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The GW spectrum



Second-order tensor modes and GW

Consider the spatial part of second-order Einstein equations and project 
them into their transverse and traceless parts:

where κ2 = 8πG  and we introduced the tensor projector operator   

Consider the flat FLRW second-order perturbed metric, neglecting for 
simplicity first-order vector and tensor perturbations, and employ 
hij ≡ h(2)

ij . 



Notation



Second-order tensor modes and GW

• From this expression the Einstein tensor at second-order results

• The stress-energy tensor fluid of our perfect  can also be expanded up 
to second order



Second-order tensor modes and GW

• Using the expressions for the first-order perturbations of the energy-
momentum tensor in terms of the linear metric perturbations and of 
the background value of the stress-energy tensor, we obtain



Second-order tensor modes and GW

• To solve this equation it is convenient to Fourier-transform



Second-order 
tensor modes and 
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Second-order tensor modes sourced by 
inflaton fluctuations during inflation
The immediate application of second-order perturbation theory consists in considering the 
inflationary scalar perturbations as a source for GW. We have just seen that the very existence of 
scalar perturbations gives rise to tensor modes, independently of how the first-order scalars have 
been generated. Knowing the scalar power spectrum during the inflationary period, the sourced-GW 
power spectrum can be calculated too. The spectral properties of our scalar seeds are perfectly 
specified by

We then have                                                                               where the source (after extracting the 

polarization tensors) is convolved with the Green’s function, which, in de Sitter space reads



Survey of GW generating 
mechanisms

Summary of the main mechanisms of GW 
production during inflation and the preheating 
phase. In the fourth column, the scenarios are 
reported as examples for each mentioned case 
(from Guzzetti et al. 2016). 



As seen in section 5.4.1, the G-inflation model can be generalized by adding new terms in the La-
grangian, eq.(173), in order to get the most general equation of motion of second order [234]. In this
case the GW dynamics is influenced by the new terms and a deviation from the usual tensor power-
spectrum is obtained, both in terms of amplitude and spectral index, and then in general a violation
of the consistency relation can be expected. Scenarios of Generalized G-Inflation are investigated in
connection with the consistency relation in [273].

Model Tensor power-spectrum Tensor spectral index Consistency

relation
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ċS
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Table 3: GW features for selected inflationary models. We show the prediction for the amplitude of the tensor power-

spectrum at the horizon crossing and the related spectral index, as functions of the model parameters. In the next

column we indicate if the tensor spectral index is expected to be red, nT < 0, or blue nT > 0, or if both possibilities

are admitted r/b. In last column we point out the consistency relation, where it is significant, and denote violation the

cases in which, due to an extra background of GW, a violation of the standard consistency relation can be expected on

some ranges of scales (see discussion in section 8.1). Standard Inflation: Lagrangian of eq.(25); see section 2.3. EFT

inflation(a): Lagrangian of eq.(86), cT GW propagation speed, mT graviton mass; see section 2.4.2. EFT inflation(b):

Lagrangian of the same form of eq.(86) with α = c−2
T /2, m = 0, cT a time-dependent parameter and p ≡ −ċT/cTH∗

a positive quantity; for more details see [107]. Generalized G-Inflation: Lagrangian of eq.(173), γT, GT, GT and νT

defined in (177), (184) and (182) respectively; see section 5.4.1. Potential-driven G-Inflation: Lagrangian of eq.(185);

see section 5.4.2. Particle production: Lagrangian of eq.(124), ξ defined in (127), and δξ defined in section 3.3.2; see

section 3.3.2. Spectator field: Lagrangian of eq.(110), cS and m the speed of sound and the mass of the spectator field;

see section 3.2.2.

8.5 Observational prospects

In light of the power of the consistency relation (193), constraining the tensor amplitude and spectral
index would represent a powerful test for the single-field inflationary model or it would provide hints
for a departure from that physics. In order to test the validity of the consistency relation, one has
to obtain an estimate of the scalar and tensor perturbation amplitudes and of the spectral index
of tensor perturbations. Clearly the most difficult task is that of observing features concerning the
tensor sector. The largest difficulty is, of course, estimating the GW spectral index, which requires
a measurement of the GW amplitudes on different scales. CMB data alone cannot provide strong
constraints on nT, but the advantage of those measurements is that they provide data directly on
the tensor power-spectrum. It is clear that measurements of GW on smaller scales, such as those
related to the direct detection by laser interferometer experiments, could provide stronger constraints
on tensor features [274–276]. GW direct detection experiments are planned to work on range of scales
18−20 orders of magnitudes smaller that those of the CMB. Up to now, on these small scales we have
only upper bounds on the cosmological GW energy-density due to a non-detection of the primordial
signal. Of course, a remarkable help in this direction, would come in the case of blue-tilted tensor
spectra.

58

inflationary models beyond the standard ones à violation 

From Guzzetti, Bartolo, Liguori &  Matarrese, “Gravitational waves from Inflation”, 2016 

Testing the Inflationary Consistency Relation
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Prospects for 
PGWB 
detection

Capurri, Bartolo, Maino 
and Matarrese (2020, in 
preparation) study EFT 
models producing blue 
GW spectra



Gauge dependence of second-order tensor 
modes
• Matarrese, Mollerach & Bruni (1998) computed second-order tensor modes in two gauges in matter-

dominaiton: synchronous-comoving (S) and Poisson (P) gauges, finding extra (non-oscillatory) terms in the 
S-gauge.

• S-gauge

• which is solved by



Gauge dependence of second-order tensor 
modes
• In the P-gauge one only gets

which is solved by our previous expression

• Inomata & Terada (2019) have shown that the same result is found in the TT gauge (contrary to previous 
claims). They conclude that the “gravitational-wave” part is indeed gauge-idependent, while extra non-
oscillatory terms of the second-order tensor modes may indeed differ from gauge to gauge. See alsoYuan 
et al. (2019) and Gong (2020)



Scalar-induced second-order (vector) and tensor 
modes produce CMB B-mode polarization
• Mollerach, Harari & Matarrese (2004) showed that a 

nonvanishing B-mode polarization unavoidably arises from 
pure scalar initial perturbations, thus limiting our ability to 
detect the signature of primordial gravitational waves 
generated during inflation. This secondary effect 
dominates over that of primordial tensors for an 
inflationary tensor-to-scalar ratio r<10−6. The magnitude of 
the effect is smaller than the contamination produced by 
the conversion of polarization of type E into type B, by 
weak gravitational lensing. However, the lensing signal can 
be cleaned, making the secondary modes discussed here 
the actual background limiting the detection of small 
amplitude primordial gravitational wave.

• A more refined analytical calculation was performed by 
Fidler et al. (2014) 

from Fidler et al. (2014)



Post-inflationary evolution of GW
Let us have a look at how GW behave at the time of radiation and matter domination, when 
accelerated expansion has already ended. Inflation stretches tensor perturbations wavelengths to 
super-horizon scales, making their amplitude almost frozen. During the radiation and subsequent 
matter eras, tensor perturbation wavelengths re-enter the horizon sequentially. When this happens the 
decaying solution has substantially disappeared, so what re-enters the causally connected space is the 
almost scale-invariant power spectrum at the time of first horizon crossing, which occurred during 
inflation. Then, modes that are inside the horizon, start oscillating with amplitude damped by a factor 
1/a. In particular, the GW field equation becomes a Bessel equation with the following solutions 
respectively, in terms of hij modes:

where hk,i is the amplitude at horizon crossing and j0 and j1 are the Bessel functions. Looking at the 
dependence on k, these solutions tell us that tensor perturbations start oscillating with a damping 
factor greater for high frequency waves. During an era of pure dominance of the cosmological constant, 
the space-time assumes a de Sitter metric so that the scale-factor evolves in a exponential way, as 
during inflation in case of ϵ = 0. Then, in such an epoch, the form of the solution of the GW equation of 
motion is given by the standard inflationary solution.

radiation era matter era



Damping of GW by cosmic neutrinos
Weinberg (2004) showed that the free-streaming of cosmic neutrinos (i.e. after their decopling) produces a 
traceless transverse part of the anisotropic stress tensor which affects the propagation of cosmological 
gravitational waves, reducing their squared amplitude by 35.6% for wavelengths that enter the horizon during 
the radiation-dominated phase, independent of any cosmological parameters. This decreases the tensor 
temperature and polarization correlation functions for these wavelengths by the same amount. The effect is less 
for wavelengths that enter the horizon at later times. At the longest wavelengths the decrease in the tensor 
correlation functions due to neutrino free streaming being about 10%.

Consider the GW equation 

The neutrino stress-energy tensor contains their phase-space distribution which is a solution of the Boltzmann 
equation in a perturbed FLRW universe. GW contribute to these perturbations and therefore affect the neutrino 
anisotropic stress

where                                  and                              is the mean neutrino contribution to the energy density.



GW as extra-radiation (modes well inside the 
horizon)
The energy density of a GW background decays with the expansion of the universe 
as relativistic degrees of freedom, i.e. ρGW ∝ a−4 . This means that a GW background 
acts as an additional radiation field in the universe, contributing to the background 
expansion rate as

We can then give a constraint on the GW energy density redshifted up to the 
present number in terms of the number of extra neutrino species

~ 10%
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• A derivation of the angular power spectrum of cosmological anisotropies, using a 
Boltzmann approach, has been obtained in [Alba & Maldacena 2016 (1512.01531), 
Contaldi 2017 (1609.08168) , Bartolo et al 2019 (1908.00527)] Bartolo et al. 2019b; 
2019c

• Anisotropies in the cosmological background are imprinted both at its production and 
by GW propagation through the large-scale scalar and tensor perturbations of the 
universe. Note that the first contribution is not present in the CMB radiation (as the 
universe is not transparent to photons before recombination), causing an order one 
dependence of the anisotropies on frequency.

• We provided a new method to characterize the cosmological SGWB through its 
possible deviation from a Gaussian statistics. In particular, the SGWB will become a 
new probe of the primordial non-Gaussianity of the large-scale cosmological 
perturbations. 

Cosmological SGWB anisotropies



“Emission surface” of gravitons: 
End of inflation!!! 

Anisotropies of SGWB from inflation

Adopt a Boltzmann equation approach:
GWs of high frequency propagating 
through large-scale (low frequency) 
cosmological perturbations 

Two contributions to anisotropies of SGWB  

1. At production 

2. by GW propagation to the observer

Propagation through large-scale 
cosmological perturbations
(both scalar and tensor!!)

inflation

Credits: N. Bartolo

The SGWB also brings frequency information, in contrast with CMB (apart from spectral distortions)
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(the bispectrum) of the GW energy density.
For brevity reasons, this Letter contains only results

under the simplest conditions. In a companion paper
[28] we shall present the details of these computations,
extend them to include the GW propagation to second
order in perturbations, as well as develop a more extended
analysis of the GW bispectrum.

Boltzmann equation for GWs. We consider a distribu-
tion f = f(⌘, xi

, q, n̂
i) of GWs as a function of their posi-

tion x
µ and momentum p

µ = dx
µ
/d�, where � is an a�ne

parameter along the GW trajectory. This distribution
obeys the Boltzmann equation L[f ] = C[f(�)] + I[f(�)],
where the Liouville term is L ⌘ d/d�, while C and I
account respectively for the collision of GWs along their
patch, and for their emissivity from cosmological and as-
trophysical sources [15]. The collision among GWs a↵ects
the distribution at higher orders (in an expansion series
in the gravitational strength 1/MPlanck ) with respect to
the ones we are considering, and can be disregarded. The
emissivity can be due to astrophysical processes (such as
black-holes merging) in the relatively late universe, as
well as cosmological processes, such as inflation or phase
transitions. In this work we are only interested in the
stochastic GW background of cosmological origin, so we
treat the emissivity term as an initial condition on the
GW distribution (see [29] and Refs. therein for a discus-
sion on collisional e↵ects involving gravitons). This leads
us to study the free Boltzmann equation, df/d⌘ = 0 in
the perturbed universe. Specifically, we consider scalar
(� and  ) and tensor (hij , taken to be transverse and
traceless) perturbations in the so-called Poisson gauge,
around a homogeneous and isotropic background, giving
the line element

ds
2 = a

2(⌘)
⇥
�e

2�
d⌘

2 + (e�2 
�ij + hij)dx

i
dx

j
⇤
, (1)

where a(⌘) is the scale factor, and ⌘ is conformal time.
Dividing the free Boltzmann equation by p

0 leads to

@f

@⌘
+

@f

@xi

dx
i

d⌘
+

@f

@q

dq

d⌘
+

@f

@ni

dn
i

d⌘
= 0 , (2)

where n̂ ⌘ p̂ is the direction of motion of the GWs, while
q ⌘ |~p|a is the comoving momentum, that we use (as op-
posed to the physical one, that was used in [15], follow-
ing the standard computation done for the CMB photons
propagation [30]) as it simplifies the equation (3) below.
The first two terms in (2) encode free streaming, that is
the propagation of perturbations on all scales. At higher
order this term also includes gravitational time delay ef-
fects. The third term causes the red-shifting of gravitons,
including the Sachs-Wolfe (SW), integrated Sachs-Wolfe
(ISW) and Rees-Sciama (RS) e↵ects. The fourth term
vanishes to first order and describes the e↵ect of gravita-
tional lensing. We shall refer to these terms as the free-
streaming, redshift and lensing terms, respectively in a

similar way to CMB physics. Keeping only the terms up
to first order in the perturbations, eq. (2) gives

@f

@⌘
+ n

i @f

@xi
+


@ 

@⌘
� n

i @�

@xi
+

1

2
n
i
n
j @hij

@⌘

�
q
@f

@q
= 0 .

(3)
In analogy to the split in (1) we also assume that

the GWs distribution has a dominant, homogeneous and
isotropic contribution, with distribution function f̄ , plus
a subdominant contribution �f . The two functions are
obtained by solving eq. (3) at zeroth and first order in
perturbations. Doing so, one immediately finds that any
function f̄(q) of the comoving momentum solves (3) at
zeroth order. As a consequence, the associated number
density n /

´
d
3
p f̄(q) is diluted as a

�3 as the universe
expands. This is also the case for CMB photons, whose
distribution function f̄CMB = (ep/T � 1)�1 is only con-
trolled by the ratio p/T / p a = q, where T is the tem-
perature of the CMB bath. This is a consequence of the
free particle propagation in an expanding background,
and it does not rely on the distribution being thermal.

The subdominant anisotropic component �f can be
present as an initial condition. However, even if it is
initially absent, eq. (3) shows that this anisotropy is pro-
duced by the propagation of the isotropic component f̄

in the perturbed background. Assuming that @f̄/@q 6= 0
(otherwise also the solution of �f becomes trivial) it is
convenient to rescale the perturbed part of the distribu-
tion function as

�f ⌘ �q
@f̄

@q
� (⌘, ~x, q, n̂) . (4)

In this variable and in Fourier space eq. (3) gives

�0 + i k µ� = S(⌘,~k, n̂) , (5)

where from now on prime denotes a derivative with re-
spect to conformal time, µ is the cosine of the angle
between ~k and n̂, while the source function is S =
 0 � ik µ�� 1

2n
i
n
j
h
0
ij . As we now show, the quantity �

can be immediately related to the anisotropic component
of the GWs energy density, ⇢GW ⌘

´
d
3
p p f . It is cus-

tomary to parametrize the GW energy density measured
at the time ⌘ at the location ~x in terms of its fractional
contribution ⌦GW through

⇢GW (⌘, ~x) ⌘ ⇢crit

ˆ
d ln q⌦GW (⌘, ~x, q) , (6)

where ⇢crit = 3H2
M

2
p is the critical energy density of the

universe, and H is the Hubble rate. Nearly all studies
assume ⌦GW to be homogeneous. Since we are interested
in its inhomogeneous and anisotropic component, we have
allowed ⌦GW to depend on space. We account for the
anisotropic dependence by defining !GW through ⌦GW =´
d
2
n̂!GW(⌘, ~x, q, n̂)/4⇡, and by introducing the density

Boltzmann equation approach

Anisotropies of SGWB from inflation

Gravitational effects that imprint anisotropies during propagation Free streaming: 
keeps memory of initial 
conditions!!! 
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anisotropic dependence by defining !GW through ⌦GW =´
d
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n̂!GW(⌘, ~x, q, n̂)/4⇡, and by introducing the density

3

contrast �GW ⌘ �!GW(⌘, ~x, q, n̂)/!̄GW(⌘, q). Using eq.
(4), one then finds

�GW =


4� @ ln ⌦̄GW (⌘, q)

@ ln q

�
� (⌘, ~x, q, n̂) , (7)

with ⌦̄GW the homogeneous, isotropic component of ⌦GW.

In the CMB case, by inserting the definition (4) in the
Planck distribution, and expanding to first order, one
finds �CMB = �T/T . The main di↵erence between the
CMB and the GW case is that, before recombination, the
collision term between photons and baryons suppresses
any existing temperature anisotropy, thus removing any
memory of the initial state. The observed temperature
anisotropies �T/T arise since recombination, following an
equation analogous to (5), with a source that, to first or-
der, is independent from the energy of the CMB photons.
While in the CMB this dependence arises only to second
order in perturbations, a significantly greater dependence
can be present in the GWs distribution, as an initial con-
dition. In the following, we first compute and discuss
the cosmological correlators of the GW anisotropies, and
we then show through a concrete example that they can
indeed have a significant dependence on frequency.

Correlators of GW anisotropies and non-Gaussianity.
As it is standard [30], we express each of the sources
appearing in eq. (5) as a mode function times an ini-
tial variable that is constant at large scales, assuming
for simplicity adiabatic scalar perturbations, and whose
statistical properties have been set well before the propa-
gation stage that we are considering (for instance dur-
ing inflation, or during some early phase transition).
Therefore, the scalar modes are (disregarding anisotropic
stresses as for example those due to the relic neutrinos)

 = � ⌘ T�(⌘, k) ⇣̂(~k); we then decompose the tensor
modes as hij ⌘

P
�=±2 eij,�(k̂)h(⌘, k)⇠̂�(k

i), where the
sum is over right and left-handed (respectively � = ±2)
circular polarizations, and the polarization operators are
constructed as in [25]. We insert these expressions in
the source function in (5), and solve for �. We then
follow the treatment done for CMB perturbations, and
we expand the solution in spherical harmonics, �(n̂) =P

`

P`
m=�` �`m Y`m(n̂), where we recall that n̂ is the di-

rection of motion of the GWs, and so the direction at
which the GWs arrive on our sky. The multipoles �`m
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where ⌘0 denotes the present time, and we set our location
to ~x0 = 0. We also remark that this term in general
depends on q. The second contribution is due to the

scalar sources in eq. (5)
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in eq. (5), and it is formally analog to eq. (9),
with the product ⇣̂Y

⇤
`m replaced by the combinationP

�=±2 ⇠̂�(
~k)��Y

⇤
`m(⌦k), involving the spin-2 spherical

harmonics, and with the scalar transfer function replaced

by the tensor one T (±2)
` (k, ⌘0, ⌘in), given by

T (±2)
` =

1

4

s
(`+ 2)!

(`� 2)!

ˆ ⌘0

⌘in

d⌘ h
0 (⌘, k)

j` [k (⌘0 � ⌘)]

k2 (⌘0 � ⌘)2
. (10)

We are interested in statistical correlators of the
anisotropies. Under the assumption of statistical homo-
geneity and isotropy, the 2-point and 3-point correlators
of ⇣̂ are expressed in terms of, respectively, the scalar
power spectrum and bispectrum through h⇣(~k)⇣⇤(~k0)i0 =
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/k
3)P (0)(k) and h⇣3(~ki)i0 = B

(0)(ki) (we use the
standard notation of the prime to eliminate the mo-
mentum conservation Dirac delta and the (2⇡)3 coef-
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(�) can

also be defined for the two tensor polarizations. More-
over, we impose correlators of the same structure for the
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At large scales, this contribution is dominated by the

term proportional to the initial value of � in T (0)
` (the

analog of the SW contribution for the CMB). For modes
that re-enter the horizon during matter domination (as it
is the case for those that give the large-scale anisotropies
that we are considering), T� = 3/5 at early times [30].

In the case of CMB

fixed by Planck distribution in the case of the CMB 

3

contrast �GW ⌘ �!GW(⌘, ~x, q, n̂)/!̄GW(⌘, q). Using eq.
(4), one then finds

�GW =


4� @ ln ⌦̄GW (⌘, q)

@ ln q

�
� (⌘, ~x, q, n̂) , (7)

with ⌦̄GW the homogeneous, isotropic component of ⌦GW.

In the CMB case, by inserting the definition (4) in the
Planck distribution, and expanding to first order, one
finds �CMB = �T/T . The main di↵erence between the
CMB and the GW case is that, before recombination, the
collision term between photons and baryons suppresses
any existing temperature anisotropy, thus removing any
memory of the initial state. The observed temperature
anisotropies �T/T arise since recombination, following an
equation analogous to (5), with a source that, to first or-
der, is independent from the energy of the CMB photons.
While in the CMB this dependence arises only to second
order in perturbations, a significantly greater dependence
can be present in the GWs distribution, as an initial con-
dition. In the following, we first compute and discuss
the cosmological correlators of the GW anisotropies, and
we then show through a concrete example that they can
indeed have a significant dependence on frequency.

Correlators of GW anisotropies and non-Gaussianity.
As it is standard [30], we express each of the sources
appearing in eq. (5) as a mode function times an ini-
tial variable that is constant at large scales, assuming
for simplicity adiabatic scalar perturbations, and whose
statistical properties have been set well before the propa-
gation stage that we are considering (for instance dur-
ing inflation, or during some early phase transition).
Therefore, the scalar modes are (disregarding anisotropic
stresses as for example those due to the relic neutrinos)

 = � ⌘ T�(⌘, k) ⇣̂(~k); we then decompose the tensor
modes as hij ⌘

P
�=±2 eij,�(k̂)h(⌘, k)⇠̂�(k

i), where the
sum is over right and left-handed (respectively � = ±2)
circular polarizations, and the polarization operators are
constructed as in [25]. We insert these expressions in
the source function in (5), and solve for �. We then
follow the treatment done for CMB perturbations, and
we expand the solution in spherical harmonics, �(n̂) =P

`

P`
m=�` �`m Y`m(n̂), where we recall that n̂ is the di-

rection of motion of the GWs, and so the direction at
which the GWs arrive on our sky. The multipoles �`m
are the sum of three contributions. The first contribution
arises from the initial conditions,

�`m,I (q)

4⇡ (�i)`
=

ˆ
d
3
k

(2⇡)3
�
�
⌘in,

~k, q
�
⇥Y

⇤
`m(k̂) j`

⇥
k (⌘0 � ⌘in)

⇤
,

(8)
where ⌘0 denotes the present time, and we set our location
to ~x0 = 0. We also remark that this term in general
depends on q. The second contribution is due to the

scalar sources in eq. (5)

�`m,S

4⇡ (�i)`
=

ˆ
d
3
k

(2⇡)3
⇣(~k)Y ⇤

`m(k̂) T (0)
` (k, ⌘0, ⌘in) ,

(9)

where the scalar transfer function T (0)
` is the sum of

a term analogous to the SW e↵ect for CMB photons,
T�(⌘in, k) j`[k(⌘0 � ⌘in)], plus the analog of the ISW
term,

´ ⌘0

⌘in
d⌘

0 [T 0
 (⌘, k) + T

0
�(⌘, k)] j`[k(⌘ � ⌘in)]. Finally,

the third contribution �`m,T is due to the tensor modes
in eq. (5), and it is formally analog to eq. (9),
with the product ⇣̂Y

⇤
`m replaced by the combinationP

�=±2 ⇠̂�(
~k)��Y

⇤
`m(⌦k), involving the spin-2 spherical

harmonics, and with the scalar transfer function replaced

by the tensor one T (±2)
` (k, ⌘0, ⌘in), given by

T (±2)
` =

1

4

s
(`+ 2)!

(`� 2)!

ˆ ⌘0

⌘in

d⌘ h
0 (⌘, k)

j` [k (⌘0 � ⌘)]

k2 (⌘0 � ⌘)2
. (10)

We are interested in statistical correlators of the
anisotropies. Under the assumption of statistical homo-
geneity and isotropy, the 2-point and 3-point correlators
of ⇣̂ are expressed in terms of, respectively, the scalar
power spectrum and bispectrum through h⇣(~k)⇣⇤(~k0)i0 =
(2⇡2

/k
3)P (0)(k) and h⇣3(~ki)i0 = B

(0)(ki) (we use the
standard notation of the prime to eliminate the mo-
mentum conservation Dirac delta and the (2⇡)3 coef-
ficient). Analogously, correlators P

(�) and B
(�) can

also be defined for the two tensor polarizations. More-
over, we impose correlators of the same structure for the
initial conditions, namely h�(⌘in, ~k, q)�⇤(⌘in, ~k0, q)i0 =
(2⇡2

/k
3)P (I)(k) and for the bispectrum B

(I). In this
work, we assume that the di↵erent contributions are
uncorrelated. Under these assumptions, one obtains
h�`m�⇤`0m0i ⌘ �``0 �mm0 eC` = �``0 �mm0 [ eC`,I(q) + eC`,S +
eC`,T ], where we denote the correlators with a tilde to
distinguish them from the CMB case. The contribution
from the initial condition reads,

eC`,I (q)

4⇡
=

ˆ
dk

k
P

(I) (q, k) j2` [k (⌘0 � ⌘in)] , (11)

where again we stress the possible frequency dependence.
The other two terms are

eC`,S + eC`,T

4⇡
=

X

↵=0,±2

ˆ
dk

k
P

(↵) (k) T (↵) 2
` (k, ⌘0, ⌘in) .

(12)
At large scales, this contribution is dominated by the

term proportional to the initial value of � in T (0)
` (the

analog of the SW contribution for the CMB). For modes
that re-enter the horizon during matter domination (as it
is the case for those that give the large-scale anisotropies
that we are considering), T� = 3/5 at early times [30].

Credits: N. Bartolo



Anisotropies of the SGWB from inflation

The formal solution can be also written as

�
⇣
⌘, ~k, q, n̂

⌘
=

Z
⌘

⌘in

d⌘
0 eikµ(⌘

0�⌘)

"

�
⇣
⌘
0
, ~k, q, n̂

⌘
� (⌘0 � ⌘in)

+
@ 

⇣
⌘
0
, ~k

⌘

@⌘0
� i k µ�

⇣
⌘
0
, ~k

⌘
�

1

2
ninj

@�̂ij

⇣
⌘
0
, ~k

⌘

@⌘0

#

(28)

and we note that

�

Z
⌘

⌘in

d⌘
0 eikµ(⌘

0�⌘)
i k µ�

⇣
⌘
0
, ~k

⌘
= �

Z
⌘

⌘in

d⌘
0 @e

ikµ(⌘0�⌘)

@⌘0
�

⇣
⌘
0
, ~k

⌘

= �eikµ(⌘
0�⌘)�

⇣
⌘
0
, ~k

⌘ ���
⌘

⌘in
+

Z
⌘

⌘in

d⌘
0 eikµ(⌘

0�⌘)
@�

⇣
⌘
0
, ~k

⌘

@⌘0

= isotropic +
Z

⌘

⌘in

d⌘
0 eikµ(⌘

0�⌘)

2

4�
⇣
⌘
0
, ~k

⌘
� (⌘0 � ⌘in) +

@�
⇣
⌘
0
, ~k

⌘

@⌘0

3

5

(29)

Disregarding the isotropic part,

�
⇣
⌘, ~k, q, n̂

⌘
=

Z
⌘

⌘in

d⌘
0 eikµ(⌘

0�⌘)

(

�
⇣
⌘
0
, ~k, q, n̂

⌘
� (⌘0 � ⌘in) + �

⇣
⌘
0
, ~k

⌘
� (⌘0 � ⌘in)

+
@

h
 

⇣
⌘
0
, ~k

⌘
+ �

⇣
⌘
0
, ~k

⌘i

@⌘0
�

1

2
ninj

@�̂ij

⇣
⌘
0
, ~k

⌘

@⌘0

)

⌘ �I

⇣
⌘, ~k, q, n̂

⌘
+ �S

⇣
⌘, ~k, n̂

⌘
+ �T

⇣
⌘, ~k, n̂

⌘
(30)

where we have defined the three components

�I

⇣
⌘, ~k, q, n̂

⌘
= eikµ(⌘in�⌘)�

⇣
⌘in,

~k, q, n̂

⌘

�S

⇣
⌘, ~k, n̂

⌘
=

Z
⌘

⌘in

d⌘
0 eikµ(⌘

0�⌘)

2

4�
⇣
⌘
0
, ~k

⌘
� (⌘0 � ⌘in) +

@

h
 

⇣
⌘
0
, ~k

⌘
+ �

⇣
⌘
0
, ~k

⌘i

@⌘0

3

5

�T

⇣
⌘, ~k, n̂

⌘
= �

n
i
n
j

2

Z
⌘

⌘in

d⌘
0 eikµ(⌘

0�⌘)
@�̂ij

⇣
⌘
0
, ~k

⌘

@⌘0
(31)

4

The formal solution can be also written as

�
⇣
⌘, ~k, q, n̂

⌘
=

Z
⌘

⌘in

d⌘
0 eikµ(⌘

0�⌘)

"

�
⇣
⌘
0
, ~k, q, n̂

⌘
� (⌘0 � ⌘in)

+
@ 

⇣
⌘
0
, ~k

⌘

@⌘0
� i k µ�

⇣
⌘
0
, ~k

⌘
�

1

2
ninj

@�̂ij

⇣
⌘
0
, ~k

⌘

@⌘0

#

(28)

and we note that

�

Z
⌘

⌘in

d⌘
0 eikµ(⌘

0�⌘)
i k µ�

⇣
⌘
0
, ~k

⌘
= �

Z
⌘

⌘in

d⌘
0 @e

ikµ(⌘0�⌘)

@⌘0
�

⇣
⌘
0
, ~k

⌘

= �eikµ(⌘
0�⌘)�

⇣
⌘
0
, ~k

⌘ ���
⌘

⌘in
+

Z
⌘

⌘in

d⌘
0 eikµ(⌘

0�⌘)
@�

⇣
⌘
0
, ~k

⌘

@⌘0

= isotropic +
Z

⌘

⌘in

d⌘
0 eikµ(⌘

0�⌘)

2

4�
⇣
⌘
0
, ~k

⌘
� (⌘0 � ⌘in) +

@�
⇣
⌘
0
, ~k

⌘

@⌘0

3

5

(29)

Disregarding the isotropic part,

�
⇣
⌘, ~k, q, n̂

⌘
=

Z
⌘

⌘in

d⌘
0 eikµ(⌘

0�⌘)

(

�
⇣
⌘
0
, ~k, q, n̂

⌘
� (⌘0 � ⌘in) + �

⇣
⌘
0
, ~k

⌘
� (⌘0 � ⌘in)

+
@

h
 

⇣
⌘
0
, ~k

⌘
+ �

⇣
⌘
0
, ~k

⌘i

@⌘0
�

1

2
ninj

@�̂ij

⇣
⌘
0
, ~k

⌘

@⌘0

)

⌘ �I

⇣
⌘, ~k, q, n̂

⌘
+ �S

⇣
⌘, ~k, n̂

⌘
+ �T

⇣
⌘, ~k, n̂

⌘
(30)

where we have defined the three components

�I

⇣
⌘, ~k, q, n̂

⌘
= eikµ(⌘in�⌘)�

⇣
⌘in,

~k, q, n̂

⌘

�S

⇣
⌘, ~k, n̂

⌘
=

Z
⌘

⌘in

d⌘
0 eikµ(⌘

0�⌘)

2

4�
⇣
⌘
0
, ~k

⌘
� (⌘0 � ⌘in) +

@

h
 

⇣
⌘
0
, ~k

⌘
+ �

⇣
⌘
0
, ~k

⌘i

@⌘0

3

5

�T

⇣
⌘, ~k, n̂

⌘
= �

n
i
n
j

2

Z
⌘

⌘in

d⌘
0 eikµ(⌘

0�⌘)
@�̂ij

⇣
⌘
0
, ~k

⌘

@⌘0
(31)

4
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Disregarding the isotropic part,
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The formal solution can be also written as
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and we note that
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Disregarding the isotropic part,
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where we have defined the three components
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Anisotropies at production: 
O(1)-dependence on frequency q  

Anisotropies from propagation through 
scalar perturbations 

Anisotropies from propagation through 
tensor perturbations

so that the ratio
�CMB (p, n̂)
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=
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is indeed p�independent.

4 Solution for coe�cients of spherical har-
monics

We use the spherical harmonics normalization
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which we compute in three di↵erent subsections
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and, for simplicity, we assume that the initial condition does not depend on
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Seed: can be  ΓI(ηin, k, q), ζ or hij Transfer function
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The formal solution can be also written as
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Disregarding the isotropic part,
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where we have defined the three components
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Credits: N. Bartolo



Frequency dependence of initial anisotropies
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What about initial conditions?
What about their frequency dependence?  

• This contribution is completely erased by collisions in the case  of 
CMB anisotropies (and frequency dependence in CMB arises only 
at second-order in the perturbations). 

• Instead for the case of a primordial SGWB visible at 
interferometers scales this term is present and can lead to 
anisotropies with large (order-one) frequency dependence.  

Credits: N. Bartolo



Non-Gaussianity in SGB anisotropies

Induced by:
• Initial conditions (e.g. in PBH models)
• Propagation through non-Gaussian scalar modes 
• Propagation through non-Gaussian tensor modes (e.g. as those arising from 

second-order scalar modes, as originally proposed by K. Tomita (1967); 
Matarrese & Mollerach 1997, … à note that also tensor modes generate GW 
at second order; Matarrese, Mollerach & Bruni 1998; Mollerach, Harari & 
Matarrese 2004). 

• Use Weinberg theorem for adiabatic modes to study NG in squeezed 
limit avoiding potential gauge artifacts.



“Standard” PNG model 
Many primordial (inflationary) models of non-Gaussianity can be represented in configuration 

space by the simple formula (Salopek & Bond 1990; Gangui et al. 1994; Verde et al. 1999; Komatsu 
& Spergel 2001)

F = fL + fNL * ( fL
2 - <fL

2>) + gNL * (fL
3 - <fL

2> fL ) + … 

where F is the large-scale gravitational potential (more precisely Φ = 3/5 ζ on superhorizon scales, 
where ζ is the gauge-invariant comoving curvature perturbation), fL its linear Gaussian contribution 
and fNL the dimensionless non-linearity parameter (or more generally non-linearity function). The 
percent of non-Gaussianity in CMB data implied by this model is

NG % ~ 10-5 |fNL|

~ 10-10 |gNL| < 10-5 from 

CMB & LSS

< 10-5 from CMB & LSS
“non-Gaussian = non-dog” 
(Ya.B. Zel’dovich) 



Bispectrum & PNG: theoretical expectations 

• Primordial NG probed fundamental physics during inflation, being sensitive 
to (self-)interactions of fields present during inflation (different inflationary 
models predict different amplitudes and shapes of the bispectrum)

• Standard models of slow-roll inflation predict only a tiny deviation from 
Gaussianity (Salopek & Bond ‘90; Gangui, Lucchin, Matarrese & Mollerach
1995; Acquaviva, Bartolo, Matarrese & Riotto 2003; Maldacena 2003), 
arising from non-linear gravitational interactions during inflation. See, 
Matarrese, Pilo & Rollo (in preparation), for a discussion of the observability
of Maldacena’s consistency relation. 

Planck results are fully consistent with such a prediction!

• PNG probes interactions among particles at inflation energy scales. See 
literature on probing string-theory via oscillatory PNG (Arkani-Hamed & 
Maldacena 2015 “Cosmological collider physics”; Silverstein 2017 “The 
dangerous irrelevance of string theory”).



Planck 2018 results IX: Planck collaboration 2019

PNG Planck project (Coordinators: S. Matarrese & B. Wandelt)

• Constrain (with high precision) and/or detect primordial non-Gaussianity (NG)
as due to (non-standard) inflation

• We tested: local, equilateral, orthogonal shapes (+ many more) for the
bispectrum and constrain primordial trispectrum parameter gNL (τNL constrained
in previous release).

• We have completed the final, Planck legacy release, which improves the 2015
results in terms of more refined treatment of E-mode polarization (including
low-l region).



CMB bispectrum representation 

a

Gaunt integrals



Bispectrum shapes (modal representation)

Local Equilateral

Orthog. ISW-lensing



The Planck bispectrum (modal; 2018)

TTT EEE

TTE EET

(S/N
weighted)



fNL from Planck 2018 bispectrum (KSW)

Planck collaboration 2019



CMB constraints on tensor PNG

Planck collaboration 2019



PNG and precision cosmology

• PNG is currently the highest precision test of Standard Inflation 
models. 

• With Planck:
• PNG constrained at better than ~ 0.01%
• Flatness constrained at ~ 0.1%
• Isocurvature mode constrained at ~ 1%



Astrophysical Stochastic Gravitational-Wave 
Background (ASGWB)

• A gravitational wave stochastic background of astrophysical origin may 
result from the superposition of a large number of unresolved sources 
since the beginning of stellar activity. 

• Its detection would put very strong constrains on the physical properties of 
compact objects, the initial mass function or the star formation history. 

• Qualitatively one expects that the ASGWB will be dominated by sources 
typically 3–4 orders of magnitude fainter in luminosity than sources in 
relatively nearby galaxies at 10–100 Mpc (z ≈ 0.002–0.02). 

Credits: D. Bertacca 2019



• Angular power-spectrum obtained by Cusin et al. (2017, 2018a,b), considering 
the presence of inhomogeneities in the matter distribution and working with a 
coarse-graining approach, which allow to probe GW sources on cosmological, 
galactic and sub-galactic scales. 

• Predictions for the GW angular power spectrum have been derived by Jenkins et 
al (2018a,b), where both analytical expression and numerical studies, using a 
mock galaxy catalogue from Millennium simulation, are presented. 

• Bertacca et al. (2019) accounted for all projection effects, adopting the cosmic 
rulers formalism and gauge-invariant variables, as done for galaxy surveys, 
finding results fully analogous to those obtained for other cosmic backgrounds  
from unresolved sources (e.g. CIB analysis by Desjacques et al. 2019). Alternative 
approach presented by Pitrou et al. (2019).

ASGWB anisotropies



SGWB generated by black-hole mergers in the 
frequency range of LIGO-Virgo 

101

`

0.0

0.1

0.2

0.3

(C
X `

�
C

d
e
n

`
)/

C
d
e
n

`

fo = 50 Hz

X = Den + Kaiser

X = Den + Kaiser + Doppler

X = All

101

`

0.0

0.1

0.2

0.3

0.4

0.5

0.6

(C
X `

�
C

d
e
n

`
)/

C
d
e
n

`

fo = 200 Hz

X = Den + Kaiser

X = Den + Kaiser + Doppler

X = All

Only unresolved sources contribute to the SGWB. We consider GWs emission in fo = 50 Hz and fo = 200
Hz channels, assuming that all black-hole binaries have members with masses (MBH1, MBH2) = (15
M⊙, 15 M⊙) and zero spin. For simplicity, we assume here that all the events come from halos with
mass Mh = 1012 M⊙.

from: Bertacca et al. 2019



Idealized angular resolution for different detector configurations (see text). The relative sensitivity to
different angular multipoles is obtained by integrating the spherical response to a cross- correlation baseline
weighted by a simple model of the noise spectrum based on the individual detector arm lengths.
Convolution with the detector response functions and the sky-phase coverage would give additional
structure on top of the idealized case.

Angular resolution of GW detectors

from: Baker et al. 2019



GW carry information on the earliest epochs 
in the cosmic history



Final remarks on Part III

• GW carry information on the earliest epochs of the cosmic history à
anisotropies of the GWB represent a snapshot the Universe at GW 
decoupling/GW production at horizon exit during inflation

• Unlike the CMB, the GWB is non-thermal, hence its frequency spectrum is 
also representative of the physical processes occurring at those very early 
epochs.

• Presently SGWB anisotropies are likely to be dominated by the background 
produced by unresolved astrophysical sources, which has to be studied in 
great detail. Is the latter Gaussian, as commonly claimed?



Concluding remarks: the next challenge

• Inflation provides a causal mechanism for the generation of cosmological 
perturbations

• CMB and LSS data fully support the detailed predictions of inflation

• The direct detection of:

• Primordial Gravitational-Wave Background

• Primordial non-Gaussianity

with the specific features predicted by inflation would provide strong  
independent support to the model.


