

L. Pandola (LNS)

on behalf of the ReD Working Group (DarkSide Collaboration)

Physics background

- Search for dark matter in the form of Weakly Interacting Massive Particles (WIMPs)
 - WIMP is a favourite candidate, but there are many others
- <u>Signature</u>: low energy (< 100 keV) nuclear recoil produced by WIMP elastic scattering
 - <u>Backgrounds</u>: e⁻ recoils, neutron-induced recoils
- Global effort worldwide:
 - Rates in the range from 10⁻¹ to 10⁻⁶ events / (kg·day)
 - next generation experiments should eventually reach exposures in the range of ktonday
 - Need very low background level (and underground site)

Physics background

- Electron/recoil discrimination currently achieved by "dual technology"
 - Measure two out of: scintillation, ionisation, heat
 - Electrons and recoils typically have different response in these channels
- Viable option: noble liquid detectors TPC (LAr, LXe)
 - Detect scintillation light and ionization
 - Charge drifted by E field and collected
 - Can use fiducialization and pulse shape analysis
- DarkSide project at Gran Sasso Laboratory, using LAr
 - Operating now a 50 kg TPC, equipped with active neutron veto (DarkSide-50)
 - Next step: 20 ton LAr TPC (DarkSide-20k)
 - Light readout with SiPM
 - Low-radioctivity Ar

A smoking gun for dark matter discovery

- Correlation of recoil direction with the expected direction of the WIMP galactic wind would be a smoking gun
 - Much more convincing than a mere excess of recoil events

ReD goals

- **ReD** is a project within the DarkSide collaboration, aiming to characterize the response of a TPC to neutron-induced Ar recoils
- Main goals:
 - Scrutinize the directionality effect, i.e. confirm that the TPC response is different for different recoil directions with respect to the electric field
 - Driving requirement of the experimental design
 - Measure the response to very low-energy nuclear recoils (< few keV)
 - Not part of the original project, but quickly became a hot topic (study of low-mass WIMPs)
 - Be a test bench of all technical solutions (photosensors, electronics) being worked out for DarkSide-20k
 - The ReD TPC is a miniaturized version of the DarkSide-20k TPC and features all technical solution developed so far
 - Check performance within a **realistic situation**, early identification of problems
- Neutron beam from TANDEM, via p(⁷Li,⁷Be)n, at "80 deg line"
 - Project approved by PAC: 21 BTU in 2018 and 105 BTU in 2019

ReD measurement at LNS – recap

- Use a neutron beam produced via p(⁷Li,n)
- Detect the associate particle (⁷Be) and ToF to tag neutron energy event by event (fixed by kinematics)
- Pay attention to arrange the setup such to tag nuclear recoils ~parallel and ~perpendicular to the E
 - Displace the TPC vertically, such that the (n,n') interaction plane is not "horizontal"
 - Deploy LSci to tag recoils of the same energy, but different angle with respect to the E (including 90° and 180°)

The ingredients

• TPC

- Light readout: 5x5 cm² SiPM (DS-20k)
 - 24x1cm² SiPM, 24 channel readout
 - 24x1cm² SiPM, 4 channel readout
- Light yield up to 9 phe/keV
- Liquid Scintillators
 - Readout by PMTs
 - Featuring n/γ discrimination
 - Absolute calibration with ²⁵²Cf (@LNS)
- Si telescope (LNS responsibility)
 - ΔE Si detector (20 µm), E Si detector (500 µm)
 - Placed at 5 deg
 - Two-solution kinematics: θ_n = 22.3°, E_n = 7.5 MeV (→TPC)
- Targets
 - CH₂, 250-400 μg/cm²

Beamtime history

- Two test beams in 2018
 - Beamtime: July 5-11
 - Meant to integrate the full system and to give a first test with "real" neutrons
 - E_{beam} = 28 MeV (⁷Li) → tagging of 66 keV Ar recoils
 - Problems with **low rate** (alignment?). \rightarrow next slide
 - Beamtime: September 24-October 1
 - "Troubleshooting" run
 - TPC mulfunctioning (broken HV), so only partially operational
 - A lot of info for diagnostics
 - In October 2018, the TPC was returned to Naples for fixes and full characterization
- Calibration campaign of LSci in Feb 2019 using a ²⁵²Cf fission source
 - Absolute efficiency for neutron detection
- Test beam in May 2019, E= 28 MeV
 - <u>Goal</u>: Characterize the neutron beam spot to demonstrate rate and alignment (w/o TPC)

2018 ReD runs in a slide

- Commissioning in Naples, then system shipped, integrated and aligned at LNS
 - Setup of the detector systems individually (TPC single and double phase, Si telescope, PMTs)
- About 10 days of beamtime (⁷Li), in two slots. E_{Li} =28 MeV
 - Mostly commissioning. Learning curve for many people
- 6 TB of data on-disk
- Found events with the proper signature
 - ⁷Be in the Si telescope, neutron in the TPC, neutron in the PMTs
 - Rate much lower than expected (~1/10)

May 2019 run – without TPC

- 3-day test beam (May 23rd- 25th)
- Beam
 - New beam diagnostics (extra Faraday Cup)
 - Thicker targets and higher current
 - Optimized beam pre-target collimation
- "Flower" neutron camera made with existing LSci to image the neutron spot
 - Global picture looks consistent
- Triple-coincidences
 - ReD configuration, with the central LSci playing as the TPC
 - 10 hour run
 - Trigger: Si
 A any-PMT, trigger rate 7 Hz (~10 nA current)
 - Triple-events rate: ~4 cph/LSci

Center of the central petal at the position of the TPC

Planning for 2019

- One other test beam (~3 days) in July
 - Commission the XY movement system to be installed inside the scattering chamber → a posteriori tuning of alignment
 - Ordered in March and delivered today

- Re-deploy the TPC at the 80 deg beamline
 - Alignment procedure as in 2018
- "Long" physics run (7-10 days) with the full system in September-October
 - One single beam energy (E_{Li} = 28 MeV $\rightarrow E_{rec}$ = 66 keV)
 - Demonstrate ability to provide scientific results, both for directionality (on data point) and low energy
- (<u>If works</u>): take more runs (~7 days each) with different beam energy
 - Explore directional sensitivity in the range 20-100 keV_{rec}
 - Take more data points for low-energy recoils

Planning for 2020

- Take data with ⁷Li beam until the TANDEM is operational
 - Different beam energy and/or electric field configuration
- When the beam is stopped consider to perform low-energy recoil measurements using a DD neutron gun (available in Naples, on loan from Temple U.) or a ²⁵²Cf source
 - Directionality not possible
 - Conceptual layout available
- Financial requests for 2020 limited to running costs and travels
- Possibly, request for a new ²⁵²Cf source (the one at LNS is almost decayed out)

The chemists at UniSS: ARIA

- 350 m tall distillation column in the Seruci mine in Sardinia for chemical and isotopic purification of UAr
- Exploits finite vapor pressure difference between ³⁹Ar/⁴⁰Ar (³⁹Ar reduction factor of 10 per pass at the rate of **100 kg/day**)
- UniSS-Chem group involved in numerical calculations and in the evaluation of the quality of the products
- Protocollo di Intesa between INFN and Regione Sardegna in execution for the first Phase of the Project (Seruci I)

BACKUP

Next step: DarkSide 20k

- <u>Next step</u>: 20 tons of fiducial
 LAr → must be UAr (or DAr)
- Facility for the massive production/extraction of UAr
 - With possible active depletion
- Light readout with SiPM
- Goal to start in 2020, exposure O(100) ton yr
- Expected sensitivity 10⁻⁴⁷ cm²
 @ M_W =1 TeV/c²

