisa U.) - Rethinking the QCD axion                                                                         07/29

6

✓ ! ✓ + 2↵ (66)

DqDq ! exp

✓
�i↵

Z
d4x

↵s

4⇡
Gµ⌫

a G̃a
µ⌫

◆
DqDq (67)

✓ = ✓ � ✓q (68)

dn ⇡ e
��✓
��m2

⇡

m3

n

⇡ 10�16

��✓
�� e cm (69)

dn . 3 · 10�26e cm (70)

✓ . 10�10 (71)

m2

H ⌧ ⇤2

UV

(72)

ye,u,d ⇠ 10�6 ÷ 10�5 (73)

✓
e↵

(x) (74)

a(x) ! a(x) + �↵ fa (75)

Leff = LSM + ✓
g2

32⇡2

Gµ⌫
a G̃a

µ⌫ +
a

fa

g2

32⇡2

Gµ⌫
a G̃a

µ⌫ � 1

2
@µa@µa+ L(@µa, ) (76)

L
e↵

=
a

fa

↵s

8⇡
Gµ⌫

a G̃a
µ⌫ (77)

L
e↵

=

✓
✓ +

a

fa

◆
↵s

8⇡
Gµ⌫

a G̃a
µ⌫ � 1

2
@µa@µa+ L(@µa, ) (78)

fa ⇠ v
EW

(79)

fa ⇠ v (80)

fa � v (81)

• Consequences of               



2

I. INTRODUCTION

a (1)

⇡0 (2)

E(0)  E(a) (3)

ma ⇠ ⇤2

QCD

/fa ' 6 meV

✓
109 GeV

fa

◆
(4)

mUV

u 6= m�PT

u (5)

⇢ ⇠ 1/⇤
QCD

(6)

Z =

Z
�G�q�q e�S✓=0�i✓ ↵s

8⇡

R
G ˜G ⇠ e

� 8⇡
g2s ei✓ �! e

� 8⇡
g2s cos ✓ (7)

cu � cd =
Xu �Xd

N| {z }
c2��s2�

� md �mu

mu +md| {z }
' 1

3

= 0 (8)

Lq (9)

LN (10)

sµ�q = hN |q�µ�5|Ni (11)

ga� < 6.6 10�11 GeV�1 (12)

aF F̃ (13)

afi�
5

f (14)

fa & 4⇥ 108 GeV (15)

K ! ⇡a (16)

2

I. INTRODUCTION

� (1)

g (2)

SM quark/lepton (3)

ga�� =
ma

eV

2.0

1010 GeV
(E/N � 1.92(4)) (4)

Cp,n,e(�) ⇠ O(1) (5)

tan� = hH
1

i / hH
2

i (6)

Cp,n,e = O(1) (7)

N
2

+N
3

= 0 (8)

ma < 3.4⇥ 10�3

eVq��CV
bd

��2 +
��CV

bd

��2
(9)

µ ! ea (10)

fa >
q��CV

bd

��2 +
��CV

bd

��2 5.5⇥ 109 GeV (11)

B ! Ka (12)

fa >
��CV

bd

�� 1.5⇥ 108 GeV (13)

K ! ⇡a (14)

fa >
��CV

sd

�� 5.9⇥ 1010 GeV (15)

[PQd, Y
†
d Yd] 6= 0 (16)

2

I. INTRODUCTION

� (1)

g (2)

SM quark/lepton (3)

ga�� =
ma

eV

2.0

1010 GeV
(E/N � 1.92(4)) (4)

Cp,n,e(�) ⇠ O(1) (5)

tan� = hH
1

i / hH
2

i (6)

Cp,n,e = O(1) (7)

N
2

+N
3

= 0 (8)

ma < 3.4⇥ 10�3

eVq��CV
bd

��2 +
��CV

bd

��2
(9)

µ ! ea (10)

fa >
q��CV

bd

��2 +
��CV

bd

��2 5.5⇥ 109 GeV (11)

B ! Ka (12)

fa >
��CV

bd

�� 1.5⇥ 108 GeV (13)

K ! ⇡a (14)

fa >
��CV

sd

�� 5.9⇥ 1010 GeV (15)

[PQd, Y
†
d Yd] 6= 0 (16)

- EFT breaks down at energies of order fa

UV completion can still affect low-energy axion properties !
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Renormalizable UV Completion of SM Predicting Axion  

>  A singlet complex scalar field     featuring 
a global            symmetry is added to SM  

>  Symmetry is broken by vev 

§  Excitation of modulus:  

§  Excitation of angle: NGB 

>  Quarks (SM or extra) carry PQ charges                                           
such that            is anomalously broken 
due to gluonic triangle anomaly 
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Axion properties [EFT]
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• anomalous PQ breaking (fermion sector) + spontaneous PQ breaking (scalar sector)
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [? ]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [? ? ]. The so-called Nelson-Barr (NB) type models [? ? ] either
require a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather
elaborated theoretical structures [? ]. The Peccei-Quinn (PQ) solution [? ? ? ? ] arguably stands on better
theoretical grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ
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The charge dependent part of the couplings is com-
monly denoted as C0

q = (XqR � XqL)/(2N), while
the vector couplings vanish upon integration by part
because of the equation of motion. Matching Eq. (2)
with the non-relativistic axion-nucleon Lagrangian
allows to extract the axion couplings to the nucle-
ons N = p, n [21] which are defined in analogy to the
couplings to the quarks by @µa/(2fa)CNN�µ�5N .
It is convenient to recast the results in terms of the
two linear combinations

Cp + Cn = 0.50(5)
�
C0

u + C0
d � 1

�
� 2�s , (3)

Cp � Cn = 1.273(2) (C0
u � C0

d � 1

3

), (4)

where the two numbers in parenthesis correspond to
fu+fd = 1 (exact) and fu�fd ' 1/3 (approximate),
while �s is a correction appearing in DFSZ which is
dominated by the s-quark sea contribution. In the
models below, using the results from [21] and allow-
ing for the largest possible values of C0

s,c,b,t, we have
|�s| <⇠ 0.04. Eq. (3) makes clear why it is difficult
to decouple the axion from the nucleons. For KSVZ
C0

u = C0
d = 0 and the model independent contribu-

tion survives. For DFSZ we see from Eq. (2) that
C0

u + C0
d = Nl/N with Nl the contribution to the

QCD anomaly of the first generation (light) quarks.
Hence, for generation blind charges C0

u + C0
d = 1/3

is an exact result.

The nucleophobic axion. We take as the defining
condition for the nucleophobic axion the (approxi-
mate) vanishing of the relations in Eqs. (3), (4). Re-
markably, since the axion-pion coupling is propor-
tional to the isospin breaking combination Cp � Cn

[22], nucleophobic axions are also pionphobic. We
start by studying Eq. (3). In the approximation
in which �s is neglected, Cp + Cn = 0 implies
C0

u + C0
d = Nl/N = 1. This can only be realized

in two ways: (i) either the contributions of the two
heavier generations cancel each other (N2 = �N3

and Nl = N1) or (ii) they vanish identically, in
which case it is convenient to assign Nl = N3 and,
hoping that no confusion will arise with the usual
generation ordering, require for the anomalies of the
heavier generations N1 = N2 = 0.1 Clearly both
cases require generation dependent PQ charges. A
generic matrix of charges for a LH or RH quark q
can be written as XQ = X0

q I +X8
q�8 +X3

q�3 where
I = diag(1, 1, 1) is the identity in generation space,
while �8 = diag(1, 1,�2) and �3 = diag(1,�1, 0)
are proportional to the corresponding SU(3) ma-
trices. In this Letter we are mainly interested in
a proof of existence for nucleophobic axions, so we
introduce some simplification: we assume just two
Higgs doublets H1,2 (with PQ charges X1,2 and hy-
percharge Y = �1/2), and we consider only PQ

1
We have found that this second case was already identified

in the not-well-known work in Ref. [23].

charge assignments that do not forbid any of the SM
Yukawa operators. Under these conditions, it can be
shown that two generations must have the same PQ
charges [24]. We can then drop the SU(2) break-
ing �3 term so that the matrix XQ = X0

q I +X8
q�8

respects a SU(2) symmetry acting on the genera-
tion indices {1, 2}, and we henceforth refer to such
a structure as 2 +1 . To study which Yukawa struc-
tures can enforce the condition N = Nl it is then suf-
ficient to consider just one of the generations in 2 to-
gether with the generation in 1 carrying index {3}.
The relevant Yukawa operators read:

q2u2H1, q3u3Ha, q2u3Hb, q3u2H1+a�b,

q2d2 ˜Hc, q3d3 ˜Hd, q2d3 ˜Hd+a�b, q3d2 ˜Hc�a+b, (5)

where ˜H = i�2H⇤, assigning H1 to the first term is
without loss of generality and, according to our as-
sumptions, all the Higgs sub-indices must take val-
ues in {1, 2}. It is easy to verify that in each line the
charges of the first three quark-bilinears determine
the fourth one, e.g. X(q3u2) = X(q2u2)+X(q3u3)�
X(q2u3), while the third term in the second line is
obtained by equating Xq3 � Xq2 as extracted from
the second and third terms of both lines. It is now
straightforward to classify all the possibilities that
yield Nl/N = 1. Denoting the Higgs ordering in the
two lines of Eq. (5) with their indices 2 {1, 2}, e.g.
(H1, H2, H1, H2)u ⇠ (1212)u we have respectively
for (i1,2) N1 = N2 = �N3 and (ii1,2) N1 = N2 = 0:

(i1) : (1212)u (2121)d; (i2) : (1221)u (2112)d ;

(ii1) : (1111)u (1221)d; (ii2) : (1221)u (1111)d . (6)

It is easy to verify that in (i1,2) 2Nl = 2N2 = Xu2R+

Xd2R�Xu2L�Xd2L = X2 �X1 with N3 = �N2, in
(ii1) 2Nl=2N3 = X2�X1 and in (ii2) 2Nl=2N3 =

�X2+X1 with, in both last cases, N1 = N2 = 0. Let
us now discuss how the second condition Cp�Cn ⇡ 0

can be realized. We denote by tan� = v2/v1 , the
ratio of the H1,2 VEVs, and we use henceforth the
shorthand notation s� = sin�, c� = cos�. The
ratio X1/X2 = � tan

2 � is fixed by the require-
ment that the PQ Goldston boson is orthogonal to
the Goldston eaten up by the Z-boson [8], and the
charge normalization is given in terms of the light
quark anomaly as X2 � X1 = ±2Nl. Here and be-
low the upper sign holds for (i1,2) and (ii1), and the
lower sign for (ii2). From Eq. (6) it follows that in all
cases C0

u �C0
d = � 1

2N (X1 +X2) = ±(s2� � c2�). The
second condition for nucleophobia C0

u �C0
d = 1/3 is

then realized for s2� = 2/3 in (i1,2) and (ii1), and for
s2� = 1/3 in (ii2). We learn that even under some re-
strictive assumptions, there are four different ways
to enforce nucleophobia. More possibilities would
become viable by allowing for PQ charges that for-
bid some Yukawa operator [24]. Note that while
Cp � Cn ⇡ 0 requires a specific choice tan� ⇡

p
2,

1/
p
2, Cp+Cn ⇡ 0 is enforced just by charge assign-

ments. For both values of tan� the top Yukawa cou-
pling remains perturbative up to the Planck scale,
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Astro bounds
• Stars as powerful sources of light and weakly coupled particles 
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[see e.g. Raffelt, hep-ph/0611350]
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Figure 2: Exclusion ranges as described in the
text. The intervals in the bottom row are the ap-
proximate ADMX, CASPEr, CAST, and IAXO
search ranges, with green regions indicating the
projected reach. Limits on coupling strengths
are translated into limits on mA and fA us-
ing z = 0.56 and the KSVZ values for the
coupling strengths, if not indicated otherwise.
The “Beam Dump” bar is a rough represen-
tation of the exclusion range for standard or
variant axions. The limits for the axion-electron
coupling are determined for the DFSZ model
with an axion-electron coupling corresponding
to cos2 β′ = 1/2.

We translate the conservative constraint, Equation 12, on

GAγγ to fA > 3.4 × 107 GeV (mA < 0.2 eV), using z = 0.56

and E/N = 0 as in the KSVZ model, and show the excluded

range in Figure 2. For the DFSZ model with E/N = 8/3,

the corresponding limits are slightly less restrictive, fA >

1.3 × 107 GeV (mA < 0.5 eV). The weak indication of an

extra energy loss points to a range 76 meV <∼ mA <∼ 150 meV

(0.21 eV <∼ mA <∼ 0.41 eV) for the KSVZ (DFSZ) model. The

exact high-mass end of the exclusion range has not been

October 1, 2016 19:58

[Ringwald, Rosenberg, Rybka, 
Particle Data Group]
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Figure 2: Exclusion ranges as described in the
text. The intervals in the bottom row are the ap-
proximate ADMX, CASPEr, CAST, and IAXO
search ranges, with green regions indicating the
projected reach. Limits on coupling strengths
are translated into limits on mA and fA us-
ing z = 0.56 and the KSVZ values for the
coupling strengths, if not indicated otherwise.
The “Beam Dump” bar is a rough represen-
tation of the exclusion range for standard or
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coupling are determined for the DFSZ model
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We translate the conservative constraint, Equation 12, on

GAγγ to fA > 3.4 × 107 GeV (mA < 0.2 eV), using z = 0.56

and E/N = 0 as in the KSVZ model, and show the excluded

range in Figure 2. For the DFSZ model with E/N = 8/3,

the corresponding limits are slightly less restrictive, fA >

1.3 × 107 GeV (mA < 0.5 eV). The weak indication of an

extra energy loss points to a range 76 meV <∼ mA <∼ 150 meV

(0.21 eV <∼ mA <∼ 0.41 eV) for the KSVZ (DFSZ) model. The

exact high-mass end of the exclusion range has not been
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Figure 2: Exclusion ranges as described in the
text. The intervals in the bottom row are the ap-
proximate ADMX, CASPEr, CAST, and IAXO
search ranges, with green regions indicating the
projected reach. Limits on coupling strengths
are translated into limits on mA and fA us-
ing z = 0.56 and the KSVZ values for the
coupling strengths, if not indicated otherwise.
The “Beam Dump” bar is a rough represen-
tation of the exclusion range for standard or
variant axions. The limits for the axion-electron
coupling are determined for the DFSZ model
with an axion-electron coupling corresponding
to cos2 β′ = 1/2.

We translate the conservative constraint, Equation 12, on

GAγγ to fA > 3.4 × 107 GeV (mA < 0.2 eV), using z = 0.56

and E/N = 0 as in the KSVZ model, and show the excluded

range in Figure 2. For the DFSZ model with E/N = 8/3,

the corresponding limits are slightly less restrictive, fA >

1.3 × 107 GeV (mA < 0.5 eV). The weak indication of an

extra energy loss points to a range 76 meV <∼ mA <∼ 150 meV

(0.21 eV <∼ mA <∼ 0.41 eV) for the KSVZ (DFSZ) model. The

exact high-mass end of the exclusion range has not been

October 1, 2016 19:58
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Figure 2: Exclusion ranges as described in the
text. The intervals in the bottom row are the ap-
proximate ADMX, CASPEr, CAST, and IAXO
search ranges, with green regions indicating the
projected reach. Limits on coupling strengths
are translated into limits on mA and fA us-
ing z = 0.56 and the KSVZ values for the
coupling strengths, if not indicated otherwise.
The “Beam Dump” bar is a rough represen-
tation of the exclusion range for standard or
variant axions. The limits for the axion-electron
coupling are determined for the DFSZ model
with an axion-electron coupling corresponding
to cos2 β′ = 1/2.

We translate the conservative constraint, Equation 12, on

GAγγ to fA > 3.4 × 107 GeV (mA < 0.2 eV), using z = 0.56

and E/N = 0 as in the KSVZ model, and show the excluded

range in Figure 2. For the DFSZ model with E/N = 8/3,

the corresponding limits are slightly less restrictive, fA >

1.3 × 107 GeV (mA < 0.5 eV). The weak indication of an

extra energy loss points to a range 76 meV <∼ mA <∼ 150 meV

(0.21 eV <∼ mA <∼ 0.41 eV) for the KSVZ (DFSZ) model. The

exact high-mass end of the exclusion range has not been
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Figure 2: Exclusion ranges as described in the
text. The intervals in the bottom row are the ap-
proximate ADMX, CASPEr, CAST, and IAXO
search ranges, with green regions indicating the
projected reach. Limits on coupling strengths
are translated into limits on mA and fA us-
ing z = 0.56 and the KSVZ values for the
coupling strengths, if not indicated otherwise.
The “Beam Dump” bar is a rough represen-
tation of the exclusion range for standard or
variant axions. The limits for the axion-electron
coupling are determined for the DFSZ model
with an axion-electron coupling corresponding
to cos2 β′ = 1/2.

We translate the conservative constraint, Equation 12, on

GAγγ to fA > 3.4 × 107 GeV (mA < 0.2 eV), using z = 0.56

and E/N = 0 as in the KSVZ model, and show the excluded

range in Figure 2. For the DFSZ model with E/N = 8/3,

the corresponding limits are slightly less restrictive, fA >

1.3 × 107 GeV (mA < 0.5 eV). The weak indication of an

extra energy loss points to a range 76 meV <∼ mA <∼ 150 meV

(0.21 eV <∼ mA <∼ 0.41 eV) for the KSVZ (DFSZ) model. The

exact high-mass end of the exclusion range has not been
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Astro/cosmo exclusions

DM explained / Astro Hints

Lab exclusions

• Burst duration of SN1987A nu signal
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Figure 2: Exclusion ranges as described in the
text. The intervals in the bottom row are the ap-
proximate ADMX, CASPEr, CAST, and IAXO
search ranges, with green regions indicating the
projected reach. Limits on coupling strengths
are translated into limits on mA and fA us-
ing z = 0.56 and the KSVZ values for the
coupling strengths, if not indicated otherwise.
The “Beam Dump” bar is a rough represen-
tation of the exclusion range for standard or
variant axions. The limits for the axion-electron
coupling are determined for the DFSZ model
with an axion-electron coupling corresponding
to cos2 β′ = 1/2.

We translate the conservative constraint, Equation 12, on

GAγγ to fA > 3.4 × 107 GeV (mA < 0.2 eV), using z = 0.56

and E/N = 0 as in the KSVZ model, and show the excluded

range in Figure 2. For the DFSZ model with E/N = 8/3,

the corresponding limits are slightly less restrictive, fA >

1.3 × 107 GeV (mA < 0.5 eV). The weak indication of an

extra energy loss points to a range 76 meV <∼ mA <∼ 150 meV

(0.21 eV <∼ mA <∼ 0.41 eV) for the KSVZ (DFSZ) model. The

exact high-mass end of the exclusion range has not been
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• Most laboratory search techniques are sensitive to 

3. Helioscopes (axions from the Sun)

1. Light Shining through Walls (axions in the lab) [See e.g. Redondo, Ringwald hep-ph/10113741]

2. Haloscopes (axion Dark Matter) [Sikivie PRL 51 (1983)]
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Experimental Tests of Invisible Axions

  Pierre Sikivie: 

Macroscopic B-field can provide a 

large coherent transition rate over 

a big volume (low-mass axions) 

• Axion helioscope: 

   Look at the Sun through a dipole magnet 

• Axion haloscope: 

   Look for dark-matter axions with 

   A microwave resonant cavity

Redefining the Axion Window

Luca Di Luzio,1, ⇤ Federico Mescia,2, † and Enrico Nardi3, ‡

1Institute for Particle Physics Phenomenology,
Department of Physics, Durham University, DH1 3LE, UK

2Dept. de F́ısica Quàntica i Astrof́ısica, Institut de Ciències del Cosmos (ICCUB),
Universitat de Barcelona, Mart́ı Franquès 1, E08028 Barcelona, Spain

3INFN, Laboratori Nazionali di Frascati, C.P. 13, 100044 Frascati, Italy

A major goal of axion searches is to reach inside the parameter space region of realistic axion
models. Currently, the boundaries of this region depend on somewhat arbitrary criteria, and it
would be desirable to specify them in terms of precise phenomenological requirements. We consider
hadronic axion models and classify the representations RQ of the new heavy quarks Q. By requiring
that i) the Q are su�ciently short lived to avoid issues with long lived strongly interacting relics,
ii) no Landau poles are induced below the Planck scale, fifteen cases are selected, which define a
phenomenologically preferred axion window bounded by a maximum (minimum) value of the axion-
photon coupling about twice (four times) stronger than commonly assumed. Allowing for more than
one RQ, stronger couplings, as well as complete axion-photon decoupling, become possible.

PACS numbers: 14.80.Va, 14.65.Jk
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I. Introduction. In spite of its indisputable phe-
nomenological success, the standard model (SM)
remains unsatisfactory as a theoretical construc-
tion: it does not explain unquestionable experimen-
tal facts like dark matter (DM), neutrino masses,
and the cosmological baryon asymmetry, and it con-
tains fundamental parameters with highly unnatu-
ral values, like the coe�cient µ2 of the quadratic
Higgs potential term, the Yukawa couplings of the
first family fermions he,u,d ⇠ 10�6 � 10�5 and the
strong CP violating angle ✓ < 10�10. This last
quantity is somewhat special: its value is stable with
respect to higher order corrections (unlike µ2) and
(unlike he,u,d) it evades explanations based on envi-
ronmental selection [1]. Thus, seeking explanations
for the smallness of ✓ independently of other “small
values” problems is theoretically motivated. Di↵er-
ently from most of the other SM problems, which
can often be addressed with a large variety of mech-
anisms, basically only three types of solutions to the
strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The
so-called Nelson-Barr (NB) type models [4, 5] either
require a high degree of fine tuning, often compa-
rable to setting ✓ <⇠ 10�10 by hand, or additional

rather elaborated theoretical structures [6]. The
Peccei-Quinn (PQ) solution [7–10] arguably stands
on better theoretical grounds, although it remains a
challenge explaining through which mechanism the
global U(1)PQ symmetry, on which the solution re-
lies (and that presumably arises as an accident) re-
mains protected from explicit breaking to the re-
quired level of accuracy [11–13].

Setting aside theoretical considerations, the issue
if the PQ solution is the correct one could be set ex-
perimentally by detecting the axion (in contrast, no
similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very im-
portant to identify as well as possible the region of
parameter space where realistic axion models live.
The vast majority of axion search techniques are
sensitive to the axion-photon coupling ga�� , which
is linearly proportional to the inverse of the axion
decay constant fa. Since the axion mass ma has
the same dependence, experimental exclusion lim-
its, as well as theoretical predictions for specific
models, can be conveniently presented in the ma-
ga�� plane. The commonly adopted “axion band”
corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠
10�10 (ma/eV)GeV�1 with a somewhat arbitrary
width, chosen to include representative models like
those in Refs. [14–16]. In this Letter we put forth
a definition of a phenomenologically preferred axion
window as the region encompassing hadronic axion
models which i) do not contain cosmologically dan-
gerous strongly interacting relics; ii) do not induce
Landau poles below a scale ⇤LP close to the Planck
scale mP . While all the cases we consider belong
to the KSVZ type of models [17, 18], the resulting
window encompasses also the DFSZ axion [19, 20]
and many of its variants [15].

II. Hadronic axion models. The basic ingredi-
ent of any renormalizable axion model is a global
U(1)PQ symmetry. The associated Nöether current

Primakoff effect: axion-photon transition in external static E or B field 

Search strategies
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Light Shining through Walls (LSW)
• Any Light Particle Search (DESY)  ALPS-1 (2007*-2010) and ALPS-II (2013-…)

Light Shining trough Walls (LSW) 
•Any Light Particle Search (DESY) Alps 1 (2007-2010) Alps 2 (2013- )

E. Nardi (INFN-LNF) - Redefining the axion window                 11/30                                             

Schematic view of axion (or ALP) production through photon 
conversion in a magnetic field (left), subsequent travel through 
a wall, and final detection through photon regeneration (right).

-  LSW experiments pay a (gaγγ)4 suppression

Artist view of a light shining  
through   a wall experiment

LSW experiments pay a        suppression

2

g4a�� (1)

ga�� (2)

✓ = 0 (3)

dn ⇠ 10�16 ✓ e cm (4)

dn(t) ⇠ 10�16 a(t)
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e cm (5)

✓ ⇠ ⇠

m2
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(6)

T (8) = 3 (7)

T (6) =
5

2
(8)

NDW(6� 8) = 2 (T (8)� T (6)) = 1 (9)

yQ ⌧ 1 (10)

fa � HI , TRH � mQ (11)

TRH � mQ (12)

�a =
2⇡va
NDW

(13)

Va ⇠ f2
am

2
a

✓
1� cos

a

va/N

◆
(14)

NDW = 2N (15)

U(1)PQ �! ZNDW (16)

*Boost of exp. activity after PVLAS discovery claim in 2006
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Haloscopes

- power of axions converting into photons in an EM cavity 

6. Axion searches

where E and B are respectively the standard electric and magnetic field of the coupling
photons respectively, it is possible to detect the axion [307]. Indeed, axions passing
through an electromagnetic cavity, where a strong electromagnetic field with a frequency
related to the size of the cavity is produced, could resonantly convert into photons when
the cavity resonant frequency !a matches with the axion mass ma.

Relic axions from the Big Bang are gravitationally bound to the Milky Way with a
non relativistic velocity v and dispersion1 �v ' 10�3. Consequently, the predicted axion
mean energy would be

E ' ma

✓

1 +
�v2

2

◆

, (6.2)

with energy dispersion �E = 1
2
ma �v2 ' 10�6.

The power of axions converting into photons in an electromagnetic cavity is given by

Pa = Cg2
a��V B2

0

⇢a

ma

Qe↵ , (6.3)

where C is a constant that depends on the transverse magnetic cavity modes, V is the
volume of the cavity, B0 is the magnetic field, and Qe↵ is an effective quality factor that
is smaller or equal than the cavity’s quality factor QL and the quality factor for the
axion signal Qa ' 1/�v2 ⇠ 106. Three physical parameters that are extremely important
are the axion-photon coupling ga��, the axion mass ma and the local axion density ⇢a.
Such an experiment would lead to measurements of the axion-photon coupling and its
mass, once the local axion DM density is fixed to its value [314, 315]. The resonant
condition requires that the frequency of the cavity must be equal to the axion mass
⌫ = ma(1 + �v2/2). Therefore, should the axion be discovered by such experiments, its
mass would be known with a precision comparable to the suppressed line width of the
resonance, �ma/ma ⇠ O(10�6).

The drawback of cavity microwave experiments is that the cavity frequency has to be
equal to the energy of the axion, which is essentially given by its mass. Since the axion
mass is not known and it may be in a wide range, these experiments require a slow scan
over large numbers of frequencies.

The first experiments of this kind were performed at the Brookhaven National Lab-
oratory [316, 317] and at the University of Florida [318], and excluded an axion mass in
the range [4.5, 16.3] µeV, without reaching the photon coupling characteristic of the QCD
axion. The best sensitivity is currently achieved by the Axion Dark Matter eXperiment
(ADMX) [319]. Currently, ADMX excludes the region between 1.9 and 3.65 µeV, for an
axion photon coupling larger than ⇠ 10�15 GeV�1, on the edge of the KSVZ QCD axion

1We use natural units where c =

/h = 1.

106

- resonance condition: need to tune the frequency of the EM cavity on the axion mass 

• Look for DM axions with a microwave resonant cavity

Preamp

M
a

M
a a J agnet

agnet

a J

Cavityy 

FFT

P
ow
er

ma

Frequency

Figure 14: Conceptual arrangement of an axion haloscope. If ma is within 1/Q of the resonant
frequency of the cavity, the axion will show as a narrow peak in the power spectrum extracted form the
cavity.

signal frequency bandwidth is even smaller. One usually defines a DM quality factor Qa ⇠ 1/�2
v ⇠ 106

to reflect the ALP DM signal width. The cavity must be tuneable and the data taking is performed by
subsequent measurements with the resonant frequency centred at slightly di↵erent values, scanning the
ALP DM mass in small overlapping steps. For QCD axions, the signal is typically much smaller than
noise,

Pn = Tsys�⌫ = Tsys
ma

2⇡Qa

(7.3)

= 3.3⇥ 10�21

✓
Tsys

K

◆✓
ma

µeV

◆✓
106

Qa

◆
(7.4)

where Tsys is the e↵ective noise temperature of the detector (typically amplifier + thermal fluctuations).
One hopes that measuring enough time, the signal becomes larger than noise fluctuations. The signal
to noise as a function of the measurement time in a frequency bin �⌫ is given by Dicke’s radiometer
equation

S

N
=

Ps

Tsys

r
�t

�⌫
, (7.5)

where Tsys is the e↵ective noise temperature of the detector (typically amplifier + thermal fluctuations).
Therefore, given a theoretical axion signal Ps, a time �t = (S/N)2(Tsys/Ps)2�⌫ is needed to achieve a
given detection significance specified by a signal to noise. In order to scan an ALP mass interval, dma

with measurements of width �⌫ = ma/Q, we need a number (Q/Qa)(dma/ma) of �t measurements,
and so the scanning rate is

dma

dt
=

Qa

Q

2⇡�⌫

�t
=

Qa

Q

✓
S

N

◆2 ✓Tsys

Ps

◆2

. (7.6)
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Haloscopes

[ADMX Collaboration, Phys. Dark Univ. 4 (2014)]

• Look for DM axions with a microwave resonant cavity

- Axion Dark Matter eXperiment (ADMX) (U. of Washington)

ADMX,,
Axion&Dark&Ma,er&eXperiment,
(U.,of,Washington),
,

ADMX,searches,for,axions,by,,
slowly,scanning,the,cavity,
resonant,,frequency,by,
adjus?ng,posi?ons,,of,two,
tuning,rods,within,the,cavity.,,
A,signal,appears,when,the,
cavity,resonant,frequency,
matches,the,,axion,mass.,

HALOSOPES,(Cavity,Experiments),
,

16 G. Rybka / Physics of the Dark Universe 4 (2014) 14–16

Fig. 3. Target reach of ADMX experiment. Axion parameter space already excluded
by the ADMX experiment is shown in blue, while space that will be explored in
one year of running with the dilution refrigerator is shown in green. The regions
labeled M1 and M2 correspond to the regions that will be explored in the TM010
and TM020modes respectively. Also shown are regions targeted by Low-Frequency
(LF) and High-Frequency (HF) R&D. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

to cavity experiments because of the lack of resonance, but at
the same time would operate over a much larger bandwidth. The
practicalities of such an experiment are still under study.

Some axion models favor extremely light axions in the neV
mass range and below, in contrast to the traditional micro-eV
mass range. Cavity experiments for this mass range would be
prohibitively large. However, axion dark matter in this mass
rangemay produce observable CP-violating effects, such as nuclear
electric dipole moments, that oscillate at audio frequencies [27].
Experiments that take advantage of this effect using NMR
measurement techniques are being considered [28].

6. Conclusions

Axions provide both a solution to the strong CP problem and
are a viable dark matter candidate. The ADMX experiment will
be exploring the most likely axion masses in the near future
and should be sensitive to scenarios where axions are only a
fractional part of the local dark matter halo. Meanwhile, other
experimental techniques are under development that may be
sensitive to unusual axionmasses ormodels. The axion darkmatter
hypothesis is testable, and future work promises to be able to
decide the matter.
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Helioscopes
• The Sun is a potential axion source 
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Figure 1: Left: Schematic of an enhanced axion helioscope: solar axions travelling through an intense transverse magnetic field with an axion-
sensitive area A, are converted into x-rays. With the help of x-ray focusing devices, these are concentrated onto a spot on low background detectors
(figure from [2]). Right: The solar axion flux as expected at the Earth. A value of 1 × 10−10 GeV−1 for gaγ is assumed.

As Fig. 1(right) shows, the expected signal is in the
energy range of 1–10 keV. The operation of a helio-
scope consists in following the Sun as long as techni-
cally possible, in axion sensitive conditions, and taking
background data when there is no alignment with the
Sun. The sought-after signal would be the excess of
photons in the expected energy range that the x-ray de-
tectors will register when tracking the Sun, compared
to the background gathered during the rest of the time.
The number of excess photons expected depends on the
very weak gaγ coupling constant, which is a measure of
a helioscope’s sensitivity. According to the following
expression [13]

g4
aγ ∼ B2L2A ϵdb−1/2 ϵoa−1/2 ϵ1/2t t1/2, (1)

four are the main parameters to take into account when
designing a helioscope: a) time: the total time of data-
taking of the experiment t and ϵt, the fraction of time
the magnet tracks the Sun; b) magnet: the length L and
the strength B of the provided magnetic field as well as
the axion-sensitive area A; c) low-background x-ray de-
tectors: the background level b and their detection effi-
ciencies ϵd and d) x-ray focusing optics: their efficiency
ϵo and total focusing area a. The focusing devices are
an addition to the classical helioscope experiment, and
were implemented for the first time in the third genera-
tion axion helioscope, the CAST experiment.

3. The CERN Axion Solar Telescope (CAST)

The CERN Axion Solar Telescope (CAST) presented
an important improvement in the sensitivity of the he-
lioscope technique, based on two major innovations; fo-
cusing optics and low background techniques for the de-
tectors. CAST is the first helioscope to use an x-ray tele-
scope, comprising of an x-ray focusing device coupled
to a Charged Coupled Device (CCD) camera, recycled

from the ABRIXAS and XMM-Newton space missions.
The addition of the telescope improved the signal-to-
noise ratio of the system and therefore the sensitivity of
the experiment. On the magnet front, CAST recycled a
decommissioned LHC prototype magnet, which reaches
9 T over a length of 10 m. The magnet has two bores
and has been equipped with up to four detectors; the x-
ray telescope mentioned above, and three Micromegas
detectors was the latest configuration. The total axion-
sensitive area achieved in this way is ∼ 30 cm2. The
whole system is sitting on a movable platform con-
trolled by a tracking system, pointing it to the centre
of the Sun during 1.5 h twice a day, at sunrise and at
sunset.

Since 2003, when CAST started operating, data have
been taken in different experimental conditions which
gradually extended the axion mass sensitivity of the ex-
periment: from keeping the magnet bores under vac-
uum (ma !0.02 eV) [14, 15] to gradually filling them
with 4He (ma !0.39 eV) [16] and later on with 3He.
The first part of the 3He data covered the mass range
up to ma ∼0.64 eV [17] and in 2011 masses up to
ma ∼1.17 eV were reached. A part of these data has
been analyzed and has shown no excess of signal over
background, leading to an upper bound of the axion-to-
photon constant of gaγ < 3.3 × 10−10 GeV−1 for the
mass range between 0.64 eV and 1.17 eV [18]. CAST
has provided the most stringent limits on the axion-to-
photon coupling constant over a large part of the axion
masses and has covered -for the first time- part of the
QCD-favoured band for masses above ∼0.15 eV, as can
be seen in Fig. 2.

Currently, CAST is revisiting the vacuum phase; this
time with the aim, on one hand to look at the low energy
part for evidence of other hypothetical particles such as
chameleons, which appear in Dark Energy models or
hidden photons [19], and on the other to exploit the
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designing a helioscope: a) time: the total time of data-
taking of the experiment t and ϵt, the fraction of time
the magnet tracks the Sun; b) magnet: the length L and
the strength B of the provided magnetic field as well as
the axion-sensitive area A; c) low-background x-ray de-
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with 4He (ma !0.39 eV) [16] and later on with 3He.
The first part of the 3He data covered the mass range
up to ma ∼0.64 eV [17] and in 2011 masses up to
ma ∼1.17 eV were reached. A part of these data has
been analyzed and has shown no excess of signal over
background, leading to an upper bound of the axion-to-
photon constant of gaγ < 3.3 × 10−10 GeV−1 for the
mass range between 0.64 eV and 1.17 eV [18]. CAST
has provided the most stringent limits on the axion-to-
photon coupling constant over a large part of the axion
masses and has covered -for the first time- part of the
QCD-favoured band for masses above ∼0.15 eV, as can
be seen in Fig. 2.
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• The Sun is a potential axion source 

- CERN Axion Solar Telescope (CAST) 

- International AXion Observatory (IAXO)
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Figure 26: Close-up of the high mass part of parameter space of Fig. 25 (1 meV < ma < 1 eV).

sizeable coupling gae because it can detect the flux of solar axions originating from axion-Bremsstrahlung
(electron-ion and electron-electron) Compton, and, to a lesser extent, axio-deexcitation of ions (together
referred to BCA reactions).

As seen in figure 2, for this kind of models, the flux of solar axion produced via BCA processes
may be up to 10

2 times larger than the standard Primakoff axions, providing a relevant opportunity to be
searched for at helioscopes [134]. The energies of these axions are somehow lower than the Primakoff
ones, falling in the range of about 0.5-2 keV. Provided the threshold of the IAXO optics and detectors
is low enough, something that it is technically feasible if taking into account at design time, competitive
sensitivity to these models can be reached.

In this case the expected signal depends on gaega� , the product of the electron coupling (responsible
for the production in the Sun) and the two-photon coupling (responsible for the detection in IAXO). The
plot on the left of fig. 27 shows the computed sensitivity of IAXO to the product gaega� assuming that
the Primakoff emission from the Sun is subdominant and therefore the solar flux is caused by the BCA
reactions alone. The computation is performed in a similar way and with the same assumed parameters
than in previous section. The additional input is that energy threshold for both detectors and optics is
set at 0.5 keV, with background and efficiencies comparable to the ones in previous section down to this
threshold. Under the assumption of no positive signal, IAXO could be able to constrain

ga�gae < 2.5⇥ 10

�25

GeV

�1

(95% CL) (21)

at low masses ma . 10 meV — where the probability of axion-photon conversion in IAXO becomes
independent of the mass — and worsens as 1/m2

a for higher masses. In general, IAXO would be sensitive
to the region above the black lines (nominal and enhanced IAXO scenarios) in plot on the left of Fig. 27.
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Figure 18: Exclusion regions from haloscope searches (in green) expressed in terms of |Ca�|
p
%̃a. We

display Ca� in the sense of Ca� = ga�fA(2⇡/↵) from (2.42) by rescaling sensitivities on ga� by the
known relation between fA,mA. Some of the regions tentatively at reach in future experiments are
indicated as semi-transparent green areas. Some of those regions are dependent, to di↵erent extents, on
successful completion of R&D on novel detection concepts, as explained in the text. Regions explored
and projected by helioscopes are also shown (in blue). As usual the yellow band and orange line
represent the QCD axion models and the benchmark KSVZ model respectively. The sketch on top
shows the mass ranges for which total DM density can be obtained in di↵erent models, as explained in
section 3.1.1.

9 T magnet at CERN [551, 552]. Figure 17 shows one of them. The use of these type of cavities was
proposed in [532] and has interesting technical advantages. The resonant frequency in these geometries
is mostly determined by the smaller dimensions of the parallelepiped, and therefore V can be increased
(in principle, arbitrarily) by increasing its length. In practice, mode crossing and mode crowding limits
the length of the cavities, but this could be overcome by phase matching several smaller cavities. Cur-
rent CAST-CAPP design considers 40 cm long cavities. Tuning of these cavities can be accomplished
by the use of small movable slabs inside the cavity or by having the cavity cut in two longitudinally
and precisely moving the two halves. This approach should give competitive sensitivity for a small
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%̃a. We
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known relation between fA,mA. Some of the regions tentatively at reach in future experiments are
indicated as semi-transparent green areas. Some of those regions are dependent, to di↵erent extents, on
successful completion of R&D on novel detection concepts, as explained in the text. Regions explored
and projected by helioscopes are also shown (in blue). As usual the yellow band and orange line
represent the QCD axion models and the benchmark KSVZ model respectively. The sketch on top
shows the mass ranges for which total DM density can be obtained in di↵erent models, as explained in
section 3.1.1.

9 T magnet at CERN [551, 552]. Figure 17 shows one of them. The use of these type of cavities was
proposed in [532] and has interesting technical advantages. The resonant frequency in these geometries
is mostly determined by the smaller dimensions of the parallelepiped, and therefore V can be increased
(in principle, arbitrarily) by increasing its length. In practice, mode crossing and mode crowding limits
the length of the cavities, but this could be overcome by phase matching several smaller cavities. Cur-
rent CAST-CAPP design considers 40 cm long cavities. Tuning of these cavities can be accomplished
by the use of small movable slabs inside the cavity or by having the cavity cut in two longitudinally
and precisely moving the two halves. This approach should give competitive sensitivity for a small
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FIG. 2. The ga��/ma window for preferred axion models. The lines E/N = 44/3 and 5/3 encompass models with
a single RQ in Table II. The region below the line E/N = 122/3 allows for two RQ’s. The yellow stripe delimited
by dashed lines reproduces the usual window |E/N � 1.92| 2 [0.07, 7] [33]. Current (projected) exclusion bounds
are delimited by solid (dashed) lines. The dark (light) orange band encompasses cosmologically interesting models
yielding ⌦a/⌦DM = 1 (> 0.01).

allow for opposite signs in the PQ charge di↵erences: �X = ��X s. In this case E/Es and N/Ns become
negative and ga�� can get enhanced. The largest enhancement attainable with two RQ’s is obtained with
Rs

Q � Rw
Q. This still respects the LP selection criterium and yields Ec/Nc = 122/3, corresponding in

Fig. 2 to the uppermost oblique line. Unfortunately, more RQ’s can also weaken ga�� below the lower
limit in Fig. 2, and even yield complete axion-photon decoupling (within theoretical errors), a possibility
that requires an ad hoc choice of RQ’s, but no numerical fine tuning. With two RQ’s there are three such
cases: (3, 3,�1/3) � (6, 1,�1/3); (6, 1, 2/3) � (8, 1,�1) and (3, 2,�5/6) � (8, 2,�1/2) giving respectively
Ec/Nc = (23/12, 64/33, 41/21). In all these cases the axion could be only detected via its coupling to
nucleons, providing additional motivations for axion searches which do not rely on the axion coupling to
photons [52, 53].
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KSVZ axions
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Field Spin SU(3)C SU(2)L U(1)Y U(1)PQ

QL 1/2 CQ IQ YQ XL

QR 1/2 CQ IQ YQ XR

� 0 1 1 0 1

TABLE I. Field content of the general KSVZ axion model. (C, I,Y) denote irreps of the SM gauge group nontrivial
under color (C 6= 1), but otherwise generic.

I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
arbitrary width, chosen to include representative models like those in Refs. [14–16]. In this Letter we put
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
arbitrary width, chosen to include representative models like those in Refs. [14–16]. In this Letter we put
forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
type of models [17, 18], the resulting window encompasses also the DFSZ axion [19, 20] and many of its
variants [15].

II. Hadronic axion models. The basic ingredient of any renormalizable axion model is a global U(1)PQ

symmetry. The associated Nöether current must have a color anomaly and, although not required for solving
the strong CP problem, in general it has also an electromagnetic anomaly:

@µJPQ
µ =

N↵s

4⇡
G · G̃+

E↵

4⇡
F · F̃ , (39) anomaly coeff.
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where G, F are the color and electromagnetic field strength tensors, G̃, F̃ their duals, and N and E are the
color and electromagnetic anomaly coe�cients. In a generic axion model of KSVZ type [17, 18] the anomaly
is induced by pairs of heavy fermions QL, QR which must transform non-trivially under SU(3) and chirally
under U(1)PQ. Their mass arises from a Yukawa interaction with a SM singlet scalar field � which develops
a PQ breaking VEV, so that their PQ charges XL,R ⌘ X (QL,R), normalized to X (�) = 1, must satisfy

|XL � XR| = 1 . (40)

We denote the (vectorlike) representations of the SM gauge group GSM=SU(3)C⇥SU(2)I⇥U(1)Y to which
we assign the Q as RQ=(CQ, IQ,YQ) so that

N =
X

Q

(XL � XR) T (CQ) , (41)

E =
X

Q

(XL � XR) Q2

Q , (42)

where the sum over is over irreducible color representations (we allow for the simultaneous presence of more
RQ). The color index is defined by TrT a

QT
b
Q = T (CQ)�ab with TQ the generators in CQ (in particular,

T (3) = 1/2, T (6) = 5/2, T (8) = 3, T (15) = 10) and QQ is the U(1)
em

charge. Di↵erent RQ imply di↵erent
phenomenological consequences, and this can be used to identify preferred models. The scalar field � can
be parametrized as

�(x) =
1p
2
[⇢(x) + Va] e

ia(x)/Va , (43)

where a(x) is the axion field which would remain massless in the absence of explicit U(1)PQ breaking, while
⇢(x) acquires a mass m⇢ ⇠ Va with Va � (

p
2GF )�1/2 = 247GeV in the invisible axion models. The SM

quarks q = qL, dR, uR do not contribute to the QCD anomaly, and thus their PQ charges can be set to zero.
This allows to describe the SM Yukawa sector with a single Higgs field. The renormalizable Lagrangian for
a generic hadronic axion model can be written as:

La = L
SM

+ L
PQ

� VH�

+ LQq , (44)

where L
SM

is the SM Lagrangian,

L
PQ

= |@µ�|2 +Qi /DQ� (yQ QLQR�+H.c.) (45)

where Q = QL +QR and, from the last term, mQ = yQVa/
p
2. VH�

contains the new scalar couplings:

VH�

= �µ2

�

|�|2 + �
�

|�|4 + �H�

|H|2|�|2 . (46)

Finally, LQq contains possible renormalizable terms coupling QL,R to the SM quarks which can allow Q
decays [21]. Note, however, that SM gauge invariance allows LQq 6= 0 only for few specific RQ. For example,
the original KSVZ assignment RQ = (3, 1, 0) [17, 18] would forbid Q-decays to all orders.

PQ quality and heavy Q stability. The issue whether the Q are exactly stable, metastable, or decay
with safely short lifetimes, is of central importance in our study, so let us discuss it in some detail. The
gauge invariant kinetic term in L

PQ

possesses a U(1)3 ⌘ U(1)QL ⇥U(1)QR ⇥U(1)
�

symmetry corresponding
to independent rephasing of the QL,R and � fields. The PQ Yukawa term (yQ 6= 0) breaks U(1)3 to U(1)2.
One factor is the anomalous U(1)PQ, the other one is a non-anomalous U(1)Q, that is the Q-baryon number
of the new quarks [17], under which QL,R ! ei�QL,R and � ! �. If U(1)Q were an exact symmetry,
the newe quarks would be absolutely stability, a possibility which is preferable to avoid. For the few RQ

for which LQq 6= 0 is allowed, U(1)Q ⇥ U(1)B is further broken to U(1)B0 , a generalized baryon number
extended to the Q, which can then decay with unsuppressed rates. However, whether LQq is allowed at
the renormalizable level, does not depend solely on RQ: apparently it seems also to depend on the specific
PQ charges. For example, independently of RQ, the common assignment XL = �XR = 1

2

would forbid all
PQ invariant decay operators, e↵ectively protecting Q-baryon number. U(1)Q violating decays could then
occur only via PQ-violating e↵ective operators of dimension d > 4. Of course it is physically sensible to
expect that U(1)PQ and U(1)Q are both broken at least by Planck-scale e↵ects. This would generate PQ
violating contributions to the axion potential V d>4

�

as well as an e↵ective Lagrangian Ld>4

Qq . However, it is

well known that to preserve ✓ < 10�10, operators in V d>4

�

must be of dimension d � 11 [11–13]. Clearly, if
Ld>4

Qq had to respect the PQ symmetry to a similar level of accuracy, the Q’s would beheave as e↵ectively
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Field Spin SU(3)C SU(2)L U(1)Y U(1)PQ

QL 1/2 CQ IQ YQ XL

QR 1/2 CQ IQ YQ XR

� 0 1 1 0 1

TABLE I. Field content of the general KSVZ axion model. (C, I,Y) denote irreps of the SM gauge group nontrivial
under color (C 6= 1), but otherwise generic.
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
arbitrary width, chosen to include representative models like those in Refs. [14–16]. In this Letter we put
forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
type of models [17, 18], the resulting window encompasses also the DFSZ axion [19, 20] and many of its
variants [15].

II. Hadronic axion models. The basic ingredient of any renormalizable axion model is a global U(1)PQ

symmetry. The associated Nöether current must have a color anomaly and, although not required for solving
the strong CP problem, in general it has also an electromagnetic anomaly:

@µJPQ
µ =

N↵s

4⇡
G · G̃+

E↵

4⇡
F · F̃ , (85)
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forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
type of models [17, 18], the resulting window encompasses also the DFSZ axion [19, 20] and many of its
variants [15].

II. Hadronic axion models. The basic ingredient of any renormalizable axion model is a global U(1)PQ

symmetry. The associated Nöether current must have a color anomaly and, although not required for solving
the strong CP problem, in general it has also an electromagnetic anomaly:

@µJPQ
µ =

N↵s

4⇡
G · G̃+

E↵

4⇡
F · F̃ , (40)

where G, F are the color and electromagnetic field strength tensors, G̃, F̃ their duals, and N and E are the
color and electromagnetic anomaly coe�cients. In a generic axion model of KSVZ type [17, 18] the anomaly
is induced by pairs of heavy fermions QL, QR which must transform non-trivially under SU(3) and chirally
under U(1)PQ. Their mass arises from a Yukawa interaction with a SM singlet scalar field � which develops
a PQ breaking VEV, so that their PQ charges XL,R ⌘ X (QL,R), normalized to X (�) = 1, must satisfy

|XL � XR| = 1 . (41)

We denote the (vectorlike) representations of the SM gauge group GSM=SU(3)C⇥SU(2)I⇥U(1)Y to which
we assign the Q as RQ=(CQ, IQ,YQ) so that

N =
X

Q

(XL � XR) T (CQ) , (42)

E =
X

Q

(XL � XR) Q2

Q , (43)

where the sum over is over irreducible color representations (we allow for the simultaneous presence of more
RQ). The color index is defined by TrT a

QT
b
Q = T (CQ)�ab with TQ the generators in CQ (in particular,

T (3) = 1/2, T (6) = 5/2, T (8) = 3, T (15) = 10) and QQ is the U(1)
em

charge. Di↵erent RQ imply di↵erent
phenomenological consequences, and this can be used to identify preferred models. The scalar field � can
be parametrized as

�(x) =
1p
2
[⇢(x) + Va] e

ia(x)/Va , (44)

where a(x) is the axion field which would remain massless in the absence of explicit U(1)PQ breaking, while
⇢(x) acquires a mass m⇢ ⇠ Va with Va � (

p
2GF )�1/2 = 247GeV in the invisible axion models. The SM

quarks q = qL, dR, uR do not contribute to the QCD anomaly, and thus their PQ charges can be set to zero.
This allows to describe the SM Yukawa sector with a single Higgs field. The renormalizable Lagrangian for
a generic hadronic axion model can be written as:

La = L
SM

+ L
PQ

� VH�

+ LQq , (45)

where L
SM

is the SM Lagrangian,

L
PQ

= |@µ�|2 +Qi /DQ� (yQ QLQR�+H.c.) (46)

where Q = QL +QR and, from the last term, mQ = yQVa/
p
2. VH�

contains the new scalar couplings:

VH�

= �µ2

�

|�|2 + �
�

|�|4 + �H�

|H|2|�|2 . (47)

Finally, LQq contains possible renormalizable terms coupling QL,R to the SM quarks which can allow Q
decays [21]. Note, however, that SM gauge invariance allows LQq 6= 0 only for few specific RQ. For example,
the original KSVZ assignment RQ = (3, 1, 0) [17, 18] would forbid Q-decays to all orders.

PQ quality and heavy Q stability. The issue whether the Q are exactly stable, metastable, or decay
with safely short lifetimes, is of central importance in our study, so let us discuss it in some detail. The
gauge invariant kinetic term in L

PQ

possesses a U(1)3 ⌘ U(1)QL ⇥U(1)QR ⇥U(1)
�

symmetry corresponding
to independent rephasing of the QL,R and � fields. The PQ Yukawa term (yQ 6= 0) breaks U(1)3 to U(1)2.
One factor is the anomalous U(1)PQ, the other one is a non-anomalous U(1)Q, that is the Q-baryon number
of the new quarks [17], under which QL,R ! ei�QL,R and � ! �. If U(1)Q were an exact symmetry,
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symmetry. The associated Nöether current must have a color anomaly and, although not required for solving
the strong CP problem, in general it has also an electromagnetic anomaly:

@µJPQ
µ =

N↵s

4⇡
G · G̃+

E↵

4⇡
F · F̃ , (40)

where G, F are the color and electromagnetic field strength tensors, G̃, F̃ their duals, and N and E are the
color and electromagnetic anomaly coe�cients. In a generic axion model of KSVZ type [17, 18] the anomaly
is induced by pairs of heavy fermions QL, QR which must transform non-trivially under SU(3) and chirally
under U(1)PQ. Their mass arises from a Yukawa interaction with a SM singlet scalar field � which develops
a PQ breaking VEV, so that their PQ charges XL,R ⌘ X (QL,R), normalized to X (�) = 1, must satisfy

|XL � XR| = 1 . (41)

We denote the (vectorlike) representations of the SM gauge group GSM=SU(3)C⇥SU(2)I⇥U(1)Y to which
we assign the Q as RQ=(CQ, IQ,YQ) so that

N =
X

Q

(XL � XR) T (CQ) , (42)

E =
X

Q

(XL � XR) Q2

Q , (43)

where the sum over is over irreducible color representations (we allow for the simultaneous presence of more
RQ). The color index is defined by TrT a

QT
b
Q = T (CQ)�ab with TQ the generators in CQ (in particular,

T (3) = 1/2, T (6) = 5/2, T (8) = 3, T (15) = 10) and QQ is the U(1)
em

charge. Di↵erent RQ imply di↵erent
phenomenological consequences, and this can be used to identify preferred models. The scalar field � can
be parametrized as

�(x) =
1p
2
[⇢(x) + Va] e

ia(x)/Va , (44)

where a(x) is the axion field which would remain massless in the absence of explicit U(1)PQ breaking, while
⇢(x) acquires a mass m⇢ ⇠ Va with Va � (

p
2GF )�1/2 = 247GeV in the invisible axion models. The SM

quarks q = qL, dR, uR do not contribute to the QCD anomaly, and thus their PQ charges can be set to zero.
This allows to describe the SM Yukawa sector with a single Higgs field. The renormalizable Lagrangian for
a generic hadronic axion model can be written as:

La = L
SM

+ L
PQ

� VH�

+ LQq , (45)

where L
SM

is the SM Lagrangian,

L
PQ

= |@µ�|2 +Qi /DQ� (yQ QLQR�+H.c.) (46)

where Q = QL +QR and, from the last term, mQ = yQVa/
p
2. VH�

contains the new scalar couplings:

VH�

= �µ2

�

|�|2 + �
�

|�|4 + �H�

|H|2|�|2 . (47)

Finally, LQq contains possible renormalizable terms coupling QL,R to the SM quarks which can allow Q
decays [21]. Note, however, that SM gauge invariance allows LQq 6= 0 only for few specific RQ. For example,
the original KSVZ assignment RQ = (3, 1, 0) [17, 18] would forbid Q-decays to all orders.

PQ quality and heavy Q stability. The issue whether the Q are exactly stable, metastable, or decay
with safely short lifetimes, is of central importance in our study, so let us discuss it in some detail. The
gauge invariant kinetic term in L

PQ

possesses a U(1)3 ⌘ U(1)QL ⇥U(1)QR ⇥U(1)
�

symmetry corresponding
to independent rephasing of the QL,R and � fields. The PQ Yukawa term (yQ 6= 0) breaks U(1)3 to U(1)2.
One factor is the anomalous U(1)PQ, the other one is a non-anomalous U(1)Q, that is the Q-baryon number
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Finally, LQq contains possible renormalizable terms coupling QL,R to the SM quarks which can allow Q
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the original KSVZ assignment RQ = (3, 1, 0) [17, 18] would forbid Q-decays to all orders.
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ä+ 3Hȧ+m2
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Field Spin SU(3)C SU(2)L U(1)Y U(1)PQ

QL 1/2 CQ IQ YQ XL

QR 1/2 CQ IQ YQ XR

� 0 1 1 0 1

TABLE I. Field content of the general KSVZ axion model. (C, I,Y) denote irreps of the SM gauge group nontrivial
under color (C 6= 1), but otherwise generic.

I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
arbitrary width, chosen to include representative models like those in Refs. [14–16]. In this Letter we put
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the strong CP problem, in general it has also an electromagnetic anomaly:
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where G, F are the color and electromagnetic field strength tensors, G̃, F̃ their duals, and N and E are the
color and electromagnetic anomaly coe�cients. In a generic axion model of KSVZ type [17, 18] the anomaly
is induced by pairs of heavy fermions QL, QR which must transform non-trivially under SU(3) and chirally
under U(1)PQ. Their mass arises from a Yukawa interaction with a SM singlet scalar field � which develops
a PQ breaking VEV, so that their PQ charges XL,R ⌘ X (QL,R), normalized to X (�) = 1, must satisfy

|XL � XR| = 1 . (41)

We denote the (vectorlike) representations of the SM gauge group GSM=SU(3)C⇥SU(2)I⇥U(1)Y to which
we assign the Q as RQ=(CQ, IQ,YQ) so that

N =
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Q
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where the sum over is over irreducible color representations (we allow for the simultaneous presence of more
RQ). The color index is defined by TrT a

QT
b
Q = T (CQ)�ab with TQ the generators in CQ (in particular,

T (3) = 1/2, T (6) = 5/2, T (8) = 3, T (15) = 10) and QQ is the U(1)
em

charge. Di↵erent RQ imply di↵erent
phenomenological consequences, and this can be used to identify preferred models. The scalar field � can
be parametrized as

�(x) =
1p
2
[⇢(x) + Va] e

ia(x)/Va , (44)

where a(x) is the axion field which would remain massless in the absence of explicit U(1)PQ breaking, while
⇢(x) acquires a mass m⇢ ⇠ Va with Va � (

p
2GF )�1/2 = 247GeV in the invisible axion models. The SM

quarks q = qL, dR, uR do not contribute to the QCD anomaly, and thus their PQ charges can be set to zero.
This allows to describe the SM Yukawa sector with a single Higgs field. The renormalizable Lagrangian for
a generic hadronic axion model can be written as:

La = L
SM

+ L
PQ

� VH�

+ LQq , (45)

where L
SM

is the SM Lagrangian,

L
PQ

= |@µ�|2 +Qi /DQ� (yQ QLQR�+H.c.) (46)

where Q = QL +QR and, from the last term, mQ = yQVa/
p
2. VH�

contains the new scalar couplings:
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Finally, LQq contains possible renormalizable terms coupling QL,R to the SM quarks which can allow Q
decays [21]. Note, however, that SM gauge invariance allows LQq 6= 0 only for few specific RQ. For example,
the original KSVZ assignment RQ = (3, 1, 0) [17, 18] would forbid Q-decays to all orders.

PQ quality and heavy Q stability. The issue whether the Q are exactly stable, metastable, or decay
with safely short lifetimes, is of central importance in our study, so let us discuss it in some detail. The
gauge invariant kinetic term in L

PQ

possesses a U(1)3 ⌘ U(1)QL ⇥U(1)QR ⇥U(1)
�

symmetry corresponding
to independent rephasing of the QL,R and � fields. The PQ Yukawa term (yQ 6= 0) breaks U(1)3 to U(1)2.
One factor is the anomalous U(1)PQ, the other one is a non-anomalous U(1)Q, that is the Q-baryon number
of the new quarks [17], under which QL,R ! ei�QL,R and � ! �. If U(1)Q were an exact symmetry,
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Field Spin SU(3)C SU(2)L U(1)Y U(1)PQ

QL 1/2 CQ IQ YQ XL

QR 1/2 CQ IQ YQ XR

� 0 1 1 0 1

TABLE I. Field content of the general KSVZ axion model. (C, I,Y) denote irreps of the SM gauge group nontrivial
under color (C 6= 1), but otherwise generic.

I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
arbitrary width, chosen to include representative models like those in Refs. [14–16]. In this Letter we put
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TABLE I. Field content of the general KSVZ axion model. (C, I,Y) denote irreps of the SM gauge group nontrivial
under color (C 6= 1), but otherwise generic.

I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical

- U(1)Q is the Q-baryon number: if exact, Q would be stable

Q stability
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symmetry. The associated Nöether current must have a color anomaly and, although not required for solving
the strong CP problem, in general it has also an electromagnetic anomaly:
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is induced by pairs of heavy fermions QL, QR which must transform non-trivially under SU(3) and chirally
under U(1)PQ. Their mass arises from a Yukawa interaction with a SM singlet scalar field � which develops
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We denote the (vectorlike) representations of the SM gauge group GSM=SU(3)C⇥SU(2)I⇥U(1)Y to which
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where the sum over is over irreducible color representations (we allow for the simultaneous presence of more
RQ). The color index is defined by TrT a

QT
b
Q = T (CQ)�ab with TQ the generators in CQ (in particular,

T (3) = 1/2, T (6) = 5/2, T (8) = 3, T (15) = 10) and QQ is the U(1)
em

charge. Di↵erent RQ imply di↵erent
phenomenological consequences, and this can be used to identify preferred models. The scalar field � can
be parametrized as

�(x) =
1p
2
[⇢(x) + Va] e

ia(x)/Va , (44)

where a(x) is the axion field which would remain massless in the absence of explicit U(1)PQ breaking, while
⇢(x) acquires a mass m⇢ ⇠ Va with Va � (

p
2GF )�1/2 = 247GeV in the invisible axion models. The SM

quarks q = qL, dR, uR do not contribute to the QCD anomaly, and thus their PQ charges can be set to zero.
This allows to describe the SM Yukawa sector with a single Higgs field. The renormalizable Lagrangian for
a generic hadronic axion model can be written as:

La = L
SM

+ L
PQ

� VH�

+ LQq , (45)

where L
SM

is the SM Lagrangian,

L
PQ

= |@µ�|2 +Qi /DQ� (yQ QLQR�+H.c.) (46)

where Q = QL +QR and, from the last term, mQ = yQVa/
p
2. VH�

contains the new scalar couplings:
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Finally, LQq contains possible renormalizable terms coupling QL,R to the SM quarks which can allow Q
decays [21]. Note, however, that SM gauge invariance allows LQq 6= 0 only for few specific RQ. For example,
the original KSVZ assignment RQ = (3, 1, 0) [17, 18] would forbid Q-decays to all orders.

PQ quality and heavy Q stability. The issue whether the Q are exactly stable, metastable, or decay
with safely short lifetimes, is of central importance in our study, so let us discuss it in some detail. The
gauge invariant kinetic term in L

PQ

possesses a U(1)3 ⌘ U(1)QL ⇥U(1)QR ⇥U(1)
�

symmetry corresponding
to independent rephasing of the QL,R and � fields. The PQ Yukawa term (yQ 6= 0) breaks U(1)3 to U(1)2.
One factor is the anomalous U(1)PQ, the other one is a non-anomalous U(1)Q, that is the Q-baryon number
of the new quarks [17], under which QL,R ! ei�QL,R and � ! �. If U(1)Q were an exact symmetry,

cosmological issue if thermally produced 
in the early universe !

 L. Di Luzio (Pisa U.) - Rethinking the QCD axion                                                                         17/29



5

forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
type of models [17, 18], the resulting window encompasses also the DFSZ axion [19, 20] and many of its
variants [15].

II. Hadronic axion models. The basic ingredient of any renormalizable axion model is a global U(1)PQ
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the original KSVZ assignment RQ = (3, 1, 0) [17, 18] would forbid Q-decays to all orders.

PQ quality and heavy Q stability. The issue whether the Q are exactly stable, metastable, or decay
with safely short lifetimes, is of central importance in our study, so let us discuss it in some detail. The
gauge invariant kinetic term in L

PQ

possesses a U(1)3 ⌘ U(1)QL ⇥U(1)QR ⇥U(1)
�

symmetry corresponding
to independent rephasing of the QL,R and � fields. The PQ Yukawa term (yQ 6= 0) breaks U(1)3 to U(1)2.
One factor is the anomalous U(1)PQ, the other one is a non-anomalous U(1)Q, that is the Q-baryon number
of the new quarks [17], under which QL,R ! ei�QL,R and � ! �. If U(1)Q were an exact symmetry,

- if             U(1)Q is further broken and Q-decay is possible

4

ga�� =
ma

eV

2.0

1010 GeV

✓
Ec

Nc
� 1.92(4)

◆
(33)

R1

Q +R2

Q (34)

Ec

Nc
=

E
1

+ E
2

N
1

+ E
2

(35)

(3, 2, 1/6)� (3, 3,�4/3) (36)

Ec/Nc = 122/3 (37)

CQ 6= I (38)

Va � v
EW

(39)

U(1)
PQ

⇥ U(1)
Q

(40)

LQq 6= 0 (41)

Field Spin SU(3)C SU(2)L U(1)Y U(1)PQ

QL 1/2 CQ IQ YQ XL

QR 1/2 CQ IQ YQ XR

� 0 1 1 0 1

TABLE I. Field content of the general KSVZ axion model. (C, I,Y) denote irreps of the SM gauge group nontrivial
under color (C 6= 1), but otherwise generic.

I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).

- decay also possible via d>4 operators (e.g. Planck-induced)

stability depends on Q representations

[Ringwald, Saikawa, 1512.06436]

- U(1)Q is the Q-baryon number: if exact, Q would be stable

• Symmetry of the kinetic term 

Q stability
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Pheno preferred KSVZ fermions
7
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TABLE II. R
Q

irreps which allow for renormalizable Q-decay operators (first seven rows above the bold horizontal
line) or d = 5 ones (next eight rows below the bold horizontal line), and leading to LPs above, or within one order of
magnitude below, the Planck scale. The second column list a sample operator O

Qq

which can be responsible for the
decay of Q, while in the third one we report the value of the LP estimated at two loops by setting the threshold of
the vectorlike quarks at 5 · 1011 GeV (the gauge coupling which triggers the Landau pole is specified in parenthesis).
The next column gives the value of the E/N term contributing to the axion-photon coupling (cf. Eq. (22)), and the
last one is the DW number (cf. Eq. (??)).

massless nf final states, the phase space factor can be integrated analytically, thus yielding (see e.g. [? ])

�NDA =
1

4(4⇡)2nf�3(nf � 1)!(nf � 2)!

m2d�7
Q

M
2(d�4)
Planck

, (17)

where we neglected the possibility of scalar field condensations in the e↵ective operator.
Since Q-decay operators of d = 5, 6, 7 will at least involve nf = 2, 3, 4 particles in the final state, we have

⌧NDA
d=5, nf=2 = 3.9 · 10�20 s

✓
5 · 1011 GeV

mQ

◆3

, (18)

⌧NDA
d=6, nf=3 = 7.4 · 10�3 s

✓
5 · 1011 GeV

mQ

◆5

, (19)

⌧NDA
d=7, nf=4 = 4.2 · 1015 s

✓
5 · 1011 GeV

mQ

◆7

. (20)

In order to be completely safe from a cosmological point of view the decay must happen before the time of
BBN, namely ⇠ 0.01 s [? ]. This is always the case for d = 5 operators if mQ & 106 GeV. On the other
hand, if the decay happens via d = 6 operators a much higher mass scale mQ & 1011÷12 GeV is needed. In
the post-inflationary PQ symmetry breaking scenario this is in tension with the bounds from axion DM via
the misalignment mechanism, leading to fa . 5 · 1011 GeV (see Refs. [? ? ] for some recent Lattice QCD
analyses). Finally, operators of d � 7 require an even higher mQ in the ballpark of the GUT or Planck
scale, which is clearly in the cosmological dangerous region.

Landau Poles. The presence of large matter multiplets drives the gauge couplings of the SM towards a
nonperturbative regime, eventually leading to Landau poles (LPs). We require the KSVZ axion model to
be a perturbatively calculable and UV complete framework up to the Planck scale, and hence reject those
irreps which lead to LPs below the Planck scale. To be conservative, and to retain the largest number of
RQ, we set the threshold of the heavy quark at mQ = 5 · 1011 GeV (at the boundary of compatibility with
post-inflationary axion-DM limits) and also keep those irreps with a LP within an order of magnitude below
the Planck scale. In fact, gravitational corrections on the running of the gauge couplings, that are under

7

FIG. 1. Axion contribution to the cosmological energy density as a function of mQ. The broken lines correspond
to free Q annihilation for color triplets (dotted) and octets (dashed). The solid line to annihilation via bound state
formation. The horizontal and vertical lines ⌦Q = ⌦DM and mQ = 1TeV limit the allowed region.

some uncomfortably low energy scale ⇤LP < mP . Quantum gravity corrections to the running of the
gauge couplings can become relevant at scales approaching mP , and their e↵ect is to delay the emergence
of LP [47]. Then, to be conservative, we choose a value of ⇤LP for which gravitational corrections can
presumably be neglected. Then, our second criterium is that: (ii) RQ’s which do not induce LP in g

1

, g
2

, g
3

below ⇤LP ⇠ 1018 GeV are phenomenologically preferred. We apply this criterium employing two-loop beta
functions [45] and setting conservatively the threshold for RQ at mQ = 5 · 1011 GeV. The RQ satisfying
both our criteria are listed in Table II. The gauge coupling and the energy scale where the first LP occurs
are given in the third column.
Other features can render the choice of some RQ more appealing than others. For example if NDW = 1

problems with cosmological domain walls (DW) are avoided [48], and some RQ could improve gauge coupling
unification [49]. We prefer not to consider these as crucial discriminating criteria, since solutions to the DW
problem exist (see e.g. [50]), while improved unification might simply be an accident because of the many
RQ we consider. Nevertheless, we have analyzed both these issues: the values of NDW are given in the
last column in Table II, while only RQ = (3, 2, 1/6) in the third line improves considerably gauge coupling
unification (this has been also remarked in [49]).

V. Axion coupling to photons. From the experimental point of view, the most promising way to unveil
the axion is via its interaction with photons, which is described by the e↵ective term La�� = �(1/4)ga��aF ·
F̃ , where the coupling is given in terms of the anomaly coe�cients in eq. (25) by [14]:

ga�� =
ma

eV

2.0

1010 GeV

✓
E

N
� 1.92(4)

◆
(38)

where the uncertainty comes from QCD corrections evaluated at NLO [51]. The values of E/N for our
preferred RQ are given in the last column of Table II. The corresponding couplings are given in Fig. 2 by
the set of oblique dotted lines, which are plotted only at small ma values to give an idea of the “density
of preferred hadronic axion models”. All in all, we find that the strongest coupling is obtained for Rs

Q =
(3, 3,�4/3) that gives Es/Ns � 1.92 ⇠ 12.75, almost twice the usually adopted value of 7.0 [33], while the
weakest coupling is obtained for Rw

Q = (3, 2, 1/6) for which Ew/Nw � 1.92 ⇠ �0.25 is about 3.5 times larger
than the usual lower value of 0.07. Then, if a single RQ is present, according to our two selection criteria all
preferred hadronic axion models fall within the band delimited by 5/3  E/N  44/3, as depicted in Fig. 2.
In the figure we have drawn with dashed lines the boundary of the usual axion window and, to compare
theoretical predictions with the experimental situation, we have also plotted the current exclusion bounds
and projected sensitivities.

VI. More RQ and axion-photon decoupling. Let us now study to which extent the previous results
can be changed by the presence of more RQ’s. It would be quite interesting if, for example, ga�� could get
enhanced. However, we can easily see that, as long as the sign of �X = XL � XR is the same for all RQ’s,

3

✓
0

= O(1) (17)

fa � HI (18)

fa ⌧ HI (19)

fa � 1012 GeV (20)

✓
0

⌧ 1 (21)

⌦
✓2
0

↵
=

1

2⇡

Z ⇡

�⇡

✓2d✓ =
⇡2

3
(22)

⌧Q <⇠ 10�2 s (23)

MP = 1.22 · 1019 GeV (24)

E

N
=

P
Q (XL � XR) Q2

QP
Q (XL � XR) T (CQ) (25)

E

N
=

P
Q Q2

QP
Q T (CQ) (26)

I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical

• Q short lived + no Landau poles < Planck
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by eq. (44). Finally, even in case ⌦Q is eventually close to the estimate eq. (44), the relative concentration

of Q-hadrons nQ/nb ⇠ 10�8 (mQ/TeV)1/2 would still be quite large, and if the Q’s could accumulate with
similar concentrations within the galactic disk, existing limits from searches of anomalously heavy isotopes
in terrestrial, lunar, and meteoritic materials [41] would be able to exclude them for most of the allowed
range of masses. Many other arguments have been put forth disfavoring the possibility of heavy stable Q’s:
their capture in neutron stars would form black holes on a time scale of a few years [42] and, more generically,
they could endanger stellar stability [43] (? check this ref.), their annihilation in the Earth interior would
result in an anomalously large heat flow [44], etc.

IV. Selection criteria. All in all, although no uncircumventable argument seems to exist forbidding
completely heavy strongly interacting relics, the first discriminating criterium we adopt is that: (i) Models
that allow for su�ciently short lifetimes ⌧Q <⇠ 10�2 s are phenomenologically preferred with respect to models
containing long lived or cosmologically stable Q’s. All RQ allowing for decays via renormalizable operators
satisfy this requirement. Decays can also occur via operators of higher dimensions. To avoid introducing
(unnecessary) new scales, we assume that the cuto↵ scale is mP , and we write Od>4

Qq = m4�d
P Pd(Q,'n)

where Pd is a d-dimensional Lorentz and gauge invariant monomial linear in Q and containing n SM fields
'. For d = 5, 6, 7 the final states always contain n � d � 3 particles. Taking conservatively n = d � 3 we
obtain:

�d <⇠
⇡gfmQ

(d� 4)!(d� 5)!

 
m2

Q

16⇡2m2

P

!d�4

, (45)

where gf accounts for final states degrees of freedom, and we have integrated analytically the n-body phase
space neglecting ' masses and assuming momentum independent matrix elements (see e.g. [45]). Requiring

mQ  fa we obtain respectively for d = 5, 6, 7, ⌧ (d)Q
>⇠
�
4 · 10�20, 7 · 10�3, 4 · 1015� ⇥ (fa/mQ)2d�7 s. For

d = 5, as long as mQ >⇠ 800TeV decays occur with safe lifetimes ⌧
(5)

Q
<⇠ 10�2 s. For d = 6, even for the

largest values mQ ⇠ fa decays occur dangerously close to BBN [46]. Operators of d = 7 and higher are
always excluded. The RQ selected by this first criterium are the first seven listed in Table II which allow
for LQq 6= 0, plus other thirteen which allow for d = 5 decay operators. Some of these representations
are, however, rather large, and could induce Landau poles (LP) in the SM gauge couplings g

1

, g
2

, g
3

at
some uncomfortably low energy scale ⇤LP < mP . Quantum gravity corrections to the running of the
gauge couplings can become relevant at scales approaching mP , and their e↵ect is to delay the emergence
of LP [47]. Then, to be conservative, we choose a value of ⇤LP for which gravitational corrections can
presumably be neglected. Then, our second criterium is that: (ii) RQ’s which do not induce LP in g

1

, g
2

, g
3

below ⇤LP ⇠ 1018 GeV are phenomenologically preferred. We apply this criterium employing two-loop beta
functions [45] and setting conservatively the threshold for RQ at mQ = 5 · 1011 GeV. The RQ satisfying
both our criteria are listed in Table II. The gauge coupling and the energy scale where the first LP occurs
are given in the third column.
Other features can render the choice of some RQ more appealing than others. For example if NDW = 1

problems with cosmological domain walls (DW) are avoided [48], and some RQ could improve gauge coupling
unification [49]. We prefer not to consider these as crucial discriminating criteria, since solutions to the DW
problem exist (see e.g. [50]), while improved unification might simply be an accident because of the many
RQ we consider. Nevertheless, we have analyzed both these issues: the values of NDW are given in the
last column in Table II, while only RQ = (3, 2, 1/6) in the third line improves considerably gauge coupling
unification (this has been also remarked in [49]).

V. Axion coupling to photons. From the experimental point of view, the most promising way to unveil
the axion is via its interaction with photons, which is described by the e↵ective term La�� = �(1/4)ga��aF ·
F̃ , where the coupling is given in terms of the anomaly coe�cients in eq. (33) by [14]:

ga�� =
ma

eV

2.0

1010 GeV

✓
E

N
� 1.92(4)

◆
(46)

where the uncertainty comes from QCD corrections evaluated at NLO [51]. The values of E/N for our
preferred RQ are given in the last column of Table II. The corresponding couplings are given in Fig. 2 by
the set of oblique dotted lines, which are plotted only at small ma values to give an idea of the “density
of preferred hadronic axion models”. All in all, we find that the strongest coupling is obtained for Rs

Q =
(3, 3,�4/3) that gives Es/Ns � 1.92 ⇠ 12.75, almost twice the usually adopted value of 7.0 [33], while the
weakest coupling is obtained for Rw

Q = (3, 2, 1/6) for which Ew/Nw � 1.92 ⇠ �0.25 is about 3.5 times larger
than the usual lower value of 0.07. Then, if a single RQ is present, according to our two selection criteria all
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by eq. (44). Finally, even in case ⌦Q is eventually close to the estimate eq. (44), the relative concentration

of Q-hadrons nQ/nb ⇠ 10�8 (mQ/TeV)1/2 would still be quite large, and if the Q’s could accumulate with
similar concentrations within the galactic disk, existing limits from searches of anomalously heavy isotopes
in terrestrial, lunar, and meteoritic materials [41] would be able to exclude them for most of the allowed
range of masses. Many other arguments have been put forth disfavoring the possibility of heavy stable Q’s:
their capture in neutron stars would form black holes on a time scale of a few years [42] and, more generically,
they could endanger stellar stability [43] (? check this ref.), their annihilation in the Earth interior would
result in an anomalously large heat flow [44], etc.

IV. Selection criteria. All in all, although no uncircumventable argument seems to exist forbidding
completely heavy strongly interacting relics, the first discriminating criterium we adopt is that: (i) Models
that allow for su�ciently short lifetimes ⌧Q <⇠ 10�2 s are phenomenologically preferred with respect to models
containing long lived or cosmologically stable Q’s. All RQ allowing for decays via renormalizable operators
satisfy this requirement. Decays can also occur via operators of higher dimensions. To avoid introducing
(unnecessary) new scales, we assume that the cuto↵ scale is mP , and we write Od>4

Qq = m4�d
P Pd(Q,'n)

where Pd is a d-dimensional Lorentz and gauge invariant monomial linear in Q and containing n SM fields
'. For d = 5, 6, 7 the final states always contain n � d � 3 particles. Taking conservatively n = d � 3 we
obtain:
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where gf accounts for final states degrees of freedom, and we have integrated analytically the n-body phase
space neglecting ' masses and assuming momentum independent matrix elements (see e.g. [45]). Requiring

mQ  fa we obtain respectively for d = 5, 6, 7, ⌧ (d)Q
>⇠
�
4 · 10�20, 7 · 10�3, 4 · 1015� ⇥ (fa/mQ)2d�7 s. For

d = 5, as long as mQ >⇠ 800TeV decays occur with safe lifetimes ⌧
(5)

Q
<⇠ 10�2 s. For d = 6, even for the

largest values mQ ⇠ fa decays occur dangerously close to BBN [46]. Operators of d = 7 and higher are
always excluded. The RQ selected by this first criterium are the first seven listed in Table II which allow
for LQq 6= 0, plus other thirteen which allow for d = 5 decay operators. Some of these representations
are, however, rather large, and could induce Landau poles (LP) in the SM gauge couplings g
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, g
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at
some uncomfortably low energy scale ⇤LP < mP . Quantum gravity corrections to the running of the
gauge couplings can become relevant at scales approaching mP , and their e↵ect is to delay the emergence
of LP [47]. Then, to be conservative, we choose a value of ⇤LP for which gravitational corrections can
presumably be neglected. Then, our second criterium is that: (ii) RQ’s which do not induce LP in g

1

, g
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, g
3

below ⇤LP ⇠ 1018 GeV are phenomenologically preferred. We apply this criterium employing two-loop beta
functions [45] and setting conservatively the threshold for RQ at mQ = 5 · 1011 GeV. The RQ satisfying
both our criteria are listed in Table II. The gauge coupling and the energy scale where the first LP occurs
are given in the third column.
Other features can render the choice of some RQ more appealing than others. For example if NDW = 1

problems with cosmological domain walls (DW) are avoided [48], and some RQ could improve gauge coupling
unification [49]. We prefer not to consider these as crucial discriminating criteria, since solutions to the DW
problem exist (see e.g. [50]), while improved unification might simply be an accident because of the many
RQ we consider. Nevertheless, we have analyzed both these issues: the values of NDW are given in the
last column in Table II, while only RQ = (3, 2, 1/6) in the third line improves considerably gauge coupling
unification (this has been also remarked in [49]).

V. Axion coupling to photons. From the experimental point of view, the most promising way to unveil
the axion is via its interaction with photons, which is described by the e↵ective term La�� = �(1/4)ga��aF ·
F̃ , where the coupling is given in terms of the anomaly coe�cients in eq. (33) by [14]:
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where the uncertainty comes from QCD corrections evaluated at NLO [51]. The values of E/N for our
preferred RQ are given in the last column of Table II. The corresponding couplings are given in Fig. 2 by
the set of oblique dotted lines, which are plotted only at small ma values to give an idea of the “density
of preferred hadronic axion models”. All in all, we find that the strongest coupling is obtained for Rs

Q =
(3, 3,�4/3) that gives Es/Ns � 1.92 ⇠ 12.75, almost twice the usually adopted value of 7.0 [33], while the
weakest coupling is obtained for Rw

Q = (3, 2, 1/6) for which Ew/Nw � 1.92 ⇠ �0.25 is about 3.5 times larger
than the usual lower value of 0.07. Then, if a single RQ is present, according to our two selection criteria all
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1

) 8/3 6

(8, 2,�1/2) Q
R

�
µ⌫

`
L

Gµ⌫ 6.7 · 1027(g
1

) 4/3 12

(15, 1,�1/3) Q
L

�
µ⌫

d
R

Gµ⌫ 8.3 · 1021(g
3

) 1/6 20

(15, 1, 2/3) Q
L

�
µ⌫

u
R

Gµ⌫ 7.6 · 1021(g
3

) 2/3 20

TABLE II. R
Q

irreps which allow for renormalizable Q-decay operators (first seven rows above the bold horizontal
line) or d = 5 ones (next eight rows below the bold horizontal line), and leading to LPs above, or within one order of
magnitude below, the Planck scale. The second column list a sample operator O

Qq

which can be responsible for the
decay of Q, while in the third one we report the value of the LP estimated at two loops by setting the threshold of
the vectorlike quarks at 5 · 1011 GeV (the gauge coupling which triggers the Landau pole is specified in parenthesis).
The next column gives the value of the E/N term contributing to the axion-photon coupling (cf. Eq. (22)), and the
last one is the DW number (cf. Eq. (??)).

massless nf final states, the phase space factor can be integrated analytically, thus yielding (see e.g. [? ])

�NDA =
1

4(4⇡)2nf�3(nf � 1)!(nf � 2)!

m2d�7
Q

M
2(d�4)
Planck

, (17)

where we neglected the possibility of scalar field condensations in the e↵ective operator.
Since Q-decay operators of d = 5, 6, 7 will at least involve nf = 2, 3, 4 particles in the final state, we have

⌧NDA
d=5, nf=2 = 3.9 · 10�20 s

✓
5 · 1011 GeV

mQ

◆3

, (18)

⌧NDA
d=6, nf=3 = 7.4 · 10�3 s

✓
5 · 1011 GeV

mQ

◆5

, (19)

⌧NDA
d=7, nf=4 = 4.2 · 1015 s

✓
5 · 1011 GeV

mQ

◆7

. (20)

In order to be completely safe from a cosmological point of view the decay must happen before the time of
BBN, namely ⇠ 0.01 s [? ]. This is always the case for d = 5 operators if mQ & 106 GeV. On the other
hand, if the decay happens via d = 6 operators a much higher mass scale mQ & 1011÷12 GeV is needed. In
the post-inflationary PQ symmetry breaking scenario this is in tension with the bounds from axion DM via
the misalignment mechanism, leading to fa . 5 · 1011 GeV (see Refs. [? ? ] for some recent Lattice QCD
analyses). Finally, operators of d � 7 require an even higher mQ in the ballpark of the GUT or Planck
scale, which is clearly in the cosmological dangerous region.

Landau Poles. The presence of large matter multiplets drives the gauge couplings of the SM towards a
nonperturbative regime, eventually leading to Landau poles (LPs). We require the KSVZ axion model to
be a perturbatively calculable and UV complete framework up to the Planck scale, and hence reject those
irreps which lead to LPs below the Planck scale. To be conservative, and to retain the largest number of
RQ, we set the threshold of the heavy quark at mQ = 5 · 1011 GeV (at the boundary of compatibility with
post-inflationary axion-DM limits) and also keep those irreps with a LP within an order of magnitude below
the Planck scale. In fact, gravitational corrections on the running of the gauge couplings, that are under

7

FIG. 1. Axion contribution to the cosmological energy density as a function of mQ. The broken lines correspond
to free Q annihilation for color triplets (dotted) and octets (dashed). The solid line to annihilation via bound state
formation. The horizontal and vertical lines ⌦Q = ⌦DM and mQ = 1TeV limit the allowed region.

some uncomfortably low energy scale ⇤LP < mP . Quantum gravity corrections to the running of the
gauge couplings can become relevant at scales approaching mP , and their e↵ect is to delay the emergence
of LP [47]. Then, to be conservative, we choose a value of ⇤LP for which gravitational corrections can
presumably be neglected. Then, our second criterium is that: (ii) RQ’s which do not induce LP in g

1

, g
2

, g
3

below ⇤LP ⇠ 1018 GeV are phenomenologically preferred. We apply this criterium employing two-loop beta
functions [45] and setting conservatively the threshold for RQ at mQ = 5 · 1011 GeV. The RQ satisfying
both our criteria are listed in Table II. The gauge coupling and the energy scale where the first LP occurs
are given in the third column.
Other features can render the choice of some RQ more appealing than others. For example if NDW = 1

problems with cosmological domain walls (DW) are avoided [48], and some RQ could improve gauge coupling
unification [49]. We prefer not to consider these as crucial discriminating criteria, since solutions to the DW
problem exist (see e.g. [50]), while improved unification might simply be an accident because of the many
RQ we consider. Nevertheless, we have analyzed both these issues: the values of NDW are given in the
last column in Table II, while only RQ = (3, 2, 1/6) in the third line improves considerably gauge coupling
unification (this has been also remarked in [49]).

V. Axion coupling to photons. From the experimental point of view, the most promising way to unveil
the axion is via its interaction with photons, which is described by the e↵ective term La�� = �(1/4)ga��aF ·
F̃ , where the coupling is given in terms of the anomaly coe�cients in eq. (25) by [14]:

ga�� =
ma

eV

2.0

1010 GeV

✓
E

N
� 1.92(4)

◆
(38)

where the uncertainty comes from QCD corrections evaluated at NLO [51]. The values of E/N for our
preferred RQ are given in the last column of Table II. The corresponding couplings are given in Fig. 2 by
the set of oblique dotted lines, which are plotted only at small ma values to give an idea of the “density
of preferred hadronic axion models”. All in all, we find that the strongest coupling is obtained for Rs

Q =
(3, 3,�4/3) that gives Es/Ns � 1.92 ⇠ 12.75, almost twice the usually adopted value of 7.0 [33], while the
weakest coupling is obtained for Rw

Q = (3, 2, 1/6) for which Ew/Nw � 1.92 ⇠ �0.25 is about 3.5 times larger
than the usual lower value of 0.07. Then, if a single RQ is present, according to our two selection criteria all
preferred hadronic axion models fall within the band delimited by 5/3  E/N  44/3, as depicted in Fig. 2.
In the figure we have drawn with dashed lines the boundary of the usual axion window and, to compare
theoretical predictions with the experimental situation, we have also plotted the current exclusion bounds
and projected sensitivities.

VI. More RQ and axion-photon decoupling. Let us now study to which extent the previous results
can be changed by the presence of more RQ’s. It would be quite interesting if, for example, ga�� could get
enhanced. However, we can easily see that, as long as the sign of �X = XL � XR is the same for all RQ’s,

3

✓
0

= O(1) (17)

fa � HI (18)

fa ⌧ HI (19)

fa � 1012 GeV (20)

✓
0

⌧ 1 (21)

⌦
✓2
0

↵
=

1

2⇡

Z ⇡

�⇡

✓2d✓ =
⇡2

3
(22)

⌧Q <⇠ 10�2 s (23)

MP = 1.22 · 1019 GeV (24)

E

N
=

P
Q (XL � XR) Q2

QP
Q (XL � XR) T (CQ) (25)

E

N
=

P
Q Q2

QP
Q T (CQ) (26)

I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical

• Q short lived + no Landau poles < Planck

Pheno preferred KSVZ fermions
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More Q’s
• Combined anomaly factor

• Strongest coupling (compatible with LP criterium) 

• Complete decoupling within theoretical error possible as well: 
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FIG. 2. The ga��/ma window for preferred axion models. The lines E/N = 44/3 and 5/3 encompass models with
a single RQ in Table II. The region below the line E/N = 122/3 allows for two RQ’s. The yellow stripe delimited
by dashed lines reproduces the usual window |E/N � 1.92| 2 [0.07, 7] [33]. Current (projected) exclusion bounds
are delimited by solid (dashed) lines. The dark (light) orange band encompasses cosmologically interesting models
yielding ⌦a/⌦DM = 1 (> 0.01).

Since by construction the anomaly coe�cients of any RQ in our preferred set satisfy E/N  Es/Ns, the
factor in parenthesis is never larger than one implying Ec/Nc < Es/Ns. This is not so, however, if we
allow for opposite signs in the PQ charge di↵erences: �X = ��X s. In this case E/Es and N/Ns become
negative and ga�� can get enhanced. The largest enhancement attainable with two RQ’s is obtained with
Rs

Q � Rw
Q. This still respects the LP selection criterium and yields Ec/Nc = 122/3, corresponding in

Fig. 2 to the uppermost oblique line. Unfortunately, more RQ’s can also weaken ga�� below the lower
limit in Fig. 2, and even yield complete axion-photon decoupling (within theoretical errors), a possibility
that requires an ad hoc choice of RQ’s, but no numerical fine tuning. With two RQ’s there are three such
cases: (3, 3,�1/3) � (6, 1,�1/3); (6, 1, 2/3) � (8, 1,�1) and (3, 2,�5/6) � (8, 2,�1/2) giving respectively
Ec/Nc = (23/12, 64/33, 41/21). In all these cases the axion could be only detected via its coupling to
nucleons, providing additional motivations for axion searches which do not rely on the axion coupling to
photons [52, 53].
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by dashed lines reproduces the usual window |E/N � 1.92| 2 [0.07, 7] [33]. Current (projected) exclusion bounds
are delimited by solid (dashed) lines. The dark (light) orange band encompasses cosmologically interesting models
yielding ⌦a/⌦DM = 1 (> 0.01).

Since by construction the anomaly coe�cients of any RQ in our preferred set satisfy E/N  Es/Ns, the
factor in parenthesis is never larger than one implying Ec/Nc < Es/Ns. This is not so, however, if we
allow for opposite signs in the PQ charge di↵erences: �X = ��X s. In this case E/Es and N/Ns become
negative and ga�� can get enhanced. The largest enhancement attainable with two RQ’s is obtained with
Rs

Q � Rw
Q. This still respects the LP selection criterium and yields Ec/Nc = 122/3, corresponding in

Fig. 2 to the uppermost oblique line. Unfortunately, more RQ’s can also weaken ga�� below the lower
limit in Fig. 2, and even yield complete axion-photon decoupling (within theoretical errors), a possibility
that requires an ad hoc choice of RQ’s, but no numerical fine tuning. With two RQ’s there are three such
cases: (3, 3,�1/3) � (6, 1,�1/3); (6, 1, 2/3) � (8, 1,�1) and (3, 2,�5/6) � (8, 2,�1/2) giving respectively
Ec/Nc = (23/12, 64/33, 41/21). In all these cases the axion could be only detected via its coupling to
nucleons, providing additional motivations for axion searches which do not rely on the axion coupling to
photons [52, 53].
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FIG. 2. The ga��/ma window for preferred axion models. The lines E/N = 44/3 and 5/3 encompass models with
a single RQ in Table II. The region below the line E/N = 122/3 allows for two RQ’s. The yellow stripe delimited
by dashed lines reproduces the usual window |E/N � 1.92| 2 [0.07, 7] [33]. Current (projected) exclusion bounds
are delimited by solid (dashed) lines. The dark (light) orange band encompasses cosmologically interesting models
yielding ⌦a/⌦DM = 1 (> 0.01).

Since by construction the anomaly coe�cients of any RQ in our preferred set satisfy E/N  Es/Ns, the
factor in parenthesis is never larger than one implying Ec/Nc < Es/Ns. This is not so, however, if we
allow for opposite signs in the PQ charge di↵erences: �X = ��X s. In this case E/Es and N/Ns become
negative and ga�� can get enhanced. The largest enhancement attainable with two RQ’s is obtained with
Rs

Q � Rw
Q. This still respects the LP selection criterium and yields Ec/Nc = 122/3, corresponding in

Fig. 2 to the uppermost oblique line. Unfortunately, more RQ’s can also weaken ga�� below the lower
limit in Fig. 2, and even yield complete axion-photon decoupling (within theoretical errors), a possibility
that requires an ad hoc choice of RQ’s, but no numerical fine tuning. With two RQ’s there are three such
cases: (3, 3,�1/3) � (6, 1,�1/3); (6, 1, 2/3) � (8, 1,�1) and (3, 2,�5/6) � (8, 2,�1/2) giving respectively
Ec/Nc = (23/12, 64/33, 41/21). In all these cases the axion could be only detected via its coupling to
nucleons, providing additional motivations for axion searches which do not rely on the axion coupling to
photons [52, 53].
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FIG. 2. The ga��/ma window for preferred axion models. The lines E/N = 44/3 and 5/3 encompass models with
a single RQ in Table II. The region below the line E/N = 122/3 allows for two RQ’s. The yellow stripe delimited
by dashed lines reproduces the usual window |E/N � 1.92| 2 [0.07, 7] [33]. Current (projected) exclusion bounds
are delimited by solid (dashed) lines. The dark (light) orange band encompasses cosmologically interesting models
yielding ⌦a/⌦DM = 1 (> 0.01).

Since by construction the anomaly coe�cients of any RQ in our preferred set satisfy E/N  Es/Ns, the
factor in parenthesis is never larger than one implying Ec/Nc < Es/Ns. This is not so, however, if we
allow for opposite signs in the PQ charge di↵erences: �X = ��X s. In this case E/Es and N/Ns become
negative and ga�� can get enhanced. The largest enhancement attainable with two RQ’s is obtained with
Rs

Q � Rw
Q. This still respects the LP selection criterium and yields Ec/Nc = 122/3, corresponding in

Fig. 2 to the uppermost oblique line. Unfortunately, more RQ’s can also weaken ga�� below the lower
limit in Fig. 2, and even yield complete axion-photon decoupling (within theoretical errors), a possibility
that requires an ad hoc choice of RQ’s, but no numerical fine tuning. With two RQ’s there are three such
cases: (3, 3,�1/3) � (6, 1,�1/3); (6, 1, 2/3) � (8, 1,�1) and (3, 2,�5/6) � (8, 2,�1/2) giving respectively
Ec/Nc = (23/12, 64/33, 41/21) ⇡ (1.92, 1.94, 1.95). In all these cases the axion could be only detected via
its coupling to nucleons, providing additional motivations for axion searches which do not rely on the axion
coupling to photons [52, 53].
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
arbitrary width, chosen to include representative models like those in Refs. [14–16]. In this Letter we put
forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
type of models [17, 18], the resulting window encompasses also the DFSZ axion [19, 20] and many of its
variants [15].

II. Hadronic axion models. The basic ingredient of any renormalizable axion model is a global U(1)PQ

symmetry. The associated Nöether current must have a color anomaly and, although not required for solving
the strong CP problem, in general it has also an electromagnetic anomaly:
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about photophobia: “such a cancellation is immoral, but not unnatural” [D. B. Kaplan, (1985)]

 L. Di Luzio (Pisa U.) - Rethinking the QCD axion                                                                         21/29



• Red line set by perturbativity [KSVZ]         
(going above requires very exotic 
constructions [more in backup slides]) 

• Blue line corresponds to a 2%
   ‘tuning in theory space’ 
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Renormalizable UV Completion of SM Predicting Axion  

>  A singlet complex scalar field     featuring 
a global            symmetry is added to SM  

>  Symmetry is broken by vev 

§  Excitation of modulus:  

§  Excitation of angle: NGB 

>  Quarks (SM or extra) carry PQ charges                                           
such that            is anomalously broken 
due to gluonic triangle anomaly 

       

  
 
 
 
 
 

    

U(1)PQ

U(1)PQ

global

gauge

gauge
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• Messages for exp.’s : 

1.  The QCD axion might already be 
in the reach of your experiment ! 

2.  Don’t stop at E/N = 0 
(go deeper if you can)

��-� ��-� ��-� ���� �

��-��

��-��

��-��

��-�

�� [��]

|�
�γ
γ|
[�
��

-
� ]

CAST

IAXO
ALPS-II

MADMAX

(ADMX, …)
Haloscopes

E/N
 =

 1.
96

E/N
 =

 17
0/3

E/N
 =

 0

[LDL, Mescia, Nardi 1610.07593 
+ 1705.05370]

H
D

M

• Blue line corresponds to a 2%
   ‘tuning in theory space’ 

Axion-photon summary
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• Red line set by perturbativity [KSVZ]         
(going above requires very exotic 
constructions [more in backup slides]) 



• Is it possible to decouple the axion both from nucleons and electrons ? 

Astrophobia

nucleophobia + electrophobia  = astrophobia

1. is it possible at all ? 

• Why interested in such constructions ? 

2. would allow to relax the upper bound on axion mass by ~ 1 order of magnitude

3. would improve visibility at IAXO (axion-photon)

4. would improve fit to stellar cooling anomalies (axion-electron)

5. unexpected connection with flavour 

[Giannotti et al. 1708.02111]

[LDL, Mescia, Nardi, Panci, Ziegler 1712.04940]

 L. Di Luzio (Pisa U.) - Rethinking the QCD axion                                                                         23/29



• Is it possible to decouple the axion both from nucleons and electrons ? 

Astrophobia

nucleophobia + electrophobia* = astrophobia

1. is it possible at all ? 

• Why interested in such constructions ? 

2. would allow to relax the upper bound on axion mass by ~ 1 order of magnitude

3. would improve visibility at IAXO (axion-photon)

4. would improve fit to stellar cooling anomalies (axion-electron)

5. unexpected connection with flavour 

[Giannotti et al. 1708.02111]

[LDL, Mescia, Nardi, Panci, Ziegler 1712.04940]

*conceptually easy (e.g. couple the electron to 3rd Higgs uncharged under PQ) 
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EFT-1: quarks and gluons (in the basis where cq contains aGGtilde contrib.)

EFT-1I: non-relativistic nucleons

• Axion-nucleon couplings [Kaplan NPB 260 (1985), Srednicki NPB 260 (1985), Georgi, Kaplan, Randall 
PLB 169 (1986), …, Grilli di Cortona et al. 1511.02867]
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• Simplification: assume 2+1 structure

Implementing nucleophobia
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• 1st condition automatically satisfied 
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• 2nd condition can be implemented via a 10% tuning 
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The charge dependent part of the couplings is com-
monly denoted as C0

q = (XqR � XqL)/(2N), while
the vector couplings vanish upon integration by part
because of the equation of motion. Matching Eq. (2)
with the non-relativistic axion-nucleon Lagrangian
allows to extract the axion couplings to the nucle-
ons N = p, n [21] which are defined in analogy to the
couplings to the quarks by @µa/(2fa)CNN�µ�5N .
It is convenient to recast the results in terms of the
two linear combinations

Cp + Cn = 0.50(5)
�
C0

u + C0
d � 1

�
� 2�s , (3)

Cp � Cn = 1.273(2) (C0
u � C0

d � 1

3

), (4)

where the two numbers in parenthesis correspond to
fu+fd = 1 (exact) and fu�fd ' 1/3 (approximate),
while �s is a correction appearing in DFSZ which is
dominated by the s-quark sea contribution. In the
models below, using the results from [21] and allow-
ing for the largest possible values of C0

s,c,b,t, we have
|�s| <⇠ 0.04. Eq. (3) makes clear why it is difficult
to decouple the axion from the nucleons. For KSVZ
C0

u = C0
d = 0 and the model independent contribu-

tion survives. For DFSZ we see from Eq. (2) that
C0

u + C0
d = Nl/N with Nl the contribution to the

QCD anomaly of the first generation (light) quarks.
Hence, for generation blind charges C0

u + C0
d = 1/3

is an exact result.

The nucleophobic axion. We take as the defining
condition for the nucleophobic axion the (approxi-
mate) vanishing of the relations in Eqs. (3), (4). Re-
markably, since the axion-pion coupling is propor-
tional to the isospin breaking combination Cp � Cn

[22], nucleophobic axions are also pionphobic. We
start by studying Eq. (3). In the approximation
in which �s is neglected, Cp + Cn = 0 implies
C0

u + C0
d = Nl/N = 1. This can only be realized

in two ways: (i) either the contributions of the two
heavier generations cancel each other (N2 = �N3

and Nl = N1) or (ii) they vanish identically, in
which case it is convenient to assign Nl = N3 and,
hoping that no confusion will arise with the usual
generation ordering, require for the anomalies of the
heavier generations N1 = N2 = 0.1 Clearly both
cases require generation dependent PQ charges. A
generic matrix of charges for a LH or RH quark q
can be written as XQ = X0

q I +X8
q�8 +X3

q�3 where
I = diag(1, 1, 1) is the identity in generation space,
while �8 = diag(1, 1,�2) and �3 = diag(1,�1, 0)
are proportional to the corresponding SU(3) ma-
trices. In this Letter we are mainly interested in
a proof of existence for nucleophobic axions, so we
introduce some simplification: we assume just two
Higgs doublets H1,2 (with PQ charges X1,2 and hy-
percharge Y = �1/2), and we consider only PQ

1
We have found that this second case was already identified

in the not-well-known work in Ref. [23].

charge assignments that do not forbid any of the SM
Yukawa operators. Under these conditions, it can be
shown that two generations must have the same PQ
charges [24]. We can then drop the SU(2) break-
ing �3 term so that the matrix XQ = X0

q I +X8
q�8

respects a SU(2) symmetry acting on the genera-
tion indices {1, 2}, and we henceforth refer to such
a structure as 2 +1 . To study which Yukawa struc-
tures can enforce the condition N = Nl it is then suf-
ficient to consider just one of the generations in 2 to-
gether with the generation in 1 carrying index {3}.
The relevant Yukawa operators read:

q2u2H1, q3u3Ha, q2u3Hb, q3u2H1+a�b,

q2d2 ˜Hc, q3d3 ˜Hd, q2d3 ˜Hd+a�b, q3d2 ˜Hc�a+b, (5)

where ˜H = i�2H⇤, assigning H1 to the first term is
without loss of generality and, according to our as-
sumptions, all the Higgs sub-indices must take val-
ues in {1, 2}. It is easy to verify that in each line the
charges of the first three quark-bilinears determine
the fourth one, e.g. X(q3u2) = X(q2u2)+X(q3u3)�
X(q2u3), while the third term in the second line is
obtained by equating Xq3 � Xq2 as extracted from
the second and third terms of both lines. It is now
straightforward to classify all the possibilities that
yield Nl/N = 1. Denoting the Higgs ordering in the
two lines of Eq. (5) with their indices 2 {1, 2}, e.g.
(H1, H2, H1, H2)u ⇠ (1212)u we have respectively
for (i1,2) N1 = N2 = �N3 and (ii1,2) N1 = N2 = 0:

(i1) : (1212)u (2121)d; (i2) : (1221)u (2112)d ;

(ii1) : (1111)u (1221)d; (ii2) : (1221)u (1111)d . (6)

It is easy to verify that in (i1,2) 2Nl = 2N2 = Xu2R+

Xd2R�Xu2L�Xd2L = X2 �X1 with N3 = �N2, in
(ii1) 2Nl=2N3 = X2�X1 and in (ii2) 2Nl=2N3 =

�X2+X1 with, in both last cases, N1 = N2 = 0. Let
us now discuss how the second condition Cp�Cn ⇡ 0

can be realized. We denote by tan� = v2/v1 , the
ratio of the H1,2 VEVs, and we use henceforth the
shorthand notation s� = sin�, c� = cos�. The
ratio X1/X2 = � tan

2 � is fixed by the require-
ment that the PQ Goldston boson is orthogonal to
the Goldston eaten up by the Z-boson [8], and the
charge normalization is given in terms of the light
quark anomaly as X2 � X1 = ±2Nl. Here and be-
low the upper sign holds for (i1,2) and (ii1), and the
lower sign for (ii2). From Eq. (6) it follows that in all
cases C0

u �C0
d = � 1

2N (X1 +X2) = ±(s2� � c2�). The
second condition for nucleophobia C0

u �C0
d = 1/3 is

then realized for s2� = 2/3 in (i1,2) and (ii1), and for
s2� = 1/3 in (ii2). We learn that even under some re-
strictive assumptions, there are four different ways
to enforce nucleophobia. More possibilities would
become viable by allowing for PQ charges that for-
bid some Yukawa operator [24]. Note that while
Cp � Cn ⇡ 0 requires a specific choice tan� ⇡

p
2,

1/
p
2, Cp+Cn ⇡ 0 is enforced just by charge assign-

ments. For both values of tan� the top Yukawa cou-
pling remains perturbative up to the Planck scale,
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1 Introduction

• The high-mass axion window ma 2 [10�2, 1] eV can be in principle tested at IAXO.
However, SN (axion-nucleon) and WD (axion-electron) bounds when taken at face value
(cf. Fig. 1) reduce the visibility at IAXO (which is mainly sensitive to the axion-photon
coupling) within benchmark DFSZ/KSVZ models. Hence, we ask the question whether
there exist minimal deformations of the latter models allowing for a cancellation of the
axion couplings to nucleons and electrons as well.

• Recently, there have been numerous astrophysical hints of anomalous energy loss in stars
at di↵erent evolutionary stages, which can be explained via the existence of sub-keV
axions/ALPs (see e.g. [1]). In particular, the best-fit point is dominated by a sizable gae
and a ga� compatible with zero (cf. Fig. 1 in [1]). However, since the typical axion decay
constant is required to be in the fa = 108 GeV ballpark (cf. Table. 2 in [1]), SN bounds
are relevant and make fa to increase by an order of magnitude. It looks like this is not a
serious issue from the �2

min

, however note (e.g. from Fig. 2 in [1]) that the best-fit point
is pushed on the boundary of perturbativity. In between us, the perturbativity range
on tan � is quite optimistic: it corresponds to yukawas of O(

p
4⇡) and for sure it leads

to Landau poles below the PQ scale. On the other hand, a nucleophobic axion (non-
necessarily electrophobic though) would drastically relax such a tension and definitely
provides a perfect candidate for the cooling anomalies.

• After inspecting the axion-nucleon coupling from a model-independent point of view, we
find that the minimal model in order to obtain a nucleophobic axion is a 2HDM, while
the simultaneous cancellation of the axion-electron coupling requires a 3HDM.

• We can probably formulate as a theorem that an unavoidable consequence of the nucleo-
phobic axion are flavour non-universal PQ charge assignments, which leads to interesting
signatures in flavour physics experiments. These are particularly important in the high-
mass axion window and require, in some cases, a further suppression from flavour rotation
matrix elements in order to pass the bounds.

• A final note on axion DM: the only possibility left in the high-mass range are topological
defects in the post-inflationary PQ breaking scenario with N

DW

> 1. This means, on
one hand, that the misalignment mechanism cannot contribute to the whole DM (thus
reducing the sensitivity of DM axion experiments) and, on the other hand, that the PQ
symmetry must be explicitly broken in order to lead to a fast decay of the DWs before
they dominate the energy density.

2 Model-independent approach to axion couplings

At energies below the electroweak scale the axion e↵ective Lagrangian (including general flavour
violating terms) can be written as [2]

La =
1

2
(@µa)

2 +
a

fa

↵s

8⇡
Ga

µ⌫G̃
a,µ⌫ +

1

4
a g0a��Fµ⌫F̃

µ⌫ +
@µa

2fa
f i�

µ(CV
ij + CA

ij�5)fj , (1)

3
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B Bounds on flavour-violating axion couplings

In order to compare with the experimental constraints, we use the parametrization

L =
@µa

fa
f i�

µ
⇥
CV

ij + CA
ij�5

⇤
fj , (65)

with CA,V
ij given in Eq.(52). The strongest constraints arise from flavor-violating decays into

(essentially massless) axions. We have (see [3, 4])
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where FK = 0.33 and FD+ = 0.67. With the experimental bounds at 90% CL from Refs. [5–7],
respectively

BR(K+ ! ⇡+ + inv) < 7.3 ⇥ 10�11 , (70)

BR(B ! K + inv) < 3.2 ⇥ 10�5 , (71)

BR(µ+ ! e+ + inv) < 2.6 ⇥ 10�6 , (72)

one finds the bounds
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Astrophobic axion models
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Conclusions
• QCD axion: 2 birds with 1 stone

- solves the strong CP problem 

- provides an excellent DM candidate 

• Experimentally driven phase 

- we are entering now the preferred window for the QCD axion 
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Conclusions
• QCD axion: 2 birds with 1 stone

- solves the strong CP problem 

- provides an excellent DM candidate 

- we are entering now the preferred window for the QCD axion 

• KSVZ and DFSZ are well-motivated minimal benchmarks, but… 

- axion couplings are UV dependent

- worth to think about alternatives when confronting exp. bounds and sensitivities 
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• Experimentally driven phase 
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Axions as Dark Matter

Heavy particle vs. light scalar field 

(WIMPs) (Axions)

search for single particle scattering

Axions,as,Dark,MaPer,

search for coherent effects of the 
entire field, not particle scattering 

(e.o.m. in a FRW background)
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
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• T ~ fa  (very early Universe)

- U(1)PQ spontaneously broken, but axion massless
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
arbitrary width, chosen to include representative models like those in Refs. [14–16]. In this Letter we put
forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).

[Raffelt]

Axions as Dark Matter

 L. Di Luzio (Pisa U.) - Rethinking the QCD axion                                                                         



• T ~ fa  (very early Universe)

- U(1)PQ spontaneously broken, but axion massless

- axion field sits at 

2

k (1)

ma ' m⇡
f⇡
fa

' 6 meV
109 GeV

fa
(2)

1

fa
(3)

La�� = �1

4
ga�� aF · F̃ = ga�� aE ·B (4)

e�V4E(✓eff) =

Z
D' e�S0+i✓effQ =

����
Z

D' e�S0+i✓effQ

���� 
Z

D'
��e�S0+i✓effQ

�� = e�V4E(0) (5)

Q =
g2s

32⇡2

Z
d4xG · G̃ (6)

E(0) < E(✓
e↵

) (7)

a
0

= ✓
0

fa (8)

I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
arbitrary width, chosen to include representative models like those in Refs. [14–16]. In this Letter we put
forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
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- axion mass turns on due to non-perturbative QCD effects
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [? ]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [? ? ]. The so-called Nelson-Barr (NB) type models [? ? ] either
require a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather
elaborated theoretical structures [? ]. The Peccei-Quinn (PQ) solution [? ? ? ? ] arguably stands on better
theoretical grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
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ä+ 3Hȧ+m2
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
arbitrary width, chosen to include representative models like those in Refs. [14–16]. In this Letter we put
forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [? ]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [? ? ]. The so-called Nelson-Barr (NB) type models [? ? ] either
require a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather
elaborated theoretical structures [? ]. The Peccei-Quinn (PQ) solution [? ? ? ? ] arguably stands on better
theoretical grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
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Relic abundance
• From lattice QCD simulations:                          for [Bonati et al. 1512.06746, 

Petreczky et al. 1606.03145, 
Borsanyi et al. 1606.07494, …]

density but Na = ρaR3/ma, which can be interpreted as the number of axions [5–7].

Through the conservation of the comoving entropy S, it follows that n⋆
a/s

⋆ becomes an

adiabatic invariant. Hence, it is enough to integrate the equation of motion (4.2) in the

small window around the time when T ≈ Tosc. We integrated numerically Eq. (4.2) in the

interval between the time when ma = H/10 to that corresponding to ma = 2400H and

extract the ratio n⋆
a/s

⋆ when ma ∼ 300H, namely a factor a hundred since the oscillation

regime begins. The value for Tosc varies from Tc to several GeV depending on the axion

decay parameter fa and the temperature dependence of the axion potential. More details

about this standard computation can be found for example in [59, 70]. In order to estimate

the uncertainty in the results given below we varied the fitting parameters of the topological

susceptibility D2, D0 and those relative to the QCD equation of state [37] within the quoted

statistical and systematic errors.

Given that b2(T ) converges relatively fast to the value predicted by a single cosine

potential, we can assume V (a) = −χ(T ) cos(a/fa) for T ! Tc. Using the most conservative

results for the fit of χ(T ), i.e. χ(T )/χ(0) = (1.8 ± 1.5)(Tc/T )2.90±0.65, in Fig. 10 we plot

the prediction for the parameter fa as a function of the initial value of the axion field

θ0 = a0/fa assuming that the misalignment axion contribution make up for the whole

observed dark matter abundance, ΩDM = 0.259(4) [71]. We also plot the case where the

axion misalignment contribution accounts only for part (10% for definiteness) of the dark

matter abundance.

Figure 10. Values of the axion decay constant fa as a function of the initial field value θ0 = a0/fa
such that the axion misalignment contribution matches the full or a tenth of the observed dark
matter abundance (red band or dotted green line respectively). When the PQ symmetry is broken
only after inflation the axion abundance is reproduced by choosing θ0 ≈ 2.2, i.e. the vertical blue
dashed line.

In some cases the axion field acquires all possible values within the visible horizon,

therefore the initial condition to the Eq. (4.2) needs to be integrated over. This happens

if the PQ symmetry is broken only after inflation or if the PQ symmetric phase is tem-

porarily restored after inflation (e.g. if the Hubble scale during inflation or the maximum
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
arbitrary width, chosen to include representative models like those in Refs. [14–16]. In this Letter we put
forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
type of models [17, 18], the resulting window encompasses also the DFSZ axion [19, 20] and many of its
variants [15].

II. Hadronic axion models. The basic ingredient of any renormalizable axion model is a global U(1)PQ

symmetry. The associated Nöether current must have a color anomaly and, although not required for solving
the strong CP problem, in general it has also an electromagnetic anomaly:

@µJPQ
µ =

N↵s

4⇡
G · G̃+

E↵

4⇡
F · F̃ , (18)

where G, F are the color and electromagnetic field strength tensors, G̃, F̃ their duals, and N and E are the
color and electromagnetic anomaly coe�cients. In a generic axion model of KSVZ type [17, 18] the anomaly
is induced by pairs of heavy fermions QL, QR which must transform non-trivially under SU(3) and chirally
under U(1)PQ. Their mass arises from a Yukawa interaction with a SM singlet scalar field � which develops
a PQ breaking VEV, so that their PQ charges XL,R ⌘ X (QL,R), normalized to X (�) = 1, must satisfy

|XL � XR| = 1 . (19)

We denote the (vectorlike) representations of the SM gauge group GSM=SU(3)C⇥SU(2)I⇥U(1)Y to which
we assign the Q as RQ=(CQ, IQ,YQ) so that

N =
X

Q

(XL � XR) T (CQ) , (20)

E =
X

Q

(XL � XR) Q2

Q , (21)

where the sum over is over irreducible color representations (we allow for the simultaneous presence of more
RQ). The color index is defined by TrT a

QT
b
Q = T (CQ)�ab with TQ the generators in CQ (in particular,

T (3) = 1/2, T (6) = 5/2, T (8) = 3, T (15) = 10) and QQ is the U(1)
em

charge. Di↵erent RQ imply di↵erent
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It is well known that the standard model (SM) of particle physics does not explain some well established
experimental facts like dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it
also contains fundamental parameters with highly unnatural values, like the coe�cient µ2 ⇠ O((100 GeV)2)
of the quadratic term in the Higgs potential, the Yukawa couplings of the first family fermions he,u,d ⇠
10�6�10�5 and the strong CP violating angle |✓| < 10�10. This last quantity is somewhat special: its value
is stable with respect to higher order corrections [1] (unlike µ2) and (unlike he,u,d [2]) it evades explanations
based on environmental selection [3]. Thus, seeking explanations for the smallness of ✓ independently of other
“small values” problems is theoretically motivated. While most of the problems of the SM can be addressed
with a large variety of mechanisms, basically only three types of solutions to the strong CP problem have
been put forth so far. The simplest possibility, a massless up-quark, is now ruled out (mu 6= 0 by 20 standard
deviations [4, 5]). The so-called Nelson-Barr (NB) type of models [6, 7] either require a high degree of fine
tuning, often comparable to setting |✓| <⇠ 10�10 by hand, or additional and rather elaborated theoretical
structures to keep ✓ su�ciently small at all orders [8, 9]. The Peccei-Quinn (PQ) solution [10, 11] arguably
stands on better theoretical grounds, and from the experimental point of view it also has the advantage of
predicting an unmistakable signature: the existence of a new light scalar particle, universally known as the
axion [12, 13]. Therefore, the issue if the PQ solution is the correct one, could be set experimentally by
detecting the axion. In contrast, no similar unambiguous signature exists for NB models.
A crucial challenge for axion models is to explain through which mechanism the global U(1)PQ symmetry,

on which the solution relies (and that presumably arises as an accident), remains protected from explicit
breaking to the required level of accuracy [14–16], and it seems fair to state that only constructions that
embed such an explanation can be considered theoretically satisfactory. A wide variety of proposals to
generate a high quality U(1)PQ have been put forth based, for example, on discrete gauge symmetries [17–
20], supersymmetry [15, 21, 22], compositeness [23–26], flavour symmetries [27] or new continuous gauge
symmetries [28, 29]. Regardless of the details of the di↵erent theoretical constructions, many properties of
the axion remain remarkably independent from specific model realizations. It is then very important, in
order to focus axion searches, to identify as well as possible the region in parameter space where realistic
axion models live. The vast majority of axion search techniques are sensitive to the axion-photon coupling
ga�� which is inversely proportional to the axion decay constant fa. Since the axion mass ma has the same
dependence, the experimental exclusion limits, as well as the theoretical predictions for specific models,
can be conveniently presented in the ma-ga�� plane (see Fig. 3). The commonly adopted “axion band”
corresponds roughly to

ga�� ⇠ ↵

2⇡

ma

f⇡m⇡
⇠ 10�10

GeV

⇣ma

eV

⌘
, (3)

with a somewhat arbitrary width chosen to include representative models as e.g. those of Refs. [30–32].
Recently, in Ref. [33] we have put forth a definition of a phenomenologically preferred axion window as
the region encompassing hadronic axion models which i) do not contain cosmologically dangerous strongly
interacting relics; ii) do not induce Landau poles (LP) below a scale ⇤LP of the order of the Planck scale.
In this paper we will first present a more detailed analysis of the phenomenological constraints on hadronic
axion models (to which we will often refer also as Kim-Shifman-Vainshtein-Zakharov (KSVZ) [34, 35] type
of axion models) on which the study of Ref. [33] was based. Since the first condition i) is relevant only when
the heavy quarks Q have an initial thermal abundance, the validity of the analysis in Ref. [33] is restricted
to the case when T

reheating

& mQ. The Q acquire their mass via a Yukawa coupling with the complex
axion field so that, for Yukawa couplings not exceeding unity, this translates into T

reheating

& fa (where fa
is the axion decay constant) a condition that can be only realized when the PQ symmetry is broken after
inflation, and will be referred as post-inflationary scenario. However, astrophysical considerations imply
a lower bound fa & 109 GeV, while the only firm limit on the scale of inflation is provided by big bang
nucleosynthesis (BBN) to merely lie above a few MeV. Since this leaves ample space for axion models to be
realized in pre-inflationary scenarios, in which the initial Q abundance is completely negligible, it would be
interesting to generalize the analysis of [33] by dropping condition i). Such a generalization will be carried
out in section VI, subject to the only condition that fa  5⇥1011 GeV, which restricts the class of models to
those which do not require any ad hoc tuning (or anthropic selection arguments) to justify particularly small

post-inflationary PQ breaking pre-inflationary PQ breaking
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It is well known that the standard model (SM) of particle physics does not explain some well established
experimental facts like dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it
also contains fundamental parameters with highly unnatural values, like the coe�cient µ2 ⇠ O((100 GeV)2)
of the quadratic term in the Higgs potential, the Yukawa couplings of the first family fermions he,u,d ⇠
10�6�10�5 and the strong CP violating angle |✓| < 10�10. This last quantity is somewhat special: its value
is stable with respect to higher order corrections [1] (unlike µ2) and (unlike he,u,d [2]) it evades explanations
based on environmental selection [3]. Thus, seeking explanations for the smallness of ✓ independently of other
“small values” problems is theoretically motivated. While most of the problems of the SM can be addressed
with a large variety of mechanisms, basically only three types of solutions to the strong CP problem have
been put forth so far. The simplest possibility, a massless up-quark, is now ruled out (mu 6= 0 by 20 standard
deviations [4, 5]). The so-called Nelson-Barr (NB) type of models [6, 7] either require a high degree of fine
tuning, often comparable to setting |✓| <⇠ 10�10 by hand, or additional and rather elaborated theoretical
structures to keep ✓ su�ciently small at all orders [8, 9]. The Peccei-Quinn (PQ) solution [10, 11] arguably
stands on better theoretical grounds, and from the experimental point of view it also has the advantage of
predicting an unmistakable signature: the existence of a new light scalar particle, universally known as the
axion [12, 13]. Therefore, the issue if the PQ solution is the correct one, could be set experimentally by
detecting the axion. In contrast, no similar unambiguous signature exists for NB models.
A crucial challenge for axion models is to explain through which mechanism the global U(1)PQ symmetry,

on which the solution relies (and that presumably arises as an accident), remains protected from explicit
breaking to the required level of accuracy [14–16], and it seems fair to state that only constructions that
embed such an explanation can be considered theoretically satisfactory. A wide variety of proposals to
generate a high quality U(1)PQ have been put forth based, for example, on discrete gauge symmetries [17–
20], supersymmetry [15, 21, 22], compositeness [23–26], flavour symmetries [27] or new continuous gauge
symmetries [28, 29]. Regardless of the details of the di↵erent theoretical constructions, many properties of
the axion remain remarkably independent from specific model realizations. It is then very important, in
order to focus axion searches, to identify as well as possible the region in parameter space where realistic
axion models live. The vast majority of axion search techniques are sensitive to the axion-photon coupling
ga�� which is inversely proportional to the axion decay constant fa. Since the axion mass ma has the same
dependence, the experimental exclusion limits, as well as the theoretical predictions for specific models,
can be conveniently presented in the ma-ga�� plane (see Fig. 3). The commonly adopted “axion band”
corresponds roughly to
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with a somewhat arbitrary width chosen to include representative models as e.g. those of Refs. [30–32].
Recently, in Ref. [33] we have put forth a definition of a phenomenologically preferred axion window as
the region encompassing hadronic axion models which i) do not contain cosmologically dangerous strongly
interacting relics; ii) do not induce Landau poles (LP) below a scale ⇤LP of the order of the Planck scale.
In this paper we will first present a more detailed analysis of the phenomenological constraints on hadronic
axion models (to which we will often refer also as Kim-Shifman-Vainshtein-Zakharov (KSVZ) [34, 35] type
of axion models) on which the study of Ref. [33] was based. Since the first condition i) is relevant only when
the heavy quarks Q have an initial thermal abundance, the validity of the analysis in Ref. [33] is restricted
to the case when T

reheating

& mQ. The Q acquire their mass via a Yukawa coupling with the complex
axion field so that, for Yukawa couplings not exceeding unity, this translates into T

reheating

& fa (where fa
is the axion decay constant) a condition that can be only realized when the PQ symmetry is broken after
inflation, and will be referred as post-inflationary scenario. However, astrophysical considerations imply
a lower bound fa & 109 GeV, while the only firm limit on the scale of inflation is provided by big bang
nucleosynthesis (BBN) to merely lie above a few MeV. Since this leaves ample space for axion models to be
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
arbitrary width, chosen to include representative models like those in Refs. [14–16]. In this Letter we put
forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
type of models [17, 18], the resulting window encompasses also the DFSZ axion [19, 20] and many of its
variants [15].

II. Hadronic axion models. The basic ingredient of any renormalizable axion model is a global U(1)PQ

symmetry. The associated Nöether current must have a color anomaly and, although not required for solving
the strong CP problem, in general it has also an electromagnetic anomaly:

@µJPQ
µ =

N↵s

4⇡
G · G̃+

E↵

4⇡
F · F̃ , (18)

where G, F are the color and electromagnetic field strength tensors, G̃, F̃ their duals, and N and E are the
color and electromagnetic anomaly coe�cients. In a generic axion model of KSVZ type [17, 18] the anomaly
is induced by pairs of heavy fermions QL, QR which must transform non-trivially under SU(3) and chirally
under U(1)PQ. Their mass arises from a Yukawa interaction with a SM singlet scalar field � which develops
a PQ breaking VEV, so that their PQ charges XL,R ⌘ X (QL,R), normalized to X (�) = 1, must satisfy

|XL � XR| = 1 . (19)

We denote the (vectorlike) representations of the SM gauge group GSM=SU(3)C⇥SU(2)I⇥U(1)Y to which
we assign the Q as RQ=(CQ, IQ,YQ) so that

N =
X

Q

(XL � XR) T (CQ) , (20)

E =
X

Q

(XL � XR) Q2

Q , (21)

where the sum over is over irreducible color representations (we allow for the simultaneous presence of more
RQ). The color index is defined by TrT a

QT
b
Q = T (CQ)�ab with TQ the generators in CQ (in particular,

T (3) = 1/2, T (6) = 5/2, T (8) = 3, T (15) = 10) and QQ is the U(1)
em

charge. Di↵erent RQ imply di↵erent
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It is well known that the standard model (SM) of particle physics does not explain some well established
experimental facts like dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it
also contains fundamental parameters with highly unnatural values, like the coe�cient µ2 ⇠ O((100 GeV)2)
of the quadratic term in the Higgs potential, the Yukawa couplings of the first family fermions he,u,d ⇠
10�6�10�5 and the strong CP violating angle |✓| < 10�10. This last quantity is somewhat special: its value
is stable with respect to higher order corrections [1] (unlike µ2) and (unlike he,u,d [2]) it evades explanations
based on environmental selection [3]. Thus, seeking explanations for the smallness of ✓ independently of other
“small values” problems is theoretically motivated. While most of the problems of the SM can be addressed
with a large variety of mechanisms, basically only three types of solutions to the strong CP problem have
been put forth so far. The simplest possibility, a massless up-quark, is now ruled out (mu 6= 0 by 20 standard
deviations [4, 5]). The so-called Nelson-Barr (NB) type of models [6, 7] either require a high degree of fine
tuning, often comparable to setting |✓| <⇠ 10�10 by hand, or additional and rather elaborated theoretical
structures to keep ✓ su�ciently small at all orders [8, 9]. The Peccei-Quinn (PQ) solution [10, 11] arguably
stands on better theoretical grounds, and from the experimental point of view it also has the advantage of
predicting an unmistakable signature: the existence of a new light scalar particle, universally known as the
axion [12, 13]. Therefore, the issue if the PQ solution is the correct one, could be set experimentally by
detecting the axion. In contrast, no similar unambiguous signature exists for NB models.
A crucial challenge for axion models is to explain through which mechanism the global U(1)PQ symmetry,

on which the solution relies (and that presumably arises as an accident), remains protected from explicit
breaking to the required level of accuracy [14–16], and it seems fair to state that only constructions that
embed such an explanation can be considered theoretically satisfactory. A wide variety of proposals to
generate a high quality U(1)PQ have been put forth based, for example, on discrete gauge symmetries [17–
20], supersymmetry [15, 21, 22], compositeness [23–26], flavour symmetries [27] or new continuous gauge
symmetries [28, 29]. Regardless of the details of the di↵erent theoretical constructions, many properties of
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with a somewhat arbitrary width chosen to include representative models as e.g. those of Refs. [30–32].
Recently, in Ref. [33] we have put forth a definition of a phenomenologically preferred axion window as
the region encompassing hadronic axion models which i) do not contain cosmologically dangerous strongly
interacting relics; ii) do not induce Landau poles (LP) below a scale ⇤LP of the order of the Planck scale.
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2

I. INTRODUCTION

✓ / J
CKM

log⇤
UV

(1)

fa < max{HI , TR} (2)

fa > max{HI , TR} (3)

⌦mis

a < ⌦
DM

(4)

fa . 5 · 1011 GeV (5)
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ga�� which is inversely proportional to the axion decay constant fa. Since the axion mass ma has the same
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with a somewhat arbitrary width chosen to include representative models as e.g. those of Refs. [30–32].
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the region encompassing hadronic axion models which i) do not contain cosmologically dangerous strongly
interacting relics; ii) do not induce Landau poles (LP) below a scale ⇤LP of the order of the Planck scale.
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of axion models) on which the study of Ref. [33] was based. Since the first condition i) is relevant only when
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
arbitrary width, chosen to include representative models like those in Refs. [14–16]. In this Letter we put
forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
type of models [17, 18], the resulting window encompasses also the DFSZ axion [19, 20] and many of its
variants [15].

II. Hadronic axion models. The basic ingredient of any renormalizable axion model is a global U(1)PQ

symmetry. The associated Nöether current must have a color anomaly and, although not required for solving
the strong CP problem, in general it has also an electromagnetic anomaly:

@µJPQ
µ =

N↵s

4⇡
G · G̃+

E↵

4⇡
F · F̃ , (18)

where G, F are the color and electromagnetic field strength tensors, G̃, F̃ their duals, and N and E are the
color and electromagnetic anomaly coe�cients. In a generic axion model of KSVZ type [17, 18] the anomaly
is induced by pairs of heavy fermions QL, QR which must transform non-trivially under SU(3) and chirally
under U(1)PQ. Their mass arises from a Yukawa interaction with a SM singlet scalar field � which develops
a PQ breaking VEV, so that their PQ charges XL,R ⌘ X (QL,R), normalized to X (�) = 1, must satisfy

|XL � XR| = 1 . (19)

We denote the (vectorlike) representations of the SM gauge group GSM=SU(3)C⇥SU(2)I⇥U(1)Y to which
we assign the Q as RQ=(CQ, IQ,YQ) so that

N =
X

Q

(XL � XR) T (CQ) , (20)

E =
X

Q

(XL � XR) Q2

Q , (21)

where the sum over is over irreducible color representations (we allow for the simultaneous presence of more
RQ). The color index is defined by TrT a

QT
b
Q = T (CQ)�ab with TQ the generators in CQ (in particular,

T (3) = 1/2, T (6) = 5/2, T (8) = 3, T (15) = 10) and QQ is the U(1)
em

charge. Di↵erent RQ imply di↵erent
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+ contribution from topological defects
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but depends on initial conditions

[See e.g. Ringwald, Saikawa 1512.06436 
Gorghetto, Hardy,  Villadoro 1806.04677]

Relic abundance
• From lattice QCD simulations:                          for 
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
arbitrary width, chosen to include representative models like those in Refs. [14–16]. In this Letter we put
forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
type of models [17, 18], the resulting window encompasses also the DFSZ axion [19, 20] and many of its
variants [15].

II. Hadronic axion models. The basic ingredient of any renormalizable axion model is a global U(1)PQ

symmetry. The associated Nöether current must have a color anomaly and, although not required for solving
the strong CP problem, in general it has also an electromagnetic anomaly:
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where G, F are the color and electromagnetic field strength tensors, G̃, F̃ their duals, and N and E are the
color and electromagnetic anomaly coe�cients. In a generic axion model of KSVZ type [17, 18] the anomaly
is induced by pairs of heavy fermions QL, QR which must transform non-trivially under SU(3) and chirally
under U(1)PQ. Their mass arises from a Yukawa interaction with a SM singlet scalar field � which develops
a PQ breaking VEV, so that their PQ charges XL,R ⌘ X (QL,R), normalized to X (�) = 1, must satisfy

|XL � XR| = 1 . (19)

We denote the (vectorlike) representations of the SM gauge group GSM=SU(3)C⇥SU(2)I⇥U(1)Y to which
we assign the Q as RQ=(CQ, IQ,YQ) so that

N =
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E =
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where the sum over is over irreducible color representations (we allow for the simultaneous presence of more
RQ). The color index is defined by TrT a

QT
b
Q = T (CQ)�ab with TQ the generators in CQ (in particular,
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Stellar cooling anomalies
• Hints of excessive cooling in WD+RGB+HB can be explained via an axion 

[Giannotti, Irastorza, Redondo, Ringwald, Saikawa 1708.02111]
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Figure 1. Combined analysis of the hints from WD+RGB+HB stars in the gae � ga� plane. Also
shown are the projected sensitivities of the light-shining-through-walls experiment ALPS II [13] and
the helioscope IAXO [15].

combination of couplings. In fact, it includes also axion emission in nucleon bremsstrahlung
N+N ! N+N+a where N can be either a proton or a neutron and most of the simulations
were done with a very small neutron coupling, so that the e↵ect is mostly due to the proton
coupling.

Finally, the axion/ALP bremsstrahlung o↵ nucleons can shorten the prediction of the
neutrino pulse duration of core collapse supernovae. In fact, the neutrino observations from
SN1987A lead to a bound (see appendix B)

g2ap + g2an < 3.6⇥ 10�19 . (2.8)

We will consider this as a 1� hint that g2aN = 0 within the error 3.6 ⇥ 10�19. However, we
warn the reader that SN 1987A constraints are based on axion emissivities not completely
understood and on simulations that at the moment do not include all necessary physics and
therefore have systematic uncertainties themselves. Again, we will study axion models with
and without including this constraint.

3 Axion interpretation of stellar cooling anomalies

Let us start by reviewing the generic features of the axion. The basic building block of an
invisible axion model is a global U(1)

PQ

symmetry, which is broken at a high scale by the
vacuum expectation value h�2i = v2

PQ

/2 of a complex Standard Model (SM) singlet scalar
field �. In this notation, the axion field appears as the phase of this complex scalar � =
(v

PQ

/
p
2)eia/vPQ or as a linear combination of this and other Higgs phases. The associated

Noether current JPQ

µ is required to have a color anomaly and, although not required for
solving the strong CP problem, it may also have an electromagnetic anomaly:

@µJPQ
µ =

N↵s

8⇡
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µ⌫G̃
aµ⌫ +

E↵

8⇡
Fµ⌫F̃

µ⌫ , (3.1)
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- requires a sizeable axion-electron coupling in a region disfavoured by SN bound*

Here eHu = ✏H⇤
u, i, j = 1, 2, 3 are flavor indices and �ij , Yij , Gij are complex 3⇥ 3 matrices.

The interactions given by eq. (3.6) (DFSZ I) or eq. (3.7) (DFSZ II) are assumed to be
invariant under a U(1)

PQ

symmetry with symmetry breaking scale v
PQ

. At low energies, the
e↵ective Lagrangian is then given by eq. (2.1), with [45, 46]

fa =
v
PQ

6
, (3.8)

CDFSZ I

ae =
1

3
sin2 � , CDFSZ II

ae =
1

3
(1� sin2 �) , (3.9)

(3.10)

and [40]

CDFSZ I

a� =
8

3
� 1.92(4) , CDFSZ II

a� =
2

3
� 1.92(4) , (3.11)

CAp = �0.435 sin2 � + (�0.182± 0.025) ,

CAn = 0.414 sin2 � + (�0.16± 0.025) . (3.12)

Here, tan� ⌘ vu/vd, with v =
q
v2u + v2d = 246 GeV. It is theoretically constrained from

both ends by the requirement of perturbative unitarity of the Yukawa couplings,

0.28 < tan� < 140 . (3.13)

Here, the lower limit arises in all 2HDMs, while the upper limit is specific to the type-II and
type-IV 2HDMs [47].

The DFSZ models have only two parameters, fa and tan�, that we can extract from the
global fit of the WDLF, the period decrease of 4 pulsating WDs (R548, L 19-2 (113), L 19-2
(192), and PG 1351+489), the luminosity of the tip in the RGB of M5 and the R-parameter
in globular clusters, which we hereafter label as HB, see appendix A for specifics. The best
fit values are recorded in table 2 and the 1, 2, 3, 4� contours are shown in figure 2. Note
that we impose the constraint on perturbative unitarity on the best fit values but not on the
contours. The resulting regions can be understood as follows.

Model Global fit includes fa [108GeV] ma [meV] tan� �2

min

/d.o.f.

WD,RGB,HB 0.77 74 0.28 14.9/15
DFSZ I WD,RGB,HB,SN 11 5.3 140 16.3/16

WD,RGB,HB,SN,NS 9.9 5.8 140 19.2/17
WD,RGB,HB 1.2 46 2.7 14.9/15

DFSZ II WD,RGB,HB,SN 9.5 6.0 0.28 15.3/16
WD,RGB,HB,SN,NS 9.1 6.3 0.28 21.3/17

Table 2. Best fit parameters compatible with perturbative unitarity for DFSZ-type axion interpre-
tations of the cooling anomalies.

3We follow this approach in our figures 2 and 3, where we show the mass scale on the x-axis. The mass
there emerges solely from its relation with fa, Eq. (3.3). We remind, however, that the stellar hints are
calculated in the approximation of masseless axions, as explained in footnote 2.

– 8 –

 Nucleophobic axions should improve fit, 
    allowing for fully perturbative Yukawas 

*SN bound a factor ~4 weaker than PDG one ?  
[Chang, Essig, McDermott 1803.00993]
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DM in the heavy axion window
• Post-inflationary PQ breaking with NDW ≠1

Axion as a non-WIMP dark matter candidate Ken’ichi Saikawa

The detailed investigation of the parameter space showed that there exits a loophole if the

order of the operators (3.2) is N = 9 or 10 [18]. In such cases, the axion can explain the observed

dark matter abundance in higher mass ranges, 5.6×10−4 eV ! ma ! 1.3×10−1 eV (for NDW = 6),

if we allow a mild tuning of the symmetry breaking parameter g. Intriguingly, such higher mass

ranges are compatible with those preferred by stellar cooling anomaly observations [19].

4. Conclusions

The axion is a well-motivated hypothetical particle as it provides a solution to the strong CP

problem and can be a good candidate of non-WIMP dark matter. The prediction for the axion

dark matter strongly depends on the early history of the universe and hence the underlying particle

physics models. The mass ranges predicted in various cosmological scenarios are summarized in

Fig. 2. Recently, a lot of new experimental projects are proposed, which enables us to investigate

the properties of the axion in the relevant parameter ranges [see, e.g., Ref. [20]]. Discovery of the

axion in such future experimental searches would bring about a tremendous development not only

in dark matter physics but also in cosmology and fundamental physics.
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Figure 2: Predictions for the axion dark matter mass ma or the decay constant fa in the pre-inflationary PQ

symmetry breaking scenario (first line), the post-inflationary PQ symmetry breaking scenario with NDW = 1

(second line), and that with NDW = 6 (third line). The yellow regions correspond to the mass ranges in

which the axion can be the main constituent of dark matter. The gray regions are excluded since the relic

axion abundance exceeds the observed dark matter abundance. The gray hatched regions correspond to

the mass ranges in which more than 10% tuning of θi is required in order to explain the observed dark

matter abundance. Here we give a conservative estimate of uncertainty in the axion dark matter mass for the

models with NDW = 1, taking account of the difference between the results obtained from the conventional

simulation method [13, 14] and those obtained from the modified simulation method [17].
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- axion production from topological defects 

- requires explicit PQ breaking term

Heavy Axion Cosmology

If PQ broken after inflation need to take into 
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FIG. 7: Observational constraints on the axion decay constant Fa and the bias parameter Ξ in the model with NDW = 3
based on (a) the assumption of exact scaling and (b) that of deviation from scaling. The red solid line corresponds to the
bound obtained from the burst duration of SN 1987A [Eq. (4.10)], and the green area to the left side of this line is excluded.
The blue (cyan) solid line corresponds to the constraint of the overclosure of dark matter axions [Eq. (4.1)] with the coefficient
Cd estimated based on 10% (1%) criterion. The dotted lines represent uncertainties of Ωa,toth

2 induced by the numerical
parameters ϵ, ξ, ϵ̃a, A (or Aform), and Cd. Except for these uncertainties, the red region below the blue (or cyan) line is
excluded. The purple solid lines correspond to the NEDM bounds [Eq. (4.9)] for δ = 1, 10−4, and 10−8. The region above these
lines is also excluded. The shaded region corresponds to the parameters satisfying Eq. (4.13), and in this region the axion mass
is dominated by the bias term. The exclusion lines shown in these figures are obtained for g∗,1 = 80 and ΛQCD = 400MeV.
Furthermore, we use β′ = 58, ξ = 1.0 ± 0.5, and ϵ = 4.02 ± 0.70 to compute Ωa,stringh

2. For parameters required to estimate
Ωa,dech

2, we take ϵ̃a = 1.85 ± 0.06 (the result for NDW = 3 in Table VII), A = 1.10 ± 0.18 (the result for NDW = 3 and
N = 16384 in Table IV), Aform = 0.828± 0.032, and p = 0.926 (the result for NDW = 3 in Table V). The value for Cd is taken
from Table VI, such that Cd = 5.02± 0.44 (8.15± 0.67) for 10% (1%) criterion with the assumption of exact scaling [panel (a)]
and Cd = 7.16± 0.53 (10.8 ± 0.7) for 10% (1%) criterion with the assumption of deviation from scaling [panel (b)].
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FIG. 7: Observational constraints on the axion decay constant Fa and the bias parameter Ξ in the model with NDW = 3
based on (a) the assumption of exact scaling and (b) that of deviation from scaling. The red solid line corresponds to the
bound obtained from the burst duration of SN 1987A [Eq. (4.10)], and the green area to the left side of this line is excluded.
The blue (cyan) solid line corresponds to the constraint of the overclosure of dark matter axions [Eq. (4.1)] with the coefficient
Cd estimated based on 10% (1%) criterion. The dotted lines represent uncertainties of Ωa,toth

2 induced by the numerical
parameters ϵ, ξ, ϵ̃a, A (or Aform), and Cd. Except for these uncertainties, the red region below the blue (or cyan) line is
excluded. The purple solid lines correspond to the NEDM bounds [Eq. (4.9)] for δ = 1, 10−4, and 10−8. The region above these
lines is also excluded. The shaded region corresponds to the parameters satisfying Eq. (4.13), and in this region the axion mass
is dominated by the bias term. The exclusion lines shown in these figures are obtained for g∗,1 = 80 and ΛQCD = 400MeV.
Furthermore, we use β′ = 58, ξ = 1.0 ± 0.5, and ϵ = 4.02 ± 0.70 to compute Ωa,stringh

2. For parameters required to estimate
Ωa,dech

2, we take ϵ̃a = 1.85 ± 0.06 (the result for NDW = 3 in Table VII), A = 1.10 ± 0.18 (the result for NDW = 3 and
N = 16384 in Table IV), Aform = 0.828± 0.032, and p = 0.926 (the result for NDW = 3 in Table V). The value for Cd is taken
from Table VI, such that Cd = 5.02± 0.44 (8.15± 0.67) for 10% (1%) criterion with the assumption of exact scaling [panel (a)]
and Cd = 7.16± 0.53 (10.8 ± 0.7) for 10% (1%) criterion with the assumption of deviation from scaling [panel (b)].
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Boosting E/N in DFSZ
• Potentially large E/N due to electron PQ charge

non-trivial constraints on PQ charges of SM fermions

- with nH Higgs doublets and a SM singlet ɸ, enhanced global symmetry
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U(1)nH+1 ! U(1)
PQ
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It is well known that the standard model (SM) of particle physics does not explain some well established
experimental facts like dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it
also contains fundamental parameters with highly unnatural values, like the coe�cient µ2 ⇠ O((100 GeV)2)
of the quadratic term in the Higgs potential, the Yukawa couplings of the first family fermions he,u,d ⇠
10�6�10�5 and the strong CP violating angle |✓| < 10�10. This last quantity is somewhat special: its value
is stable with respect to higher order corrections [1] (unlike µ2) and (unlike he,u,d [2]) it evades explanations
based on environmental selection [3]. Thus, seeking explanations for the smallness of ✓ independently of other
“small values” problems is theoretically motivated. While most of the problems of the SM can be addressed
with a large variety of mechanisms, basically only three types of solutions to the strong CP problem have
been put forth so far. The simplest possibility, a massless up-quark, is now ruled out (mu 6= 0 by 20 standard
deviations [4, 5]). The so-called Nelson-Barr (NB) type of models [6, 7] either require a high degree of fine
tuning, often comparable to setting |✓| <⇠ 10�10 by hand, or additional and rather elaborated theoretical
structures to keep ✓ su�ciently small at all orders [8, 9]. The Peccei-Quinn (PQ) solution [10, 11] arguably
stands on better theoretical grounds, and from the experimental point of view it also has the advantage of
predicting an unmistakable signature: the existence of a new light scalar particle, universally known as the
axion [12, 13]. Therefore, the issue if the PQ solution is the correct one, could be set experimentally by
detecting the axion. In contrast, no similar unambiguous signature exists for NB models.
A crucial challenge for axion models is to explain through which mechanism the global U(1)PQ symmetry,

on which the solution relies (and that presumably arises as an accident), remains protected from explicit
breaking to the required level of accuracy [14–16], and it seems fair to state that only constructions that

must be explicitly broken in the scalar potential via non-trivial invariants (e.g.              )
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violet vertical line labeled fa > 5 ⇥ 1011 GeV. On the left of this line only pre-inflationary models with
progressively larger values of fa are allowed. In this case the heavy quark threshold can be correspondingly
increased, thus weakening the constraints from the LP condition. Therefore for KSVZ models larger values
of the axion-photon coupling become allowed within this region. However, this goes at the expense of a
progressively larger amount of fine tuning in the initial value of ✓, which might well be considered as an
unwanted feature in phenomenologically preferred axion models.

VII. DFSZ-TYPE OF AXION MODELS

In DFSZ-type of models [36, 37] two or more Higgs doublets Hi, carrying PQ charges, together with
the SM singlet axion field � are introduced. The SM fermion content is not enlarged, but in general both
quarks and leptons carry PQ charges. The electromagnetic and color U(1)PQ anomalies then depend on
the known fermions assignments under the SM gauge group, but also on their model dependent PQ charge
assignments. Hence, several variants of DFSZ axion models are possible, some of which have been discussed,
for instance, in Refs. [31, 32]. Here we argue that for most of these variants the axion-photon coupling falls
within the regions highlighted in Fig. 3. Only in some specific cases the KSVZ upper limit E/N = 170/3
can be exceeded. We will point out under which conditions this can occur.
Let us start with some general considerations: we assume nH � 2 Higgs doublets Hi which are coupled

to quarks and leptons via Yukawa interactions, and to the axion field � through scalar potential terms.
The kinetic term for the scalars carries a U(1)nH+1 rephasing symmetry that must be explicitly broken to
U(1)PQ⇥U(1)Y in order that the PQ current in Eq. (12) is unambiguously defined, and to avoid additional
Goldstone bosons with couplings only suppressed as the inverse of the electroweak scale. By considering
from the start only gauge invariant operators, the relevant explicit breaking U(1)nH+1 ! U(1)PQ must be
provided by non-Hermitian renormalizable terms in the scalar potential involving Hi and �. This implies
that the PQ charges of all the fermions and Higgs doublets are interrelated and cannot be chosen arbitrarily.
In the most general scenario, each SM fermion field carries a specific PQ charge. However, given that the
anomalies of the PQ current depend on the di↵erence between the PQ charges of L- and R-handed fermions,
without loss of generality we can set the PQ charges of the L-handed fermions to zero, and only consider
the charges of the R-handed fermions Xuj

, Xdj
, Xej , where j is a generation index. The ratio of anomaly

coe�cients E/N reads

E

N
=

P
j

�
4

3

Xuj
+ 1

3

Xdj
+ Xej

�
P

j

�
1

2

Xuj +
1

2

Xdj

�

=
2

3
+ 2

P
j

�Xuj
+ Xej

�
P

j

�Xuj + Xdj

� , (37)

and it is particularly convenient to write it as in the second equality. Note that in order to have a non-
vanishing PQ-color anomaly, the denominator must be non-vanishing. The original DFSZ model [36, 37]
includes two Higgs doublets, Hu,d, coupled to the singlet scalar field via the quartic termHuHd�2, and family
independent PQ charges for the SM fermions. Then the factor E/N is fixed up to the two-fold possibility
of coupling the leptons either to Hd or to H⇤

u. Eq. (36) shows that these two cases yield, respectively

DFSZ-I : Xe = Xd , E/N = 8/3 ,

DFSZ-II : Xe = �Xu , E/N = 2/3 , (38)

which in both cases give axion-photon couplings that fall inside the KSVZ band in Fig. 3.
Let us now consider the so called DFSZ-III variant [31] in which the scalar sector is enlarged to contain

nH = 3 Higgs doublets He,d,u coupled respectively to leptons, down-type and up-type quarks. Although
here we have some more freedom in choosing the values of the charges Xe, in order to enforce the breaking
U(1)4 = U(1)e ⇥ U(1)u ⇥ U(1)d ⇥ U(1)

�

! U(1)PQ, He must couple to Hu, Hd and/or �2, so that
Xe cannot be completely arbitrary. To find the maximum allowed value, let us consider the bilinear mixed
scalar monomials (HeHu) , (H⇤

eHd), (HuHd) together with their Hermitian conjugates, responsible for U(1)4

breaking. It is easy to verify that the bilinear terms alone yield the same two possibilities listed in Eq. (37).
Let us then consider quadrilinear couplings. Since �2 has the same PQ charge than (HuHd)†, the four cases
below exhaust all the possible relations between Xe and the other PQ charges:

(HeHu) · (HuHd) =) Xe = �(2Xu + Xd) ,

(HeHu) · (HuHd)
† =) Xe = Xd ,

(H⇤
eHd) · (HuHd) =) Xe = Xu + 2Xd ,

(H⇤
eHd) · (HuHd)

† =) Xe = �Xu . (39)
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allow for opposite signs in the PQ charge di↵erences: �X = ��X s. In this case E/Es and N/Ns become
negative and ga�� can get enhanced. The largest enhancement attainable with two RQ’s is obtained with
Rs

Q �Rw
Q. This still respects the LP selection criterium and yields Ec/Nc = 122/3,

Adding multiple RQ will eventually lead to low-scale LPs. By admitting an arbitrary number of represen-
tations RQ > 1, we can still find an absolute upper bound on Ec/Nc compatible with the requirement of no
LPs below 1018 GeV. This comes from the combination R

8

�R
6

 R
9

where the symbol � ( ) means that
the representations have to be taken with the same (opposite) PQ sign of �X = XL � XR. That implies
⇤LP = 1.0 · 1018 and E/N = 170/3, corresponding in Fig. 5 to the uppermost oblique line.
Unfortunately, more RQ’s can also weaken ga�� below the lower limit in Fig. 5, and even yield complete

axion-photon decoupling (within theoretical errors), a possibility that requires an ad hoc choice of RQ’s, but
no numerical fine tuning. With two RQ’s there are three such cases: (3, 3,�1/3)� (6, 1,�1/3); (6, 1, 2/3)�
(8, 1,�1) and (3, 2,�5/6)�(8, 2,�1/2) giving respectively Ec/Nc = (23/12, 64/33, 41/21). In all these cases
the axion could be only detected via its coupling to nucleons, providing additional motivations for axion
searches which do not rely on the axion coupling to photons [69, 70].

D. Axion window and DFSZ-type of models

Variants of DFSZ axion models were discussed for instance in Refs. [16, 17]. Here we argue that also
DFSZ-type of models yield axion-photon couplings which fall within the band in Fig. 5. More specifically,
no couplings larger than our upper limit E/N = 170/3 can be generated. In DFSZ-type models, two or
more Higgs doublets Hi, carrying PQ charges, together with the SM singlet axion field, �, are introduced.
The SM fermion content is not enlarged, however in general both quarks and leptons also carry PQ charges.
Therefore, the electroweak and colour anomalies depend only on the PQ charge assignments of the SM
fermions. Quarks and leptons couple to the Hi Higgses via Yukawa interactions. In turn, the nH � 2 Higgs

doublets are coupled to the axion field � through scalar potential terms. The Higgs kinetic term carries a
U(1)nH rephasing symmetry that must be broken to the single U(1)PQ, in order that the PQ current in
eq.1 is unambiguously defined, and also to avoid additional Goldstone bosons which would be dangerous for
having couplings suppressed only as 1/vEW . (I think that: 1. The new GB couplings are suppressed just
by 1/vEW ; and 2. That for example the electron charges would not enter in the E/N formula.) The explicit
breaking U(1)nH+1 ! U(1)Y ⇥ U(1)PQ must then be provided by non-Hermitian renormalizable terms
terms in the scalar potential involving Hi and �, and this implies that the PQ charges of all the fermions
and all the the Higgses are interrelated. Therefore the PQ charges of the fermions (and in particular of the
Leptons) cannot be chosen arbitrarily.

Given that the anomalies of the PQ current depend on the di↵erence between the PQ charges of LH and
RH fermions, without loss of generality we can set the PQ charges of the SM LH fermions to zero. Hence,
we define the transformation properties of the SM fermions under U(1)PQ as

uj
R ! exp (iXuj)u

j
R (34)

djR ! exp (iXdj) d
j
R (35)

ejR ! exp (iXej) e
j
R (36)

Note that for the time being we have allowed for family-dependent PQ charges. The ratio of anomaly
coe�cients E/N can be written as
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where, in order to have a non-vanishing PQ-colour anomaly, the denominator must be non-vanishing.
The original DFSZ model [21, 22] includes two Higgs doublets, Hu,d, and family independent PQ charges.

Then the factor E/N is fixed up to the two-fold possibility of coupling the letpons either to Hd or to H⇤
u.
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LY = Yu QLuRHu + Yd QLdRHd (12)

+ Ye LLeRHe + h.c. (13)

It is well known that the standard model (SM) of particle physics does not explain some well established
experimental facts like dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it
also contains fundamental parameters with highly unnatural values, like the coe�cient µ2 ⇠ O((100 GeV)2)
of the quadratic term in the Higgs potential, the Yukawa couplings of the first family fermions he,u,d ⇠
10�6�10�5 and the strong CP violating angle |✓| < 10�10. This last quantity is somewhat special: its value
is stable with respect to higher order corrections [1] (unlike µ2) and (unlike he,u,d [2]) it evades explanations
based on environmental selection [3]. Thus, seeking explanations for the smallness of ✓ independently of other
“small values” problems is theoretically motivated. While most of the problems of the SM can be addressed
with a large variety of mechanisms, basically only three types of solutions to the strong CP problem have
been put forth so far. The simplest possibility, a massless up-quark, is now ruled out (mu 6= 0 by 20 standard
deviations [4, 5]). The so-called Nelson-Barr (NB) type of models [6, 7] either require a high degree of fine
tuning, often comparable to setting |✓| <⇠ 10�10 by hand, or additional and rather elaborated theoretical
structures to keep ✓ su�ciently small at all orders [8, 9]. The Peccei-Quinn (PQ) solution [10, 11] arguably
stands on better theoretical grounds, and from the experimental point of view it also has the advantage of
predicting an unmistakable signature: the existence of a new light scalar particle, universally known as the
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Variants of DFSZ axion models were discussed for instance in Refs. [16, 17]. Here we argue that also
DFSZ-type of models yield axion-photon couplings which fall within the band in Fig. 5. More specifically,
no couplings larger than our upper limit E/N = 170/3 can be generated. In DFSZ-type models, two or
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The SM fermion content is not enlarged, however in general both quarks and leptons also carry PQ charges.
Therefore, the electroweak and colour anomalies depend only on the PQ charge assignments of the SM
fermions. Quarks and leptons couple to the Hi Higgses via Yukawa interactions. In turn, the nH � 2 Higgs

doublets are coupled to the axion field � through scalar potential terms. The Higgs kinetic term carries a
U(1)nH rephasing symmetry that must be broken to the single U(1)PQ, in order that the PQ current in
eq.1 is unambiguously defined, and also to avoid additional Goldstone bosons which would be dangerous for
having couplings suppressed only as 1/vEW . (I think that: 1. The new GB couplings are suppressed just
by 1/vEW ; and 2. That for example the electron charges would not enter in the E/N formula.) The explicit
breaking U(1)nH+1 ! U(1)Y ⇥ U(1)PQ must then be provided by non-Hermitian renormalizable terms
terms in the scalar potential involving Hi and �, and this implies that the PQ charges of all the fermions
and all the the Higgses are interrelated. Therefore the PQ charges of the fermions (and in particular of the
Leptons) cannot be chosen arbitrarily.

Given that the anomalies of the PQ current depend on the di↵erence between the PQ charges of LH and
RH fermions, without loss of generality we can set the PQ charges of the SM LH fermions to zero. Hence,
we define the transformation properties of the SM fermions under U(1)PQ as
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where, in order to have a non-vanishing PQ-colour anomaly, the denominator must be non-vanishing.
The original DFSZ model [21, 22] includes two Higgs doublets, Hu,d, and family independent PQ charges.

Then the factor E/N is fixed up to the two-fold possibility of coupling the letpons either to Hd or to H⇤
u.

• Clockwork-like scenarios allow to boost E/N

[See also Farina et al. 1611.09855, 
for KSVZ clockwork]

- n up-type doublets which do not couple to SM fermions (n ≲ 50 from LP condition)
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A similar construction is possible also in KSVZ models by adding additional PQ charged singlets �k.
This possibility was put forth in [72] and we refer to this reference for details.
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Appendix A: Q-decay operators � integrally charged hadrons

In this Appendix we examine the close connection between the existence of Q-decay operators and the
absence of fractionally charged hadrons containing the heavy quark Q. Heavy colored particles with exotic
electric charges (e.g. Q = 1/5,⇡, etc.) cannot decay into SM particles (by electric charge conservation)
and hence are absolutely stable. They also will not get confined into hadrons of integer charge, and this
implies that they cannot get bounded into neutral hadrons, atoms or molecules. Limits on the abundance
of fractionally charged particles are very strong, while exotic hadrons with integer charges can “hide” more
easily (strong limits exist, but they also depend on the exotic hadron charge).
Remarkably, if the quantum numbers of Q are such that one can build a Q-decay operator the heavy quark

Q can only hadronize into integrally charged hadrons. The reverse statement is true as well. Namely, if the
heavy quark Q is such that it gives rise to hadrons with integer charges then it is always possible to write
operators that will let them decay into SM particles. On general grounds, one expect such operators to be
generated at latest by Planck-scale physics and this can have profound consequences on the phenomenological
studies of these exotics.
The rest of the Appendix is devoted to a constructive proof of the statement above both in the direct and

reverse direction.

1. Proof of direct statement

Let us start by proving the direct statement: Exotic heavy Q quarks that are allowed to decay into SM
particles, can only hadronize in integrally charged baryons or mesons.
The possibility of decays requires operators linear in the field Q. In the following, we explicitly write the

Q and the SM quarks q, and denote with [SM ] any string of other SM particles not containing quarks. Note
that in all cases [SM ] has integer or vanishing electric charge, and can transform either in the 1 or 8 of
color.5 In the following g denotes gluons, Q denotes the electric charge, and n 2 Z denotes a generic integer
or vanishing number. Here we will not be concerned with identifying the lowest mass exotic hadron within
an exotic isospin multiplet, since all the members of a multiplet have either integer or fractional charges, so
the generic symbol q for SM quarks su�ce.
The argument proceeds by construction. We first select a Q-decay operator which fixes the gauge quantum

numbers of Q and then inspect the electric charge of possible bound states formed by Q with light quarks
and gluons. We consider in turn the following possibilities:

5 For simplicity we only consider decay operators involving at most one color field strength tensor, but the generalization is
straightforward. Note that two or more Gµ⌫ imply operators of D � 7, and with respect to them Q is cosmologically stable.

⇤ ⇤N = qN⇤

Figure 1: A schematic representation of the clockwork mechanism increasing the interac-
tion scale of a non-renormalisable operator.

case, the association between the interaction scale and the energy at which new particles
must enter, although not formally correct, works in practice. The situation is very di↵erent
in presence of couplings which are small, in natural units, as the dynamics associated with
an interaction scale could occur at much smaller energies.

These considerations open the possibility that dynamics, usually associated with very
high-energy phenomena may lie much closer to, and possibly within, accessible energies. If
this were to be the case, a new puzzle arises: why would nature choose extremely small
coupling constants? Since long ago [1, 2] physicists have been reluctant to accept small (or
large) numbers without an underlying dynamical explanation, even when the smallness of a
parameter is technically natural in the sense of ’t Hooft [3]. One reason for this reluctance
is the belief that all physical quantities must eventually be calculable in a final theory with
no free parameters. It would be strange for small numbers to pop up accidentally from the
final theory without a reason that can be inferred from a low-energy perspective.

In this work we propose a general mechanism to generate small numbers out of a the-
ory with only O(1) parameters, and thus large e↵ective interaction scales out of dynamics
occurring at much lower energies. In all of these theories the full UV completion enters at
energies exponentially smaller than suggested by a given interaction strength. The mech-
anism is fairly flexible and can produce exponentially large interaction scales for light or
massless scalars, fermions, vectors, and even gravitons. It provides an interesting theoretical
tool which opens new model-building avenues for axion, neutrino, flavour, weak scale, and
gravitational physics.

The underlying structure is a generalisation of the clockwork models [4, 5], which were
originally used to construct axion (or relaxion [6]) setups in which the e↵ective axion decay
constant f is much larger than the Planck mass M

P

, without any explicit mass parameter
in the fundamental theory exceeding M

P

. In this way, one could circumvent the need for
transplanckian field excursions in models which, for di↵erent phenomenological reasons, re-
quire f > M

P

. These constructions can be viewed as extensions of an original proposal for
subplanckian completions of natural inflation [7–9]. The name clockwork follows from the
field phase rotations with periods that get successively larger from one field to the next (see
fig. 1 for a pictorial interpretation).

The general framework is the following: Consider a system involving a particle P , which
remains massless because of a symmetry S. At this stage neither the nature of P or S, nor
whether the description is renormalisable or not, is crucial. We will give plenty of specific
examples in our paper, but we want to stress that the general mechanism is insensitive to
the details of the model implementation.

3

2

I. INTRODUCTION

✓ / J
CKM

log⇤
UV

(1)

fa < max{HI , TR} (2)

fa > max{HI , TR} (3)

⌦mis

a < ⌦
DM

(4)

fa . 5 · 1011 GeV (5)

ga�� (6)

gaee (7)

gaNN (8)

mQ ⇠ yQfa < 5 · 1011 GeV (9)

fa � 5 · 1011 GeV (10)

U(1)nH+1 ! U(1)
PQ

⇥ U(1)Y (11)

LY = Yu QLuRHu + Yd QLdRHd (12)

+ Ye LLeRHe + h.c. (13)

It is well known that the standard model (SM) of particle physics does not explain some well established
experimental facts like dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it
also contains fundamental parameters with highly unnatural values, like the coe�cient µ2 ⇠ O((100 GeV)2)
of the quadratic term in the Higgs potential, the Yukawa couplings of the first family fermions he,u,d ⇠
10�6�10�5 and the strong CP violating angle |✓| < 10�10. This last quantity is somewhat special: its value
is stable with respect to higher order corrections [1] (unlike µ2) and (unlike he,u,d [2]) it evades explanations
based on environmental selection [3]. Thus, seeking explanations for the smallness of ✓ independently of other
“small values” problems is theoretically motivated. While most of the problems of the SM can be addressed
with a large variety of mechanisms, basically only three types of solutions to the strong CP problem have
been put forth so far. The simplest possibility, a massless up-quark, is now ruled out (mu 6= 0 by 20 standard
deviations [4, 5]). The so-called Nelson-Barr (NB) type of models [6, 7] either require a high degree of fine
tuning, often comparable to setting |✓| <⇠ 10�10 by hand, or additional and rather elaborated theoretical
structures to keep ✓ su�ciently small at all orders [8, 9]. The Peccei-Quinn (PQ) solution [10, 11] arguably
stands on better theoretical grounds, and from the experimental point of view it also has the advantage of
predicting an unmistakable signature: the existence of a new light scalar particle, universally known as the
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E/N(gmax

a�� ) E/N(gmin

a��)

KSVZ (NQ = 1) 44/3 5/3

KSVZ (NQ > 1) 170/3 23/12

DFSZ (nH = 2) 2/3 8/3

DFSZ (nH = 3) �4/3 8/3

DFSZ (nH > 3) 74/3 23/12

TABLE V. E/N values which give for a given any model the maximun and the decoupling values of ga�� . In the
case of KSVZ, bounds have been worked out under our selection rules. For DFSZ case instead, no conditions have
been considered for the viability of the model.

from H⇤
u2 ·Hu1�2,† and H⇤

e2 ·He1�2,† and

Xu3 = Xu2 + q = 6q �Xd1

Xe3 = Xe2 + q = 6q +Xd1
! Xu3 +Xe3 = 12q (59)

from H⇤
u3 ·Hu2�2,† and H⇤

e3 ·He3�2,†. Finally

E

N
=
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3
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P
j (4q + 8q + 12q)

2q
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74

3
(60)

The potential will contain

V (Huj,dj,ej ,�) ⇢ (61)

Hu1 ·Hd1�
2 +H⇤

e1 ·Hd1�
2,† (62)

+H⇤
u2 ·Hu1�

2,† +H⇤
e2 ·He1�

2,† (63)

+H⇤
u3 ·Hu2�

2,† +H⇤
e3 ·He3�

2,† (64)

+Hu2 ·Hd2 +Hu3 ·Hd3 (65)

The decoupling setup can be obtained by the following PQ charges assignment

Xdj = Xu1 = 1, Xu2 = Xu3 = 2, Xej = 0 (66)

which gives E/N = 23/12

E. Clockwork scenarios

In all the models we have so far considered some implicit assumption regarding their scalar content was
made. In KSVZ-type of models we have assumed that there is only one SM scalar singlet � carrying a PQ
charge, while in DFSZ-type of models we have allowed, as a maximum number, for one scalar doublet for
each SM fermion mass, for a total of nine EW doublets.
However, many more EW scalar doublets can be introduced in the SM without violating the LP condition,

up to about fifty. By adding scalar doublets that do not couple directly to the fermions, it is possible to
obtain very large PQ charges for the leptons, with huge enhancements of the numerator in the second term
in eq. (46). To see how this can work let us start with X

�

= q and the quadrilinear scalar coupling HuHd�2,
and let us set by using a charge redefinition proportional to hypercharge Xu = �2q and Xd = 0. Let us
Define H

1

= Hu and next let us add a whole set of up-type Higgs doublets Hn with n = 2, 3, . . . ,m coupled
as (HnH

⇤
n�1

)(H⇤
n�1

H⇤
d ) and with charges Xn = �2nq. Finally let us couple (HeHm)(HmHd). We then

obtain Xe = 2m+1q. Given that the number of doublets m can be as large as 50 before a LP is hit, lepton
charges exponentially large ⇠ 250 become possible.
In steps (for the talk):

1. Consider (HuHd�2) and normalize X
�

⌘ q; =) Xu = �2q; Xd = 0

2. Define H
1

= Hu. Add m up-type doublets: (HkH
⇤
k�1

)(H⇤
k�1

H⇤
d ), i.e. Xk = �2k q

3. Finally couple also the lepton Higgs He: (HeHm)(HmHd), i.e. Xe = 2m+1q
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made. In KSVZ-type of models we have assumed that there is only one SM scalar singlet � carrying a PQ
charge, while in DFSZ-type of models we have allowed, as a maximum number, for one scalar doublet for
each SM fermion mass, for a total of nine EW doublets.
However, many more EW scalar doublets can be introduced in the SM without violating the LP condition,

up to about fifty. By adding scalar doublets that do not couple directly to the fermions, it is possible to
obtain very large PQ charges for the leptons, with huge enhancements of the numerator in the second term
in eq. (46). To see how this can work let us start with X
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obtain Xe = 2m+1q. Given that the number of doublets m can be as large as 50 before a LP is hit, lepton
charges exponentially large ⇠ 250 become possible.
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(HeHn)(HnHd), i.e. Xe = 2n+1q

E

N
=

2

3
+ 2

Xu + Xe

Xu + Xd
⇠ 2m+1 (67)

E/N ⇠ 2n (68)

A similar construction is possible also in KSVZ models by adding additional PQ charged singlets �k.
This possibility was put forth in [72] and we refer to this reference for details.

VI. CONCLUSIONS

In conclusion, nobody wants to write the conclusions . . .
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Appendix A: Q-decay operators � integrally charged hadrons

In this Appendix we examine the close connection between the existence of Q-decay operators and the
absence of fractionally charged hadrons containing the heavy quark Q. Heavy colored particles with exotic
electric charges (e.g. Q = 1/5,⇡, etc.) cannot decay into SM particles (by electric charge conservation)
and hence are absolutely stable. They also will not get confined into hadrons of integer charge, and this
implies that they cannot get bounded into neutral hadrons, atoms or molecules. Limits on the abundance
of fractionally charged particles are very strong, while exotic hadrons with integer charges can “hide” more
easily (strong limits exist, but they also depend on the exotic hadron charge).
Remarkably, if the quantum numbers of Q are such that one can build a Q-decay operator the heavy quark

Q can only hadronize into integrally charged hadrons. The reverse statement is true as well. Namely, if the
heavy quark Q is such that it gives rise to hadrons with integer charges then it is always possible to write
operators that will let them decay into SM particles. On general grounds, one expect such operators to be
generated at latest by Planck-scale physics and this can have profound consequences on the phenomenological
studies of these exotics.
The rest of the Appendix is devoted to a constructive proof of the statement above both in the direct and

reverse direction.

1. Proof of direct statement

Let us start by proving the direct statement: Exotic heavy Q quarks that are allowed to decay into SM
particles, can only hadronize in integrally charged baryons or mesons.
The possibility of decays requires operators linear in the field Q. In the following, we explicitly write the

Q and the SM quarks q, and denote with [SM ] any string of other SM particles not containing quarks. Note
that in all cases [SM ] has integer or vanishing electric charge, and can transform either in the 1 or 8 of
color.5 In the following g denotes gluons, Q denotes the electric charge, and n 2 Z denotes a generic integer
or vanishing number. Here we will not be concerned with identifying the lowest mass exotic hadron within

5 For simplicity we only consider decay operators involving at most one color field strength tensor, but the generalization is
straightforward. Note that two or more Gµ⌫ imply operators of D � 7, and with respect to them Q is cosmologically stable.
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Axion coupling to photons
• Axion effective Lagrangian 

4.3 Leading order axion properties

appears, where in the second equality we defined fa = vPQ/6. The factor 6 is the anomaly
coefficient associated with the 6 standard model quarks. The SM fermion kinetic terms
generate axion fermion couplings

q̄L /DqL ! cq
@µa

vPQ

q̄�µ�5q, (4.42)

where cq is a coefficient depending on whether the quark is up or down type.

4.3 Leading order axion properties
In this section we summarise the leading order axion properties and the notation that
is used in the following chapters. At energies below the Peccei Quinn (PQ) and the
electroweak (EW) breaking scales the axion dependent part of the Lagrangian, at leading
order in 1/fa and the weak couplings can be written, without loss of generality, as
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where the second term defines fa, the dual gluon field strength G̃µ⌫ = 1
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✏µ⌫⇢�G⇢�, color

indices are implicit, and the coupling to the photon field strength Fµ⌫ is
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↵em
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E

N
, (4.44)

where E/N is the ratio of the Electromagnetic (EM) and the color anomaly (=8/3 for
complete SU(5) representations). Finally in the last term of eq. (4.43) jµa,0 = c0q q̄�

µ�5q

is a model dependent axial current made of SM matter fields. The axionic pseudo shift-
symmetry, equation (4.15), has been used to remove the QCD ✓ angle.

The only non-derivative coupling to QCD can be conveniently reshuffled by a quark
field redefinition. In particular performing a change of field variables on the up and down
quarks

q =

✓

u
d

◆

! ei�5
a

2fa
Qa

✓

u
d

◆

, tr Qa = 1 , (4.45)
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field-depended chiral transformation to eliminate aGGtilde:   
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where E/N is the ratio of the Electromagnetic (EM) and the color anomaly (=8/3 for
complete SU(5) representations). Finally in the last term of eq. (4.43) jµa,0 = c0q q̄�

µ�5q

is a model dependent axial current made of SM matter fields. The axionic pseudo shift-
symmetry, equation (4.15), has been used to remove the QCD ✓ angle.

The only non-derivative coupling to QCD can be conveniently reshuffled by a quark
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appears, where in the second equality we defined fa = vPQ/6. The factor 6 is the anomaly
coefficient associated with the 6 standard model quarks. The SM fermion kinetic terms
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where cq is a coefficient depending on whether the quark is up or down type.
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appears, where in the second equality we defined fa = vPQ/6. The factor 6 is the anomaly
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appears, where in the second equality we defined fa = vPQ/6. The factor 6 is the anomaly
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µ�5q

is a model dependent axial current made of SM matter fields. The axionic pseudo shift-
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appears, where in the second equality we defined fa = vPQ/6. The factor 6 is the anomaly
coefficient associated with the 6 standard model quarks. The SM fermion kinetic terms
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where cq is a coefficient depending on whether the quark is up or down type.
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complete SU(5) representations). Finally in the last term of eq. (4.43) jµa,0 = c0q q̄�
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is a model dependent axial current made of SM matter fields. The axionic pseudo shift-
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appears, where in the second equality we defined fa = vPQ/6. The factor 6 is the anomaly
coefficient associated with the 6 standard model quarks. The SM fermion kinetic terms
generate axion fermion couplings
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where cq is a coefficient depending on whether the quark is up or down type.
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where E/N is the ratio of the Electromagnetic (EM) and the color anomaly (=8/3 for
complete SU(5) representations). Finally in the last term of eq. (4.43) jµa,0 = c0q q̄�
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is a model dependent axial current made of SM matter fields. The axionic pseudo shift-
symmetry, equation (4.15), has been used to remove the QCD ✓ angle.
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4. Introduction and motivation

quark masses is non-analytic, as a consequence of the presence of light Goldstone modes.
The axion self coupling, which is extracted from the fourth derivative of the potential
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is roughly a factor of 3 smaller than �(inst)
a = �m2

a/f
2
a , the one extracted from the single

cosine potential V inst(a) = �m2
af

2
a cos(a/fa). The six-axion couplings differ in sign as

well.
The vev for the neutral pion, h⇡0i = �af⇡ can be shifted away by a non-singlet chiral

rotation. Its presence is due to the ⇡0-a mass mixing induced by isospin breaking effects
in eq. (4.48), but can be avoided by a different choice for Qa, which is indeed fixed up to
a non-singlet chiral rotation. As noticed in [252], expanding eq. (4.48) to quadratic order
in the fields we find the term

Lp2 � 2B0
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ah⇧{Qa, Mq}i, (4.55)

which is responsible for the mixing. It is then enough to choose
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q
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q i , (4.56)

to avoid the tree-level mixing between the axion and pions and the vev for the latter.
Such a choice only works at tree level, the mixing reappears at the loop level, but this
contribution is small and can be treated as a perturbation.

The non-trivial potential (4.52) allows for domain wall solutions. These have width
O(m�1

a ) and tension given by
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The function E[q] can be written in terms of elliptic functions but the integral form is more
compact. Note that changing the quark masses over the whole possible range, q 2 [0, 1],
only varies E[q] between E[0] = 1 (cosine-like potential limit) and E[1] = 4 � 2

p
2 ' 1.17

(for degenerate quarks). For physical quark masses E[qphys] ' 1.12, only 12% off the
cosine potential prediction, and � ' 9maf 2

a .
In a non vanishing axion field background, such as inside the domain wall or to a

much lesser extent in the axion dark matter halo, QCD properties are different than in
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appears, where in the second equality we defined fa = vPQ/6. The factor 6 is the anomaly
coefficient associated with the 6 standard model quarks. The SM fermion kinetic terms
generate axion fermion couplings

q̄L /DqL ! cq
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q̄�µ�5q, (4.42)

where cq is a coefficient depending on whether the quark is up or down type.
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where E/N is the ratio of the Electromagnetic (EM) and the color anomaly (=8/3 for
complete SU(5) representations). Finally in the last term of eq. (4.43) jµa,0 = c0q q̄�
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is a model dependent axial current made of SM matter fields. The axionic pseudo shift-
symmetry, equation (4.15), has been used to remove the QCD ✓ angle.
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The function E [q] can be written in terms of elliptic functions but the integral form is more
compact. Note that changing the quark masses over the whole possible range, q 2 [0, 1], only
varies E [q] between E [0] = 1 (cosine-like potential limit) and E [1] = 4�2

p
2 ' 1.17 (for degenerate

quarks). For physical quark masses E [q
phys

] ' 1.12, only 12% o↵ the cosine potential prediction,
and � ' 9m

a

f 2
a

.

In a non vanishing axion field background, such as inside the domain wall or to a much lesser
extent in the axion dark matter halo, QCD properties are di↵erent than in the vacuum. This can
easily be seen expanding eq. (8) at the quadratic order in the pion field. For hai = ✓f

a

6= 0 the
pion mass becomes
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and for ✓ = ⇡ the pion mass is reduced by a factor
p

(m
d

+m
u

)/(m
d

�m
u

) ' p
3. Even more

drastic e↵ects are expected to occur in nuclear physics (see e.g. [34]).

The axion coupling to photons can also be reliably extracted from the chiral Lagrangian.
Indeed at leading order it can simply be read out of eqs. (4), (5) and (14)1:
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where the first term is the model dependent contribution proportional to the EM anomaly of the
PQ symmetry, while the second is the model independent one coming from the minimal coupling
to QCD at the non-perturbative level.

The other axion couplings to matter are either more model dependent (as the derivative cou-
plings) or theoretically more challenging to study (as the coupling to EDM operators), or both.
In section 2.4, we present a new strategy to extract the axion couplings to nucleons using ex-
perimental data and lattice QCD simulations. Unlike previous studies our analysis is based only
on first principle QCD computations. While the precision is not as good as for the coupling to
photons, the uncertainties are already below 10% and may improve as more lattice simulations
are performed.

Results with the 3-flavor chiral Lagrangian are often found in the literature. In the 2-flavor
Lagrangian the extra contributions from the strange quark are contained inside the low-energy
couplings. Within the 2-flavor e↵ective theory the di↵erence between using 2 or 3 flavor formulae,
is a higher order e↵ect. Indeed the di↵erence is O(m

u

/m
s

) which corresponds to the expansion
parameter of the 2-flavor Lagrangian. As we will see in the next section these e↵ects can only be
consistently considered after including the full NLO correction.

At this point the natural question is, how good are the estimates obtained so far using lead-
ing order chiral Lagrangians? In the 3-flavor chiral Lagrangian NLO corrections are typically
around 20-30%. The 2-flavor theory enjoys a much better perturbative expansion given the larger
hierarchy between pions and the other mass thresholds. To get a quantitative answer the only

1The result can also be obtained using a di↵erent choice of Qa, but in this case the non-vanishing a-⇡0 mixing
would require the inclusion of an extra contribution from the ⇡0�� coupling.

7

7

FIG. 1. Axion contribution to the cosmological energy density as a function of mQ. The broken lines correspond
to free Q annihilation for color triplets (dotted) and octets (dashed). The solid line to annihilation via bound state
formation. The horizontal and vertical lines ⌦Q = ⌦DM and mQ = 1TeV limit the allowed region.

some uncomfortably low energy scale ⇤LP < mP . Quantum gravity corrections to the running of the
gauge couplings can become relevant at scales approaching mP , and their e↵ect is to delay the emergence
of LP [47]. Then, to be conservative, we choose a value of ⇤LP for which gravitational corrections can
presumably be neglected. Then, our second criterium is that: (ii) RQ’s which do not induce LP in g

1

, g
2

, g
3

below ⇤LP ⇠ 1018 GeV are phenomenologically preferred. We apply this criterium employing two-loop beta
functions [45] and setting conservatively the threshold for RQ at mQ = 5 · 1011 GeV. The RQ satisfying
both our criteria are listed in Table II. The gauge coupling and the energy scale where the first LP occurs
are given in the third column.
Other features can render the choice of some RQ more appealing than others. For example if NDW = 1

problems with cosmological domain walls (DW) are avoided [48], and some RQ could improve gauge coupling
unification [49]. We prefer not to consider these as crucial discriminating criteria, since solutions to the DW
problem exist (see e.g. [50]), while improved unification might simply be an accident because of the many
RQ we consider. Nevertheless, we have analyzed both these issues: the values of NDW are given in the
last column in Table II, while only RQ = (3, 2, 1/6) in the third line improves considerably gauge coupling
unification (this has been also remarked in [49]).

V. Axion coupling to photons. From the experimental point of view, the most promising way to unveil
the axion is via its interaction with photons, which is described by the e↵ective term La�� = �(1/4)ga��aF ·
F̃ , where the coupling is given in terms of the anomaly coe�cients in eq. (25) by [14]:

ga�� =
ma

eV

2.0

1010 GeV

✓
E

N
� 1.92(4)

◆
(38)

where the uncertainty comes from QCD corrections evaluated at NLO [51]. The values of E/N for our
preferred RQ are given in the last column of Table II. The corresponding couplings are given in Fig. 2 by
the set of oblique dotted lines, which are plotted only at small ma values to give an idea of the “density
of preferred hadronic axion models”. All in all, we find that the strongest coupling is obtained for Rs

Q =
(3, 3,�4/3) that gives Es/Ns � 1.92 ⇠ 12.75, almost twice the usually adopted value of 7.0 [33], while the
weakest coupling is obtained for Rw

Q = (3, 2, 1/6) for which Ew/Nw � 1.92 ⇠ �0.25 is about 3.5 times larger
than the usual lower value of 0.07. Then, if a single RQ is present, according to our two selection criteria all
preferred hadronic axion models fall within the band delimited by 5/3  E/N  44/3, as depicted in Fig. 2.
In the figure we have drawn with dashed lines the boundary of the usual axion window and, to compare
theoretical predictions with the experimental situation, we have also plotted the current exclusion bounds
and projected sensitivities.

VI. More RQ and axion-photon decoupling. Let us now study to which extent the previous results
can be changed by the presence of more RQ’s. It would be quite interesting if, for example, ga�� could get
enhanced. However, we can easily see that, as long as the sign of �X = XL � XR is the same for all RQ’s,

(no axion-pion mixing)
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appears, where in the second equality we defined fa = vPQ/6. The factor 6 is the anomaly
coefficient associated with the 6 standard model quarks. The SM fermion kinetic terms
generate axion fermion couplings
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where cq is a coefficient depending on whether the quark is up or down type.
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order in 1/fa and the weak couplings can be written, without loss of generality, as

La =
1

2
(@µa)2 +

a

fa

↵s

8⇡
Gµ⌫G̃

µ⌫ +
1

4
a g0

a��Fµ⌫F̃
µ⌫ +

@µa

2fa
jµa,0 , (4.43)

where the second term defines fa, the dual gluon field strength G̃µ⌫ = 1
2
✏µ⌫⇢�G⇢�, color

indices are implicit, and the coupling to the photon field strength Fµ⌫ is

g0
a�� =

↵em

2⇡fa

E

N
, (4.44)

where E/N is the ratio of the Electromagnetic (EM) and the color anomaly (=8/3 for
complete SU(5) representations). Finally in the last term of eq. (4.43) jµa,0 = c0q q̄�

µ�5q

is a model dependent axial current made of SM matter fields. The axionic pseudo shift-
symmetry, equation (4.15), has been used to remove the QCD ✓ angle.

The only non-derivative coupling to QCD can be conveniently reshuffled by a quark
field redefinition. In particular performing a change of field variables on the up and down
quarks

q =

✓

u
d

◆

! ei�5
a

2fa
Qa

✓

u
d

◆

, tr Qa = 1 , (4.45)

eq. (4.43) becomes

La =
1

2
(@µa)2 +

1

4
a ga��Fµ⌫F̃

µ⌫ +
@µa

2fa
jµa � q̄LMaqR + h.c. , (4.46)

where

ga�� =
↵em

2⇡fa



E

N
� 6 tr

�

QaQ
2
�

�

, jµa = jµa,0 � q̄�µ�5Qaq , (4.47)
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Selection criteria
• We require: [for  Treheating > mQ ~ fa  (post-inflat. PQ breaking)]

- decays via d=4 operators are fast enough 

- decays via effective operators 

“safe” Q must allow for d=4 or 5 decay op.
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TABLE II. R
Q

irreps which allow for renormalizable Q-decay operators (first seven rows above the bold horizontal
line) or d = 5 ones (next eight rows below the bold horizontal line), and leading to LPs above, or within one order of
magnitude below, the Planck scale. The second column list a sample operator O

Qq

which can be responsible for the
decay of Q, while in the third one we report the value of the LP estimated at two loops by setting the threshold of
the vectorlike quarks at 5 · 1011 GeV (the gauge coupling which triggers the Landau pole is specified in parenthesis).
The next column gives the value of the E/N term contributing to the axion-photon coupling (cf. Eq. (22)), and the
last one is the DW number (cf. Eq. (??)).

massless nf final states, the phase space factor can be integrated analytically, thus yielding (see e.g. [? ])

�NDA =
1

4(4⇡)2nf�3(nf � 1)!(nf � 2)!

m2d�7
Q

M
2(d�4)
Planck

, (17)

where we neglected the possibility of scalar field condensations in the e↵ective operator.
Since Q-decay operators of d = 5, 6, 7 will at least involve nf = 2, 3, 4 particles in the final state, we have

⌧NDA
d=5, nf=2 = 3.9 · 10�20 s

✓
5 · 1011 GeV

mQ

◆3

, (18)

⌧NDA
d=6, nf=3 = 7.4 · 10�3 s

✓
5 · 1011 GeV

mQ

◆5

, (19)

⌧NDA
d=7, nf=4 = 4.2 · 1015 s

✓
5 · 1011 GeV

mQ

◆7

. (20)

In order to be completely safe from a cosmological point of view the decay must happen before the time of
BBN, namely ⇠ 0.01 s [? ]. This is always the case for d = 5 operators if mQ & 106 GeV. On the other
hand, if the decay happens via d = 6 operators a much higher mass scale mQ & 1011÷12 GeV is needed. In
the post-inflationary PQ symmetry breaking scenario this is in tension with the bounds from axion DM via
the misalignment mechanism, leading to fa . 5 · 1011 GeV (see Refs. [? ? ] for some recent Lattice QCD
analyses). Finally, operators of d � 7 require an even higher mQ in the ballpark of the GUT or Planck
scale, which is clearly in the cosmological dangerous region.

Landau Poles. The presence of large matter multiplets drives the gauge couplings of the SM towards a
nonperturbative regime, eventually leading to Landau poles (LPs). We require the KSVZ axion model to
be a perturbatively calculable and UV complete framework up to the Planck scale, and hence reject those
irreps which lead to LPs below the Planck scale. To be conservative, and to retain the largest number of
RQ, we set the threshold of the heavy quark at mQ = 5 · 1011 GeV (at the boundary of compatibility with
post-inflationary axion-DM limits) and also keep those irreps with a LP within an order of magnitude below
the Planck scale. In fact, gravitational corrections on the running of the gauge couplings, that are under

6

quote the nonperturbative estimate of Kang, Luty and Nasri (KLN) [? ]

�
⌦Qh

2
�KLN

= 3 · 10�7
⇣ mQ

TeV

⌘3/2
, (14)

where Rhad denotes the typical hadronic size when the bound state is formed.

�
⌦Qh

2
�KLN

= 8.7 · 10�12

✓
Rhad

GeV�1

◆�2

⇥
✓

TC

180 MeV

◆�3/2 ⇣ mQ

GeV

⌘3/2
, (15)

where Rhad denotes the typical hadronic size when the bound state is formed.
The comparison between the relic densities computed according to Eq. (13) and Eq. (15) is shown in

Fig. 1. What can be concluded for sure is that the true relic density must lie between these two limits. For
further details we refer to Ref. [? ].

FIG. 1. Heavy quark’s relic density as a function of its mass. The full line corresponds to the nonperturbative
estimate in Eq. (15), with R

had

= 1 GeV and T
C

= 180 MeV, while the dotted/dashed lines denote the perturbative
QCD expression in Eq. (13) with x

fo

= 25, g⇤ = 106.75 and ↵
s

(µ = m
Q

), evaluated by employing a color triplet
(dotted) and octet (dashed) Q irrep. ⌦

Q

h2  0.1124 is the bound from the overclosure of the Universe (blue region),
while m

Q

& 1 TeV is the approximate bound from LHC (red region).

IV. Selection criteria.
The list of Q ⇠ (C, I,Y) irreps with nontrivial color quantum numbers, characterizing the most general

KSVZ axion model, is in principle infinite. However, in the relevant mQ < Treheating case, cosmological
constraints are particularly severe and can be exploited in order to reduce the list viable cases. By further
requiring that the KSVZ model remains weakly coupled up to the Planck scale, we arrive to a finite list of
phenomenologically preferred Q irreps, which are collected in Table II. In the following, we discuss the two
selection criteria which leads to it.

Cosmologically safe lifetimes. The lifetime of the metastable heavy quark is a crucial information for
cosmology. While the case of renormalizable interactions between Q and light SM quarks clearly leads to fast
enough decays of the heavy Q on a cosmological timescale, we provide here a quantitative estimate based
on naive dimensional analysis (NDA) of the Q lifetimes when the decay proceeds via Planck suppressed
e↵ective operators. We write the e↵ective Lagrangian responsible for the heavy quarks’ decay as

Ld>4
Qq =

1

M
(d�4)
Planck

Od>4
Qq + h.c. , (16)

where d is the canonical dimension of the operator Od>4
Qq . By assuming a constant matrix element and

1.  Q sufficiently short lived                 

3
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⌧Q <⇠ 10�2 s (23)

I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
arbitrary width, chosen to include representative models like those in Refs. [14–16]. In this Letter we put
forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
type of models [17, 18], the resulting window encompasses also the DFSZ axion [19, 20] and many of its
variants [15].

II. Hadronic axion models. The basic ingredient of any renormalizable axion model is a global U(1)PQ

symmetry. The associated Nöether current must have a color anomaly and, although not required for solving
the strong CP problem, in general it has also an electromagnetic anomaly:

@µJPQ
µ =

N↵s

4⇡
G · G̃+

E↵

4⇡
F · F̃ , (24)
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Figure 4: Same as in Fig. 3 for di↵erent extensions of the SM featuring a Majorana isospin-J fermion
of dimensionality n = 2J + 1. Notice that in ref. [6] only Majorana fermions with n  5 are allowed,
based on a one-loop analysis. However, at two loops only n � 4 survives, thus excluding the minimal
dark matter case.
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
arbitrary width, chosen to include representative models like those in Refs. [14–16]. In this Letter we put
forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
type of models [17, 18], the resulting window encompasses also the DFSZ axion [19, 20] and many of its
variants [15].

II. Hadronic axion models. The basic ingredient of any renormalizable axion model is a global U(1)PQ

symmetry. The associated Nöether current must have a color anomaly and, although not required for solving
the strong CP problem, in general it has also an electromagnetic anomaly:
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F · F̃ , (24)

Selection criteria
• We require: [for  Treheating > mQ ~ fa  (post-inflat. PQ breaking)]
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We propose an experiment to search for QCD axion and axionlike-particle dark matter. Nuclei that are
interacting with the background axion dark matter acquire time-varying CP-odd nuclear moments such as
an electric dipole moment. In analogy with nuclear magnetic resonance, these moments cause precession of
nuclear spins in a material sample in the presence of an electric field. Precision magnetometry can be used
to search for such precession. An initial phase of this experiment could cover many orders of magnitude in
axionlike-particle parameter space beyond the current astrophysical and laboratory limits. And with
established techniques, the proposed experimental scheme has sensitivity to QCD axion masses
ma ≲ 10−9 eV, corresponding to theoretically well-motivated axion decay constants fa ≳ 1016 GeV.
With further improvements, this experiment could ultimately cover the entire range of masses ma ≲ μ eV,
complementary to cavity searches.

DOI: 10.1103/PhysRevX.4.021030 Subject Areas: Cosmology

I. INTRODUCTION

The discovery of the nature of dark matter would provide
significant insights into particle physics, astrophysics, and
cosmology. While the weakly interacting massive particle
(WIMP) is a well-motivated candidate, it is heavily con-
strained by null results from a variety of experiments [1–3].
Further, the Large Hadron Collider has placed stringent
constraints on scenarios such as supersymmetry that have
provided the theoretical basis for WIMP dark matter [4].
Indeed, these constraints are most easily alleviated by
allowing for a rapid decay of the supersymmetric WIMP
candidate (see, e.g., Ref. [5]), precluding a cosmological
role for it. Thus, it is essential to develop techniques to
search for a wide class of dark-matter candidates.
Introduced as a solution to the strong CP problem [6,7],

the axion is a prominent dark-matter candidate. It arises
naturally as the pseudo-Goldstone boson of some global
symmetry that is broken at a high scale fa [8–13]. QCD
generates a potential 1

2m
2
aa2 for the axion with ma∼

ðΛ2
QCD=faÞ. An initial displacement of the axion field from

its minimum results in oscillations of this field with
frequency maðc2=ℏÞ [14]. The energy density in these

oscillations can be dark matter [15,16]. Other types of light
bosons, often called axionlike particles (ALPs), have
attracted significant attention [17–30]. These receive a
potential (and a mass) from non-QCD sources and are less
constrained than the QCD axion. Like the oscillations of
the QCD axion, oscillations of the ALP field in its potential
can also be dark matter. We focus on light ALPs with
massesma comparable to that of the axion. We use the term
ALP to refer to any of these light bosons, including the
QCD axion. The temporal coherence of the oscillations of
the dark-matter ALP field in an experiment is limited by
motion through the spatial gradients of the field. The size of
these gradients is set by the de Broglie wavelength, giving
rise to a coherence time τa ∼ ð2π=mav2Þ ∼ 106ð2π=maÞ,
where v ∼ 10−3 is the galactic virial velocity of the ALP
dark matter [17].
The axion’s properties are determined by fa.

Astrophysical bounds rule out axions with fa ≲
1010 GeV [31]. While fa ≳ 1012 GeV used to be claimed
to be ruled out by cosmological arguments, this was based
on a simplified picture of cosmology and is not a rigorous
bound (see, for example, Refs. [17,32]). The conversion of
axions into photons in the presence of a magnetic field can
be used to search for axions with fa ∼ 1012 GeV [33,34],
but the ability of such techniques to probe axions with
fa ≫ 1012 GeV is limited. It is important to develop
techniques that can search for axions over the vast majority
of parameter space up to fa ∼ 1019 GeV, especially
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We describe a method based on precision magnetometry that can extend the search for axion-mediated
spin-dependent forces by several orders of magnitude. By combining techniques used in nuclear magnetic
resonance and short-distance tests of gravity, our approach can substantially improve upon current
experimental limits set by astrophysics, and probe deep into the theoretically interesting regime for the
Peccei-Quinn (PQ) axion. Our method is sensitive to PQ axion decay constants between 109 and 1012 GeV
or axion masses between 10−6 and 10−3 eV, independent of the cosmic axion abundance.
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Introduction.—Axions are CP-odd scalar particles that
are present in a variety of theories beyond the standard
model. Their mass is protected by shift symmetries so they
remain naturally light and their couplings to matter are very
suppressed. In string theory in particular, they naturally
arise in compactifications with nontrivial topology [1,2],
and their mass can be as small as the Hubble scale. The
most famous axion is the Peccei-Quinn (PQ) axion [3]
whose presence explains the smallness of the neutron’s
electric dipole moment and has been the main focus of
experimental searches since it was proposed over 30 years
ago. Its mass is generated by nonperturbative QCD effects.
If lighter than 10−5 eV, the PQ axion becomes an excellent
dark matter candidate. In laboratory experiments, axions
can generate novel spin-dependent short-range forces
between matter objects [4].
In this Letter, we propose a magnetometry experiment

based on nuclear magnetic resonance (NMR) that searches
for axion mediated CP-violating forces with a range
between ∼100 μm and ∼10 cm or axion masses between
∼10−6 eV and ∼10−3 eV. Our proposal is based on the
resonant coupling between the rotational frequency of a
source mass and a NMR sample with a matching spin
precession frequency. Similar techniques involving reso-
nant excitation are used in short-distance gravity experi-
ments [5–7]. In the presence of an anomalous CP-violating
interaction with the source mass, the spins in the NMR
material will resonantly precess off the axis of polarization.
This can be measured with a superconducting quantum
interference device (SQUID).
There are already several methods based on precision

magnetometry to look for such spin-dependent short range
forces, see for example Refs. [8–11] (for a summary of
recent results see Ref. [12]). In previous experiments, shifts
of the spin-precession frequency were observed as matter
objects were brought into and out of proximity with a
sample. Our setup is different from previous approaches as
the detection technique is based on a resonant effect, where

the source mass itself is moved periodically at the Larmor
frequency in order to drive spin precession in the NMR
medium. This helps reduce several systematics while taking
advantage of the enhancement of the signal due to the
high spin density of the NMR material (∼1021 cm−3) and
the quality factor of the NMR sample which can be as
high as 106.
In the following, we show how the proposed setup can

probe both the monopole-dipole and the dipole-dipole
coupling of axions at a level that is competitive with
astrophysical bounds. The experiment can eventually be up
to 8 orders of magnitude more sensitive than current
approaches and can bridge the gap between astrophysical
bounds and cosmic PQ axion searches [13,14], without
requiring that the axion is dark matter or the need to
precisely scan over its mass.
Axion-mediated forces.—The interaction energy between

particles due to monopole-dipole axion exchange as a
function of the distance r is [4]

UspðrÞ ¼
ℏ2gsgp
8πmf

!
1

rλa
þ 1

r2

"
e−ðr=λaÞðσ̂ · r̂Þ; ð1Þ

where mf is the fermion mass, or in the case of dipole-
dipole axion exchange

UppðrÞ ¼
ℏ3c
16π

gp1
gp2

mf1mf2

#
ðσ̂1 · σ̂2Þ

!
1

r2λa
þ 1

r3

"
e−ðr=λaÞ

−ðσ̂1 · r̂Þðσ̂2 · r̂Þ
!

1

rλ2a
þ 3

r2λa
þ 3

r3

"
e−ðr=λaÞ

$
:

ð2Þ

The range of interaction is set by the mass of the axion by
λa ¼ h=mac. It is convenient to write these interactions that
involve spins (i.e., dipoles) using the axion potentials
VasðrÞ and VapðrÞ, where
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a b s t r a c t

Wepresent a proposal to search for QCD axionswithmass in the 200µeV range, assuming that theymake
a dominant component of dark matter. Due to the axion–electron spin coupling, their effect is equivalent
to the application of an oscillating rf field with frequency and amplitude fixed by the axion mass and
coupling respectively. This equivalent magnetic field would produce spin flips in a magnetic sample
placed inside a static magnetic field, which determines the resonant interaction at the Larmor frequency.
Spin flips would subsequently emit radio frequency photons that can be detected by a suitable quantum
counter in an ultra-cryogenic environment. This new detection technique is crucial to keep under control
the thermal photon background which would otherwise produce a too large noise.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

An outstanding result of modern cosmology is that a significant
fraction of the universe is made of dark matter. However, the
nature of such component is still unknown, apart its gravitational
interaction with ordinary baryonic matter. A favored candidate
for dark matter is the axion: a new particle introduced by Peccei
and Quinn to solve the strong CP problem [1], i.e. the absence
of CP violation in the strong interaction sector of the Standard
Model. Axions have amassma inversely proportional to the Peccei–
Quinn symmetry breaking scale fa. For certain ranges of fa and
ma (typically with masses ranging from µeV to meV), large quan-
tities of axions may have been produced in the early Universe
that could account for a portion or even the totality of cold dark
matter. Axions have extremely small coupling to normal matter
and radiation, but they canbe converted into detectable photons by
means of the inverse Primakoff effect as shown by Sikivie [2]. The
idea of Sikivie has been exploited by several experiments [3–5], of
which the most recent is ADMX [6,7]. The latter experiment is still
running, and for the moment it has been capable of exploring the
axion model for masses of a few µeV [8].

The QUAX (QUaerere AXion) proposal explores in details the
ideas of Refs. [9–13]. These authors proposed to study the interac-
tion of the cosmological axion with the spin of fermions (electrons

* Corresponding author.
E-mail address: Giuseppe.Ruoso@lnl.infn.it (G. Ruoso).

or nucleons). In fact, due to themotion of the Solar System through
the galactic halo, the Earth is effectively moving through the cold
darkmatter cloud surrounding theGalaxy and an observer on Earth
will see such axions as a wind. In particular, the effect of the axion
wind on a magnetized material can be described as an effective
oscillating rf fieldwith frequency determined byma and amplitude
related to fa. Thus, a possible detector for the axion wind can be
a magnetized sample with Larmor resonance frequency tuned to
the axion mass by means of an external polarizing static magnetic
field: e.g. 1.7 T for 48 GHz, corresponding to a 200 µeV axion
mass, in the case of the interaction with the electron spin that is
considered hereafter. The interaction with the axion effective field
will drive the total magnetization of the sample, and so produce
oscillations in themagnetization that, in principle, can be detected.
In order to optimize the detection scheme, the sample is placed
inside a microwave cavity. The cavity and the magnetized sample
have to be cooled down at ultra-cryogenic temperature to avoid
the noise due to thermal photons.

Within all axion models [14], this detection scheme is sen-
sitive only to DFSZ axions [15–17]. For example, in the KSVZ
model [18,19] the electron coupling is strongly suppressed.

The paper is organized as follows. For ease of the reader we
give in Section 2 an introduction to the calculation of the effective
magnetic field due to the axion wind. After that the experimental
schemewill be presented in Section 3 and its sensitivity calculated

http://dx.doi.org/10.1016/j.dark.2017.01.003
2212-6864/© 2017 Elsevier B.V. All rights reserved.

Broadband and Resonant Approaches to Axion Dark Matter Detection
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When ultralight axion dark matter encounters a static magnetic field, it sources an effective electric
current that follows the magnetic field lines and oscillates at the axion Compton frequency. We propose a
new experiment to detect this axion effective current. In the presence of axion dark matter, a large toroidal
magnet will act like an oscillating current ring, whose induced magnetic flux can be measured by an
external pickup loop inductively coupled to a SQUID magnetometer. We consider both resonant and
broadband readout circuits and show that a broadband approach has advantages at small axion masses. We
estimate the reach of this design, taking into account the irreducible sources of noise, and demonstrate
potential sensitivity to axionlike dark matter with masses in the range of 10−14-10−6 eV. In particular, both
the broadband and resonant strategies can probe the QCD axion with a GUT-scale decay constant.

DOI: 10.1103/PhysRevLett.117.141801

A broad class of well-motivated dark matter (DM)
models consists of light pseudoscalar particles a coupled
weakly to electromagnetism [1–3]. The most famous
example is the QCD axion [4–7], which was originally
proposed to solve the strong CP problem. More generally,
string compactifications often predict a large number of
axionlike particles (ALPs) [8], with Planck-suppressed
couplings to electric (E) and magnetic (B) fields of the
form aE ·B. Unlike QCD axions, generic ALPs do not
necessarily couple to the QCD operatorG ~G, where G is the
QCD field strength. The masses and couplings of ALP DM
candidates are relatively unconstrained by theory or experi-
ment (see Refs. [9–11] for reviews). It is therefore impor-
tant to develop search strategies that cover many orders of
magnitude in the axion parameter space.
The ADMX experiment [12–14] has already placed

stringent constraints on axion DM in a narrow mass range
around ma ∼ few × 10−6 eV. However, ADMX is only
sensitive to axion DM whose Compton wavelength is
comparable to the size of the resonant cavity. For the
QCD axion, the axion mass ma is related to the Peccei-
Quinn (PQ) symmetry-breaking scale fa via

fama ≃ fπmπ; ð1Þ

where mπ ≈ 140 MeV (fπ ≈ 92 MeV) is the pion mass
(decay constant). Lighter QCD axion masses therefore
correspond to higher-scale axion decay constants fa. The
GUT scale (fa ∼ 1016 GeV, ma ∼ 10−9 eV) is particularly
well motivated, but well beyond the reach of ADMX as
such small ma would require much larger cavities. More
general ALPs can also have lighter masses and larger
couplings than in the QCD case.
In this Letter, we propose a new experimental design

for axion DM detection that targets the mass range
ma ∈ ½10−14; 10−6$ eV. Like ADMX, this design exploits

the fact that axion DM, in the presence of a static magnetic
field, produces response electromagnetic fields that oscillate
at the axion Compton frequency. Whereas ADMX is based
on resonant detection of a cavity excitation, our design is
based on either broadband or resonant detection of an
oscillating magnetic flux with sensitive magnetometers,
sourced by an axion effective current. Our static magnetic
field is generated by a superconducting toroid, which has the
advantage that the flux readout system can be external to
the toroid, in a region of ideally zero static field. Crucially,
this setup can probe axions whose Compton wavelength is
much larger than the size of the toroid. If this experiment
were built, we propose the acronym ABRACADABRA, for
“A Broadband or Resonant Approach to Cosmic Axion
Detection with an Amplifying B-field Ring Apparatus.”
For ultralight (sub-eV) axion DM, it is appropriate to

treat a as a coherent classical field, since large DM number
densities imply macroscopic occupation numbers for each
quantum state. Solving the classical equation of motion
with zero DM velocity yields

aðtÞ ¼ a0 sinðmatÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2ρDM

p

ma
sinðmatÞ; ð2Þ

where ρDM ≈ 0.3 GeV=cm3 is the local DM density [15].
(The local virial DM velocity v ∼ 10−3 will give small
spatial gradients ∇a ∝ v.) Through the coupling to the
QED field strength Fμν,

L ⊃ −
1

4
gaγγaFμν

~Fμν; ð3Þ

a generic axion will modify Maxwell’s equations [16], and
Ampère’s circuit law becomes

∇ ×B ¼ ∂E
∂t − gaγγ

"
E ×∇a −B

∂a
∂t

#
; ð4Þ
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Dielectric Haloscopes: A New Way to Detect Axion Dark Matter
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We propose a new strategy to search for dark matter axions in the mass range of 40–400 μeV by
introducing dielectric haloscopes, which consist of dielectric disks placed in a magnetic field. The changing
dielectric media cause discontinuities in the axion-induced electric field, leading to the generation of
propagating electromagnetic waves to satisfy the continuity requirements at the interfaces. Large-area disks
with adjustable distances boost the microwave signal (10–100 GHz) to an observable level and allow one to
scan over a broad axion mass range. A sensitivity to QCD axion models is conceivable with 80 disks of
1 m2 area contained in a 10 T field.

DOI: 10.1103/PhysRevLett.118.091801

Introduction.—The nature of dark matter (DM) is one
of the most enduring cosmological mysteries. One prime
candidate, the axion, arises from the Peccei-Quinn (PQ)
solution to the strong CP problem, the absence of CP
violation in quantum chromodynamics (QCD). The CP
violating QCD phase θ is effectively replaced by the axion
field whose potential is minimal at θ ¼ 0 [1–3]. Thus, θ
dynamically relaxes towards zero regardless of its initial
conditions, satisfying the neutron electric dipole moment
constraints θ ≲ 10−11 [4].
Tiny relic oscillations with a frequency given by the

axion mass ma around θ ¼ 0 persist, acting as cold DM
[5–9]. If DM is purely axionic, its local galactic density
ρa ¼ ðfamaÞ2θ20=2 ∼ 300 MeV=cm3 implies that θ ∼
θ0 cosðmatÞ at Earth, with θ0 ∼ 4 × 10−19. While these
oscillations could be detected, the main challenge is to scan
over a huge frequency range, as ma is unknown.
However, cosmology can guide our search. Causality

implies that, at some early time, θ is uncorrelated between
patches of the causal horizon size. We consider two
cosmological scenarios depending on whether cosmic
inflation happens after (A) or before (B) that time.
In scenario A, one patch is inflated to encompass our

observable Universe while smoothing θ to a single initial
value θI . The cosmic axion abundance depends on both θI
and ma, so the DM density can be matched for any ma
allowed by astrophysical bounds [10] for a suitable θI.
In scenario B, the axion abundance is given by the

average over random initial conditions and the decay of
accompanying cosmic strings and domain walls. Freed
from the uncertainty in the initial conditions, scenario B

provides a concrete prediction ma ∼ 100 μeV [11,12],
although with some theoretical uncertainty [13].
Searches based on cavity resonators in strong magnetic

fields (Sikivie’s haloscopes [14]) such as ADMX [15],
ADMX HF [16], and CULTASK [17] are optimal for
ma ≲ 10 μeV. Much lower values ofma can be explored by
nuclear magnetic resonance techniques like CASPER [18]
or with LC circuits [19,20].
The mass range favored in scenario B is untouched by

current experiments, and for cavity haloscopes will remain
so for the foreseeable future. While fifth-force experiments
[21] could search this region, they would not directly reveal
the nature of DM. We present here a new concept to cover
this important gap, capable of discovering ∼100 μeV mass
axions. It consists of a series of parallel dielectric disks with
a mirror on one side, all within a magnetic field parallel to
the surfaces, as shown in Fig. 1—a dielectric haloscope.
For a large ma the greatest hindrance for conven-

tional haloscopes is that the signal is proportional to the
cavity volume V. With dimensions on the order of the
axion Compton wavelength λa ¼ 2π=ma, V ∝ λ3a, which
decreases rapidly with ma. (We use natural units with
ℏ ¼ c ¼ 1 and the Lorentz-Heaviside convention
α ¼ e2=4π.) While there are plans to couple multiple
high-quality cavities, use open resonators, or compensate
with extremely high magnetic fields and/or new detectors,
these techniques may not prove practical for large ma’s
[17,22–24].
A radical approach for increasing the volume is to use a

dish antenna (i.e., a mirror) inside a B field to convert
axion DM into microwaves [25]. The resonantly enhanced
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Search for dark matter axions with the Orpheus experiment
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Axions are well motivated particles that could make up most or all of the dark matter if they have masses
below 100 μeV. Microwave cavity techniques comprised of closed resonant structures immersed in
solenoid magnets are sensitive to dark matter axions with masses of a few μeV but face difficulties scaling
to higher masses. We present the a novel detector architecture consisting of an open, Fabry–Pérot resonator
and a series of current-carrying wire planes and demonstrate this technique with a search for dark matter
axionlike particles called Orpheus. This search excludes dark matter axionlike particles with masses
between 68.2 and 76.5 μeV and axion-photon couplings greater than 4 × 10−7 GeV−1. We project that the
fundamental sensitivity of this technique could be extended to be sensitive to couplings below
1 × 10−15 GeV−1, consistent with the DFSZ model of QCD axions.

DOI: 10.1103/PhysRevD.91.011701 PACS numbers: 95.35.+d, 12.38.Qk, 14.80.Va

I. INTRODUCTION

The axion is a pseudoscalar particle predicted as a
consequence to the Peccei–Quinn solution to the strong
CP problem [1–4] and may comprise some or all of dark
matter [5–7]. The axion has weak coupling to the electro-
magnetic interaction arising at loop order, of which the
Lagrange density may be written compactly as

Laγγ ¼ −gaγγa~E · ~B; ð1Þ

where gaγγ is the axion-photon coupling strength, a is the
axion field, and ~E, ~B are the usual electric and magnetic
fields. The expression in Eq. (1) motivates the axion
haloscope technique [8] to detect dark matter axions.
A typical axion haloscope consists of a closed microwave
resonator immersed in a high static magnetic field,
coupled to a low noise microwave receiver via the lowest
frequency TM mode of the resonator. Dark matter axions
passing through the magnetic field can convert into photons
inside the cavity with enhanced probability when an
electromagnetic resonance in the cavity is tuned to corre-
spond to the frequency of the photons produced. Dark
matter axions would be detected as excess power at this
frequency, the expression for which can be derived from
Eq. (1) as [9]

P ¼
2πℏ2g2aγγρDM

m2
ac

· fγ ·
1

μ0
B2Vnlm ·Q: ð2Þ

Here thema, fγ denote the axion mass and frequency of the
converted photon respectively, and ρDM ≈ 0.4 GeV=cc is

the local halo density of dark matter. The enhancement in
the expected axion power due to its conversion in a
resonant cavity is expressed in terms of the cavity quality
factor Q. The effective volume of the cavity for coupling to
a given resonant mode is [10]

Vnlm ¼

!R
d3~x ~Eð~xÞ · ~Bð~xÞ

"
2

B2
R
d3~xj~Ej2ð~xÞ

; ð3Þ

where ~Bð~xÞ is the static magnetic field and ~E is the
electric field of a normal resonant mode denoted by
integers n; l; m.
Numerous experiments based on this architecture have

been constructed. Recently, the ADMX collaboration has
demonstrated that microwave cavity experiments can be
built with the sensitivity necessary to detect dark matter
axions with masses in the range 1.90–3.54 μeV [9,11] and
coupling strength consistent with QCD predictions. Some
models, however, predict the axion mass scale to be
somewhat larger [12–14]. Work is underway to extend
experimental reach to larger axion masses, but the closed
resonator detector design is difficult to extend to masses as
large as 100 μeV [15]. Physically the size of a closed
resonator must decrease in order to achieve higher resonant
frequencies. This in turn decreases both the volume
and Q of the resonator, which both limits the sensitivity
of experiments based on this architecture and presents a
serious challenge to their scalability. We present a dark
matter axion search technique which overcomes the fun-
damental limitations of closed resonator architectures at
large axion masses by employing an open, Fabry–Pérot
resonator as the detector volume. This technique is dem-
onstrated by a prototype experiment named Orpheus.
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Discovering the QCD axion with black holes and gravitational waves
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Advanced LIGO may be the first experiment to detect gravitational waves. Through superradiance of
stellar black holes, it may also be the first experiment to discover the QCD axion with decay constant above
the grand unification scale. When an axion’s Compton wavelength is comparable to the size of a black hole,
the axion binds to the black hole, forming a “gravitational atom.” Through the superradiance process, the
number of axions occupying the bound levels grows exponentially, extracting energy and angular
momentum from the black hole. Axions transitioning between levels of the gravitational atom and axions
annihilating to gravitons can produce observable gravitational wave signals. The signals are long lasting,
monochromatic, and can be distinguished from ordinary astrophysical sources. We estimate up to Oð1Þ
transition events at aLIGO for an axion between 10−11 and 10−10 eV and up to 104 annihilation events for
an axion between 10−13 and 10−11 eV. In the event of a null search, aLIGO can constrain the axion mass for
a range of rapidly spinning black hole formation rates. Axion annihilations are also promising for much
lighter masses at future lower-frequency gravitational wave observatories; the rates have large uncertain-
ties, dominated by supermassive black hole spin distributions. Our projections for aLIGO are robust against
perturbations from the black hole environment and account for our updated exclusion on the QCD axion of
6 × 10−13 eV < μa < 2 × 10−11 eV suggested by stellar black hole spin measurements.
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I. WHAT IS SUPERRADIANCE?

A wave that scatters from a rotating black hole can exit
the black hole environment with a larger amplitude than the
one with which it came in. This amplification happens for
both matter and light waves and it is called black hole
superradiance. It is an effect that has been known for nearly
50 years [1].
Massive bosonic waves are special. They form bound

states with the black hole whose occupation number can
grow exponentially [2]; for fermions, Pauli’s exclusion
principle makes this lasing effect impossible. This expo-
nential growth is understood if one considers the mass of
the boson acting as a mirror that forces the wave to confine
in the black hole’s vicinity and to scatter and superradiate
continuously. This is known as the superradiance (SR)
instability for a Kerr black hole and is an efficient method
of extracting angular momentum and energy from the black
hole. Rapidly spinning astrophysical black holes thus
become a diagnostic tool for the existence of light massive
bosons [3,4].
Black hole superradiance sounds exotic and mysterious

since it naively appears to be deeply connected with

nonlinear gravitational effects in the vicinity of black holes.
Instead, superradiance is a purely kinematic effect, and
black hole superradiance is just another manifestation of
the superradiance phenomenon that appears in a variety of
systems. The most famous is inertial motion superradiance,
most commonly referred to as Cherenkov radiation [5].
In Cherenkov radiation, a nonaccelerating charged particle
spontaneously emits radiation while moving superlumi-
nally in a medium. The emitted radiation forms a cone with
opening angle cos θ ¼ ðnvÞ−1, where n is the index of
refraction of the medium, and radiation that scatters inside
the cone ðωγ < ~v · ~kγÞ is amplified [6].
Similarly, superradiance occurs for a conducting axi-

symmetric body rotating at a constant angular velocity
Ωcylinder [7]. Here, superluminal motion is in the angular
direction: a rotating conducting cylinder amplifies any light
wave of the form eimφ−iωγt when the rotational velocity of
the cylinder is faster than the angular phase velocity of
the light:

ωγ

m
< Ωcylinder; ð1Þ

where ωγ and m are the photon energy and angular
momentum with respect to the cylinder rotation axis,
respectively. This is the same as the superradiance condition
for rotating black holes, with Ωcylinder substituted by the
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The axion, a hypothetical elementary particle arising from Peccei-Quinn solution to the strong-
CP problem, is a well-motivated dark matter candidate. The IBS Center for Axion and Precision
Physics Research (CAPP) in Korea will explore the dark matter axion using a method suggested
by P. Sikivie, converting the axions into microwave photons in a resonant cavity permeated by
a strong magnetic field. CAPP’s first microwave axion experiment in an ultra-low temperature
setup is being launched at KAIST (Korea Advanced Institute of Science and Technology) campus
this summer, utilizing top of the line equipment and technology. I will discuss the progress and
future plans of the axion experiment.
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Proposal for a Cosmic Axion Spin Precession Experiment (CASPEr)
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We propose an experiment to search for QCD axion and axionlike-particle dark matter. Nuclei that are
interacting with the background axion dark matter acquire time-varying CP-odd nuclear moments such as
an electric dipole moment. In analogy with nuclear magnetic resonance, these moments cause precession of
nuclear spins in a material sample in the presence of an electric field. Precision magnetometry can be used
to search for such precession. An initial phase of this experiment could cover many orders of magnitude in
axionlike-particle parameter space beyond the current astrophysical and laboratory limits. And with
established techniques, the proposed experimental scheme has sensitivity to QCD axion masses
ma ≲ 10−9 eV, corresponding to theoretically well-motivated axion decay constants fa ≳ 1016 GeV.
With further improvements, this experiment could ultimately cover the entire range of masses ma ≲ μ eV,
complementary to cavity searches.

DOI: 10.1103/PhysRevX.4.021030 Subject Areas: Cosmology

I. INTRODUCTION

The discovery of the nature of dark matter would provide
significant insights into particle physics, astrophysics, and
cosmology. While the weakly interacting massive particle
(WIMP) is a well-motivated candidate, it is heavily con-
strained by null results from a variety of experiments [1–3].
Further, the Large Hadron Collider has placed stringent
constraints on scenarios such as supersymmetry that have
provided the theoretical basis for WIMP dark matter [4].
Indeed, these constraints are most easily alleviated by
allowing for a rapid decay of the supersymmetric WIMP
candidate (see, e.g., Ref. [5]), precluding a cosmological
role for it. Thus, it is essential to develop techniques to
search for a wide class of dark-matter candidates.
Introduced as a solution to the strong CP problem [6,7],

the axion is a prominent dark-matter candidate. It arises
naturally as the pseudo-Goldstone boson of some global
symmetry that is broken at a high scale fa [8–13]. QCD
generates a potential 1

2m
2
aa2 for the axion with ma∼

ðΛ2
QCD=faÞ. An initial displacement of the axion field from

its minimum results in oscillations of this field with
frequency maðc2=ℏÞ [14]. The energy density in these

oscillations can be dark matter [15,16]. Other types of light
bosons, often called axionlike particles (ALPs), have
attracted significant attention [17–30]. These receive a
potential (and a mass) from non-QCD sources and are less
constrained than the QCD axion. Like the oscillations of
the QCD axion, oscillations of the ALP field in its potential
can also be dark matter. We focus on light ALPs with
massesma comparable to that of the axion. We use the term
ALP to refer to any of these light bosons, including the
QCD axion. The temporal coherence of the oscillations of
the dark-matter ALP field in an experiment is limited by
motion through the spatial gradients of the field. The size of
these gradients is set by the de Broglie wavelength, giving
rise to a coherence time τa ∼ ð2π=mav2Þ ∼ 106ð2π=maÞ,
where v ∼ 10−3 is the galactic virial velocity of the ALP
dark matter [17].
The axion’s properties are determined by fa.

Astrophysical bounds rule out axions with fa ≲
1010 GeV [31]. While fa ≳ 1012 GeV used to be claimed
to be ruled out by cosmological arguments, this was based
on a simplified picture of cosmology and is not a rigorous
bound (see, for example, Refs. [17,32]). The conversion of
axions into photons in the presence of a magnetic field can
be used to search for axions with fa ∼ 1012 GeV [33,34],
but the ability of such techniques to probe axions with
fa ≫ 1012 GeV is limited. It is important to develop
techniques that can search for axions over the vast majority
of parameter space up to fa ∼ 1019 GeV, especially
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Resonantly Detecting Axion-Mediated Forces with Nuclear Magnetic Resonance
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We describe a method based on precision magnetometry that can extend the search for axion-mediated
spin-dependent forces by several orders of magnitude. By combining techniques used in nuclear magnetic
resonance and short-distance tests of gravity, our approach can substantially improve upon current
experimental limits set by astrophysics, and probe deep into the theoretically interesting regime for the
Peccei-Quinn (PQ) axion. Our method is sensitive to PQ axion decay constants between 109 and 1012 GeV
or axion masses between 10−6 and 10−3 eV, independent of the cosmic axion abundance.

DOI: 10.1103/PhysRevLett.113.161801 PACS numbers: 14.80.Va, 76.60.-k, 13.40.Em

Introduction.—Axions are CP-odd scalar particles that
are present in a variety of theories beyond the standard
model. Their mass is protected by shift symmetries so they
remain naturally light and their couplings to matter are very
suppressed. In string theory in particular, they naturally
arise in compactifications with nontrivial topology [1,2],
and their mass can be as small as the Hubble scale. The
most famous axion is the Peccei-Quinn (PQ) axion [3]
whose presence explains the smallness of the neutron’s
electric dipole moment and has been the main focus of
experimental searches since it was proposed over 30 years
ago. Its mass is generated by nonperturbative QCD effects.
If lighter than 10−5 eV, the PQ axion becomes an excellent
dark matter candidate. In laboratory experiments, axions
can generate novel spin-dependent short-range forces
between matter objects [4].
In this Letter, we propose a magnetometry experiment

based on nuclear magnetic resonance (NMR) that searches
for axion mediated CP-violating forces with a range
between ∼100 μm and ∼10 cm or axion masses between
∼10−6 eV and ∼10−3 eV. Our proposal is based on the
resonant coupling between the rotational frequency of a
source mass and a NMR sample with a matching spin
precession frequency. Similar techniques involving reso-
nant excitation are used in short-distance gravity experi-
ments [5–7]. In the presence of an anomalous CP-violating
interaction with the source mass, the spins in the NMR
material will resonantly precess off the axis of polarization.
This can be measured with a superconducting quantum
interference device (SQUID).
There are already several methods based on precision

magnetometry to look for such spin-dependent short range
forces, see for example Refs. [8–11] (for a summary of
recent results see Ref. [12]). In previous experiments, shifts
of the spin-precession frequency were observed as matter
objects were brought into and out of proximity with a
sample. Our setup is different from previous approaches as
the detection technique is based on a resonant effect, where

the source mass itself is moved periodically at the Larmor
frequency in order to drive spin precession in the NMR
medium. This helps reduce several systematics while taking
advantage of the enhancement of the signal due to the
high spin density of the NMR material (∼1021 cm−3) and
the quality factor of the NMR sample which can be as
high as 106.
In the following, we show how the proposed setup can

probe both the monopole-dipole and the dipole-dipole
coupling of axions at a level that is competitive with
astrophysical bounds. The experiment can eventually be up
to 8 orders of magnitude more sensitive than current
approaches and can bridge the gap between astrophysical
bounds and cosmic PQ axion searches [13,14], without
requiring that the axion is dark matter or the need to
precisely scan over its mass.
Axion-mediated forces.—The interaction energy between

particles due to monopole-dipole axion exchange as a
function of the distance r is [4]

UspðrÞ ¼
ℏ2gsgp
8πmf

!
1

rλa
þ 1

r2

"
e−ðr=λaÞðσ̂ · r̂Þ; ð1Þ

where mf is the fermion mass, or in the case of dipole-
dipole axion exchange

UppðrÞ ¼
ℏ3c
16π

gp1
gp2

mf1mf2

#
ðσ̂1 · σ̂2Þ

!
1

r2λa
þ 1

r3

"
e−ðr=λaÞ

−ðσ̂1 · r̂Þðσ̂2 · r̂Þ
!

1

rλ2a
þ 3

r2λa
þ 3

r3

"
e−ðr=λaÞ

$
:

ð2Þ

The range of interaction is set by the mass of the axion by
λa ¼ h=mac. It is convenient to write these interactions that
involve spins (i.e., dipoles) using the axion potentials
VasðrÞ and VapðrÞ, where
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a b s t r a c t

Wepresent a proposal to search for QCD axionswithmass in the 200µeV range, assuming that theymake
a dominant component of dark matter. Due to the axion–electron spin coupling, their effect is equivalent
to the application of an oscillating rf field with frequency and amplitude fixed by the axion mass and
coupling respectively. This equivalent magnetic field would produce spin flips in a magnetic sample
placed inside a static magnetic field, which determines the resonant interaction at the Larmor frequency.
Spin flips would subsequently emit radio frequency photons that can be detected by a suitable quantum
counter in an ultra-cryogenic environment. This new detection technique is crucial to keep under control
the thermal photon background which would otherwise produce a too large noise.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

An outstanding result of modern cosmology is that a significant
fraction of the universe is made of dark matter. However, the
nature of such component is still unknown, apart its gravitational
interaction with ordinary baryonic matter. A favored candidate
for dark matter is the axion: a new particle introduced by Peccei
and Quinn to solve the strong CP problem [1], i.e. the absence
of CP violation in the strong interaction sector of the Standard
Model. Axions have amassma inversely proportional to the Peccei–
Quinn symmetry breaking scale fa. For certain ranges of fa and
ma (typically with masses ranging from µeV to meV), large quan-
tities of axions may have been produced in the early Universe
that could account for a portion or even the totality of cold dark
matter. Axions have extremely small coupling to normal matter
and radiation, but they canbe converted into detectable photons by
means of the inverse Primakoff effect as shown by Sikivie [2]. The
idea of Sikivie has been exploited by several experiments [3–5], of
which the most recent is ADMX [6,7]. The latter experiment is still
running, and for the moment it has been capable of exploring the
axion model for masses of a few µeV [8].

The QUAX (QUaerere AXion) proposal explores in details the
ideas of Refs. [9–13]. These authors proposed to study the interac-
tion of the cosmological axion with the spin of fermions (electrons

* Corresponding author.
E-mail address: Giuseppe.Ruoso@lnl.infn.it (G. Ruoso).

or nucleons). In fact, due to themotion of the Solar System through
the galactic halo, the Earth is effectively moving through the cold
darkmatter cloud surrounding theGalaxy and an observer on Earth
will see such axions as a wind. In particular, the effect of the axion
wind on a magnetized material can be described as an effective
oscillating rf fieldwith frequency determined byma and amplitude
related to fa. Thus, a possible detector for the axion wind can be
a magnetized sample with Larmor resonance frequency tuned to
the axion mass by means of an external polarizing static magnetic
field: e.g. 1.7 T for 48 GHz, corresponding to a 200 µeV axion
mass, in the case of the interaction with the electron spin that is
considered hereafter. The interaction with the axion effective field
will drive the total magnetization of the sample, and so produce
oscillations in themagnetization that, in principle, can be detected.
In order to optimize the detection scheme, the sample is placed
inside a microwave cavity. The cavity and the magnetized sample
have to be cooled down at ultra-cryogenic temperature to avoid
the noise due to thermal photons.

Within all axion models [14], this detection scheme is sen-
sitive only to DFSZ axions [15–17]. For example, in the KSVZ
model [18,19] the electron coupling is strongly suppressed.

The paper is organized as follows. For ease of the reader we
give in Section 2 an introduction to the calculation of the effective
magnetic field due to the axion wind. After that the experimental
schemewill be presented in Section 3 and its sensitivity calculated

http://dx.doi.org/10.1016/j.dark.2017.01.003
2212-6864/© 2017 Elsevier B.V. All rights reserved.

Broadband and Resonant Approaches to Axion Dark Matter Detection
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When ultralight axion dark matter encounters a static magnetic field, it sources an effective electric
current that follows the magnetic field lines and oscillates at the axion Compton frequency. We propose a
new experiment to detect this axion effective current. In the presence of axion dark matter, a large toroidal
magnet will act like an oscillating current ring, whose induced magnetic flux can be measured by an
external pickup loop inductively coupled to a SQUID magnetometer. We consider both resonant and
broadband readout circuits and show that a broadband approach has advantages at small axion masses. We
estimate the reach of this design, taking into account the irreducible sources of noise, and demonstrate
potential sensitivity to axionlike dark matter with masses in the range of 10−14-10−6 eV. In particular, both
the broadband and resonant strategies can probe the QCD axion with a GUT-scale decay constant.

DOI: 10.1103/PhysRevLett.117.141801

A broad class of well-motivated dark matter (DM)
models consists of light pseudoscalar particles a coupled
weakly to electromagnetism [1–3]. The most famous
example is the QCD axion [4–7], which was originally
proposed to solve the strong CP problem. More generally,
string compactifications often predict a large number of
axionlike particles (ALPs) [8], with Planck-suppressed
couplings to electric (E) and magnetic (B) fields of the
form aE ·B. Unlike QCD axions, generic ALPs do not
necessarily couple to the QCD operatorG ~G, where G is the
QCD field strength. The masses and couplings of ALP DM
candidates are relatively unconstrained by theory or experi-
ment (see Refs. [9–11] for reviews). It is therefore impor-
tant to develop search strategies that cover many orders of
magnitude in the axion parameter space.
The ADMX experiment [12–14] has already placed

stringent constraints on axion DM in a narrow mass range
around ma ∼ few × 10−6 eV. However, ADMX is only
sensitive to axion DM whose Compton wavelength is
comparable to the size of the resonant cavity. For the
QCD axion, the axion mass ma is related to the Peccei-
Quinn (PQ) symmetry-breaking scale fa via

fama ≃ fπmπ; ð1Þ

where mπ ≈ 140 MeV (fπ ≈ 92 MeV) is the pion mass
(decay constant). Lighter QCD axion masses therefore
correspond to higher-scale axion decay constants fa. The
GUT scale (fa ∼ 1016 GeV, ma ∼ 10−9 eV) is particularly
well motivated, but well beyond the reach of ADMX as
such small ma would require much larger cavities. More
general ALPs can also have lighter masses and larger
couplings than in the QCD case.
In this Letter, we propose a new experimental design

for axion DM detection that targets the mass range
ma ∈ ½10−14; 10−6$ eV. Like ADMX, this design exploits

the fact that axion DM, in the presence of a static magnetic
field, produces response electromagnetic fields that oscillate
at the axion Compton frequency. Whereas ADMX is based
on resonant detection of a cavity excitation, our design is
based on either broadband or resonant detection of an
oscillating magnetic flux with sensitive magnetometers,
sourced by an axion effective current. Our static magnetic
field is generated by a superconducting toroid, which has the
advantage that the flux readout system can be external to
the toroid, in a region of ideally zero static field. Crucially,
this setup can probe axions whose Compton wavelength is
much larger than the size of the toroid. If this experiment
were built, we propose the acronym ABRACADABRA, for
“A Broadband or Resonant Approach to Cosmic Axion
Detection with an Amplifying B-field Ring Apparatus.”
For ultralight (sub-eV) axion DM, it is appropriate to

treat a as a coherent classical field, since large DM number
densities imply macroscopic occupation numbers for each
quantum state. Solving the classical equation of motion
with zero DM velocity yields

aðtÞ ¼ a0 sinðmatÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2ρDM

p

ma
sinðmatÞ; ð2Þ

where ρDM ≈ 0.3 GeV=cm3 is the local DM density [15].
(The local virial DM velocity v ∼ 10−3 will give small
spatial gradients ∇a ∝ v.) Through the coupling to the
QED field strength Fμν,

L ⊃ −
1

4
gaγγaFμν

~Fμν; ð3Þ

a generic axion will modify Maxwell’s equations [16], and
Ampère’s circuit law becomes

∇ ×B ¼ ∂E
∂t − gaγγ

"
E ×∇a −B

∂a
∂t

#
; ð4Þ
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Dielectric Haloscopes: A New Way to Detect Axion Dark Matter
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We propose a new strategy to search for dark matter axions in the mass range of 40–400 μeV by
introducing dielectric haloscopes, which consist of dielectric disks placed in a magnetic field. The changing
dielectric media cause discontinuities in the axion-induced electric field, leading to the generation of
propagating electromagnetic waves to satisfy the continuity requirements at the interfaces. Large-area disks
with adjustable distances boost the microwave signal (10–100 GHz) to an observable level and allow one to
scan over a broad axion mass range. A sensitivity to QCD axion models is conceivable with 80 disks of
1 m2 area contained in a 10 T field.
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Introduction.—The nature of dark matter (DM) is one
of the most enduring cosmological mysteries. One prime
candidate, the axion, arises from the Peccei-Quinn (PQ)
solution to the strong CP problem, the absence of CP
violation in quantum chromodynamics (QCD). The CP
violating QCD phase θ is effectively replaced by the axion
field whose potential is minimal at θ ¼ 0 [1–3]. Thus, θ
dynamically relaxes towards zero regardless of its initial
conditions, satisfying the neutron electric dipole moment
constraints θ ≲ 10−11 [4].
Tiny relic oscillations with a frequency given by the

axion mass ma around θ ¼ 0 persist, acting as cold DM
[5–9]. If DM is purely axionic, its local galactic density
ρa ¼ ðfamaÞ2θ20=2 ∼ 300 MeV=cm3 implies that θ ∼
θ0 cosðmatÞ at Earth, with θ0 ∼ 4 × 10−19. While these
oscillations could be detected, the main challenge is to scan
over a huge frequency range, as ma is unknown.
However, cosmology can guide our search. Causality

implies that, at some early time, θ is uncorrelated between
patches of the causal horizon size. We consider two
cosmological scenarios depending on whether cosmic
inflation happens after (A) or before (B) that time.
In scenario A, one patch is inflated to encompass our

observable Universe while smoothing θ to a single initial
value θI . The cosmic axion abundance depends on both θI
and ma, so the DM density can be matched for any ma
allowed by astrophysical bounds [10] for a suitable θI.
In scenario B, the axion abundance is given by the

average over random initial conditions and the decay of
accompanying cosmic strings and domain walls. Freed
from the uncertainty in the initial conditions, scenario B

provides a concrete prediction ma ∼ 100 μeV [11,12],
although with some theoretical uncertainty [13].
Searches based on cavity resonators in strong magnetic

fields (Sikivie’s haloscopes [14]) such as ADMX [15],
ADMX HF [16], and CULTASK [17] are optimal for
ma ≲ 10 μeV. Much lower values ofma can be explored by
nuclear magnetic resonance techniques like CASPER [18]
or with LC circuits [19,20].
The mass range favored in scenario B is untouched by

current experiments, and for cavity haloscopes will remain
so for the foreseeable future. While fifth-force experiments
[21] could search this region, they would not directly reveal
the nature of DM. We present here a new concept to cover
this important gap, capable of discovering ∼100 μeV mass
axions. It consists of a series of parallel dielectric disks with
a mirror on one side, all within a magnetic field parallel to
the surfaces, as shown in Fig. 1—a dielectric haloscope.
For a large ma the greatest hindrance for conven-

tional haloscopes is that the signal is proportional to the
cavity volume V. With dimensions on the order of the
axion Compton wavelength λa ¼ 2π=ma, V ∝ λ3a, which
decreases rapidly with ma. (We use natural units with
ℏ ¼ c ¼ 1 and the Lorentz-Heaviside convention
α ¼ e2=4π.) While there are plans to couple multiple
high-quality cavities, use open resonators, or compensate
with extremely high magnetic fields and/or new detectors,
these techniques may not prove practical for large ma’s
[17,22–24].
A radical approach for increasing the volume is to use a

dish antenna (i.e., a mirror) inside a B field to convert
axion DM into microwaves [25]. The resonantly enhanced
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Search for dark matter axions with the Orpheus experiment
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Axions are well motivated particles that could make up most or all of the dark matter if they have masses
below 100 μeV. Microwave cavity techniques comprised of closed resonant structures immersed in
solenoid magnets are sensitive to dark matter axions with masses of a few μeV but face difficulties scaling
to higher masses. We present the a novel detector architecture consisting of an open, Fabry–Pérot resonator
and a series of current-carrying wire planes and demonstrate this technique with a search for dark matter
axionlike particles called Orpheus. This search excludes dark matter axionlike particles with masses
between 68.2 and 76.5 μeV and axion-photon couplings greater than 4 × 10−7 GeV−1. We project that the
fundamental sensitivity of this technique could be extended to be sensitive to couplings below
1 × 10−15 GeV−1, consistent with the DFSZ model of QCD axions.
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I. INTRODUCTION

The axion is a pseudoscalar particle predicted as a
consequence to the Peccei–Quinn solution to the strong
CP problem [1–4] and may comprise some or all of dark
matter [5–7]. The axion has weak coupling to the electro-
magnetic interaction arising at loop order, of which the
Lagrange density may be written compactly as

Laγγ ¼ −gaγγa~E · ~B; ð1Þ

where gaγγ is the axion-photon coupling strength, a is the
axion field, and ~E, ~B are the usual electric and magnetic
fields. The expression in Eq. (1) motivates the axion
haloscope technique [8] to detect dark matter axions.
A typical axion haloscope consists of a closed microwave
resonator immersed in a high static magnetic field,
coupled to a low noise microwave receiver via the lowest
frequency TM mode of the resonator. Dark matter axions
passing through the magnetic field can convert into photons
inside the cavity with enhanced probability when an
electromagnetic resonance in the cavity is tuned to corre-
spond to the frequency of the photons produced. Dark
matter axions would be detected as excess power at this
frequency, the expression for which can be derived from
Eq. (1) as [9]

P ¼
2πℏ2g2aγγρDM

m2
ac

· fγ ·
1

μ0
B2Vnlm ·Q: ð2Þ

Here thema, fγ denote the axion mass and frequency of the
converted photon respectively, and ρDM ≈ 0.4 GeV=cc is

the local halo density of dark matter. The enhancement in
the expected axion power due to its conversion in a
resonant cavity is expressed in terms of the cavity quality
factor Q. The effective volume of the cavity for coupling to
a given resonant mode is [10]

Vnlm ¼

!R
d3~x ~Eð~xÞ · ~Bð~xÞ

"
2

B2
R
d3~xj~Ej2ð~xÞ

; ð3Þ

where ~Bð~xÞ is the static magnetic field and ~E is the
electric field of a normal resonant mode denoted by
integers n; l; m.
Numerous experiments based on this architecture have

been constructed. Recently, the ADMX collaboration has
demonstrated that microwave cavity experiments can be
built with the sensitivity necessary to detect dark matter
axions with masses in the range 1.90–3.54 μeV [9,11] and
coupling strength consistent with QCD predictions. Some
models, however, predict the axion mass scale to be
somewhat larger [12–14]. Work is underway to extend
experimental reach to larger axion masses, but the closed
resonator detector design is difficult to extend to masses as
large as 100 μeV [15]. Physically the size of a closed
resonator must decrease in order to achieve higher resonant
frequencies. This in turn decreases both the volume
and Q of the resonator, which both limits the sensitivity
of experiments based on this architecture and presents a
serious challenge to their scalability. We present a dark
matter axion search technique which overcomes the fun-
damental limitations of closed resonator architectures at
large axion masses by employing an open, Fabry–Pérot
resonator as the detector volume. This technique is dem-
onstrated by a prototype experiment named Orpheus.
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Discovering the QCD axion with black holes and gravitational waves
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Advanced LIGO may be the first experiment to detect gravitational waves. Through superradiance of
stellar black holes, it may also be the first experiment to discover the QCD axion with decay constant above
the grand unification scale. When an axion’s Compton wavelength is comparable to the size of a black hole,
the axion binds to the black hole, forming a “gravitational atom.” Through the superradiance process, the
number of axions occupying the bound levels grows exponentially, extracting energy and angular
momentum from the black hole. Axions transitioning between levels of the gravitational atom and axions
annihilating to gravitons can produce observable gravitational wave signals. The signals are long lasting,
monochromatic, and can be distinguished from ordinary astrophysical sources. We estimate up to Oð1Þ
transition events at aLIGO for an axion between 10−11 and 10−10 eV and up to 104 annihilation events for
an axion between 10−13 and 10−11 eV. In the event of a null search, aLIGO can constrain the axion mass for
a range of rapidly spinning black hole formation rates. Axion annihilations are also promising for much
lighter masses at future lower-frequency gravitational wave observatories; the rates have large uncertain-
ties, dominated by supermassive black hole spin distributions. Our projections for aLIGO are robust against
perturbations from the black hole environment and account for our updated exclusion on the QCD axion of
6 × 10−13 eV < μa < 2 × 10−11 eV suggested by stellar black hole spin measurements.
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I. WHAT IS SUPERRADIANCE?

A wave that scatters from a rotating black hole can exit
the black hole environment with a larger amplitude than the
one with which it came in. This amplification happens for
both matter and light waves and it is called black hole
superradiance. It is an effect that has been known for nearly
50 years [1].
Massive bosonic waves are special. They form bound

states with the black hole whose occupation number can
grow exponentially [2]; for fermions, Pauli’s exclusion
principle makes this lasing effect impossible. This expo-
nential growth is understood if one considers the mass of
the boson acting as a mirror that forces the wave to confine
in the black hole’s vicinity and to scatter and superradiate
continuously. This is known as the superradiance (SR)
instability for a Kerr black hole and is an efficient method
of extracting angular momentum and energy from the black
hole. Rapidly spinning astrophysical black holes thus
become a diagnostic tool for the existence of light massive
bosons [3,4].
Black hole superradiance sounds exotic and mysterious

since it naively appears to be deeply connected with

nonlinear gravitational effects in the vicinity of black holes.
Instead, superradiance is a purely kinematic effect, and
black hole superradiance is just another manifestation of
the superradiance phenomenon that appears in a variety of
systems. The most famous is inertial motion superradiance,
most commonly referred to as Cherenkov radiation [5].
In Cherenkov radiation, a nonaccelerating charged particle
spontaneously emits radiation while moving superlumi-
nally in a medium. The emitted radiation forms a cone with
opening angle cos θ ¼ ðnvÞ−1, where n is the index of
refraction of the medium, and radiation that scatters inside
the cone ðωγ < ~v · ~kγÞ is amplified [6].
Similarly, superradiance occurs for a conducting axi-

symmetric body rotating at a constant angular velocity
Ωcylinder [7]. Here, superluminal motion is in the angular
direction: a rotating conducting cylinder amplifies any light
wave of the form eimφ−iωγt when the rotational velocity of
the cylinder is faster than the angular phase velocity of
the light:

ωγ

m
< Ωcylinder; ð1Þ

where ωγ and m are the photon energy and angular
momentum with respect to the cylinder rotation axis,
respectively. This is the same as the superradiance condition
for rotating black holes, with Ωcylinder substituted by the
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It is well known that the standard model (SM) of particle physics does not explain some well established
experimental facts like dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it
also contains fundamental parameters with highly unnatural values, like the coe�cient µ2 ⇠ O((100 GeV)2)
of the quadratic term in the Higgs potential, the Yukawa couplings of the first family fermions he,u,d ⇠
10�6 � 10�5 and the strong CP violating angle |✓| < 10�10. This last quantity is somewhat special: its
value is stable with respect to higher order corrections [? ] (unlike µ2) and (unlike he,u,d [? ]) it evades
explanations based on environmental selection [? ]. Thus, seeking explanations for the smallness of ✓
independently of other “small values” problems is theoretically motivated. While most of the problems of
the SM can be addressed with a large variety of mechanisms, basically only three types of solutions to the
strong CP problem have been put forth so far. The simplest possibility, a massless up-quark, is now ruled
out (mu 6= 0 by 20 standard deviations [? ? ]). The so-called Nelson-Barr (NB) type of models [? ? ] either
require a high degree of fine tuning, often comparable to setting |✓| <⇠ 10�10 by hand, or additional and
rather elaborated theoretical structures to keep ✓ su�ciently small at all orders [? ? ]. The Peccei-Quinn
(PQ) solution [? ? ] arguably stands on better theoretical grounds, and from the experimental point of
view it also has the advantage of predicting an unmistakable signature: the existence of a new light scalar
particle, universally known as the axion [? ? ]. Therefore, the issue if the PQ solution is the correct one,
could be set experimentally by detecting the axion. In contrast, no similar unambiguous signature exists
for NB models.
A crucial challenge for axion models is to explain through which mechanism the global U(1)PQ symmetry,

on which the solution relies (and that presumably arises as an accident), remains protected from explicit
breaking to the required level of accuracy [? ? ? ], and it seems fair to state that only constructions
that embed such an explanation can be considered theoretically satisfactory. A wide variety of proposals to
generate a high quality U(1)PQ have been put forth based, for example, on discrete gauge symmetries [? ?
? ? ], supersymmetry [? ? ? ], compositeness [? ? ? ? ], flavour symmetries [? ] or new continuous gauge
symmetries [? ? ]. Regardless of the details of the di↵erent theoretical constructions, many properties of
the axion remain remarkably independent from specific model realizations. It is then very important, in
order to focus axion searches, to identify as well as possible the region in parameter space where realistic
axion models live. The vast majority of axion search techniques are sensitive to the axion-photon coupling
ga�� which is inversely proportional to the axion decay constant fa. Since the axion mass ma has the same
dependence, the experimental exclusion limits, as well as the theoretical predictions for specific models,
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