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e Cosmological Perturbation Theory. Gauge
transformations: scalar, vector and tensor modes.

e Generation of gravitational waves during inflation.

e Second-order tensor modes. Linear evolution of
GW. Upper bounds on the gravitational-wave
background (GWB). Anisotropy and non-
Gaussianity of the SGWB.



The GW spectrum

The big picture of gravitational wave astronomy
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Second-order tensor modes and GW

Consider the spatial part of second-order Einstein equations and project
them into their transverse and traceless parts:

lm 25 Im(2)
Clm — K Hij Tlm.
where k? = 8nG and we introduced the tensor projector operator

[1m = I, — 111, 11V with IT;; = 6;;,—0,0; /A

m

Consider the flat FLRW second-order perturbed metric, neglecting for
simplicity first-order vector and tensor perturbations, and employ

h; = h®);.
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Second-order tensor modes and GW

* From this expression the Einstein tensor at second-order results

(2)2 -2 11 P NL AR i ¢ . 1
G =a [1 (R + 2HR} — V?RE) +20Wote, v — 201 5,9,
+49WMy;9,0) 4+ 9'v Mo, M) — g'erWg,eM) — 5'eM g, )

+30'dWMa; M) 4+ <\I'(2), \I’(Q),u,',z@)t.el‘lll) + (diagonal part) é’J :
* The stress-energy tensor fluid of our perfect can also be expanded up
to second order
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Second-order tensor modes and GW

* Using the expressions for the first-order perturbations of the energy-
momentum tensor in terms of the linear metric perturbations and of
the background value of the stress-energy tensor, we obtain

Fm = 200'0,, ¥ — 280'0,,U + 488'8,,d + 4VH'H,, ¥
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Second-order tensor modes and GW

e To solve this equation it is convenient to Fourier-transform

hij (x,7) = /%eik'x [hi(7)eij (k) + hi(7)8i; (k)]

The two polarization tensors e;;, €;; can be expressed by the polarization vectors e;(k),
e;(k) orthogonal to the propagation vector k as

(94) eij(k) = \/5 [et(k)ej (k) z(k) J(k)]a
_ 1 _ _
(95) €ij (k) = _\/§ [ei(k)ej(k) - ei(k)ej(k)] .

In terms of the polarization tensors, then the RHS of eq. (91) is written as



Second-order
tensor modes and
GW

where %, (k) is the Fourier transform of .#,,(x’). Then, the equation of motion of
second-order tensor modes in Fourier space, for each polarization state, reads

hii + 2Hhj + k2hy = 7 (k,7),
where the quantity
& (k,7) = —4e'™ (k). Fm (k)

is the convolution of two linear scalar perturbations. The equality (97) is a wave-equation
with a source, whose solution reads

ae(r) = % / 47 Gy, (7 7) [a(7).7 (K, 7))

where the Green function Gy solves the eq. (97) with the source given by (1/a)dé(r — 7).
Gx then depends only on the evolution of the scale-factor. Given eq. (99), the expression
for the GW correlator can be written in terms of that of the source as

(hi(T)her (1)) =

1 ! ~ 1~ ~ ~ = = ~ I =
@ /;0 dnidraa(71) a(72) G (1;71) Gy (1572) (7 (k,71) & (K, T2)) ,

a2

where 79 is the time when the source switches on. Equation (100) represents the general
expression for the GW power spectrum due to tensor modes that solve eq. (91). Then,
now the interesting point is to find out the solution for specific cases of the source term.



Second-order tensor modes sourced by
inflaton fluctuations during inflation

The immediate application of second-order perturbation theory consists in considering the
inflationary scalar perturbations as a source for GW. We have just seen that the very existence of
scalar perturbations gives rise to tensor modes, independently of how the first-order scalars have
been generated. Knowing the scalar power spectrum during the inflationary period, the sourced-GW
power spectrum can be calculated too. The spectral properties of our scalar seeds are perfectly
specified by

| 272
(DB ) = ;; Ps(k)s (k + k')

1
We then have hk(r) = () /dka (7,7)[a(7) 7 (k,7)] where the source (after extracting the

polarization tensors) is convolved with the Green’s function, which, in de Sitter space reads

1

Gk (1,7) = 352 [(1+k2Tf) sink(r —7)+ k(7 —71)cosk (T —'F)] O(r—7)
ST




Survey of GW generating
mechanisms

Summary of the main mechanisms of GW
production during inflation and the preheating
phase. In the fourth column, the scenarios are
reported as examples for each mentioned case
(from Guzzetti et al. 2016).

Specific

Examples of

GW Production |Discriminant . . Produced GW
discriminant specific models
single-field broad
v Tt Ceneral slow-roll spectrum
acuum oscillations Relativity oIl other broad
models in GR spectrum
quantum fluctuations broad
of the gravitational theor?’ of G-Inflation spectrum
gravity p
field stretched by - ;
MG/EFT Potential-driven broad
the accelerated approach G-Inflation spectrum
expansion broad
EFT approach
spectrum
vacuum inflaton broad
q . all models
uctuations spectrum
) inflaton+spectator broad
Classical production fluctuations fields spectrum
of extra
scalar fields curvaton broad
second-order spectrum
GW generated by source term pseudoscalar inflaton broad
the presence of gauge particle +gauge field Specirum
a source term production scalar infl.+ broad
in GW equation pseudoscalar+gauge spectrum
of motion scalar particle scalar inflaton led
production +scalar field pease
particle production| chaotic inflation peaked

during preheating

hybrid inflation

peaked




Testing the Inflationary Consistency Relation

single-field slow-roll inflation

r = —8nr

inflationary models beyond the standard ones = violation

From Guzzetti, Bartolo, Liguori & Matarrese, “Gravitational waves from Inflation”, 2016

Model Tensor power-spectrum Tensor spectral index Consistency
relation
Standard infl. Pr = M% (% 2 nr = —2¢ red r=—8nr
pl
. . _ 8 H \2 _ 2 m3 4
Background EFT inflation® | Pr = ox M7, (%) nr = —2€+ 555= (1 + §e) r/b -
—p
EFT inflation® | Pr = CT%Q zlﬂp 2 <2(11+p)> (%)2 nr = 1%}9 blue violation
pl
1/2 9
Gen. G-Infl. Pr = ML;W'T 9‘:3/2 %) nt =3 —2ur r/b -
Pot.-driv. G-Infl. | Pp = -5 (£)* np = —2 b | ro—8246
. . . T = 577 (o T = —2€ r/ T ST
: + _ —7TAH? ( H\?2 &' . .
Extra Particle prod. Pr =86x10 M7, (ﬁ) 656 - blue violation
background :
Spectator field Pr~3 égfiiw ; nt ~ 2 <§’g§ - 25) _ 158 I;_is r/b violation
D




Guzzetti, Bartolo., Liguori, Matarrese, “Gravitational waves from Inflation” 2016
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Gauge dependence of second-order tensor
modes

* Matarrese, Mollerach & Bruni (1998) computed second-order tensor modes in two gauges in matter-
dominaiton: synchronous-comoving (S) and Poisson (P) gauges, finding extra (non-oscillatory) terms in the

S-gauge.
* S-gauge Sy=V> W+ Woy+2(e ;Y- ‘P,ik‘P:;)

7.4

’ g 1 g g i
V23S, VAW o=—5[(V’¢)*— ¢ ue™]
y 2

" ’ 72 -
s+ ;WSij_V Tsij= — 5

* which is solved by

: : VT,=5y
T 47

wij('x,r)=ﬁ5ij(x)+ Tﬂj(XHWU(X’T) 40 1 jy(k7)
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Gauge dependence of second-order tensor
modes

* In the P-gauge one only gets ~n 4~, 2= _ 40
7t ;w,.j—v Wij—_?,];j

which is solved by our previous expression

1

(2m)°

3 . 40 1 _nkn)
d’k exp(!k°X)k_43ij(k)(.§_ KT

mii(X,7)=

* Inomata & Terada (2019) have shown that the same result is found in the TT gauge (contrary to previous
claims). They conclude that the “gravitational-wave” part is indeed gauge-idependent, while extra non-
oscillatory terms of the second-order tensor modes may indeed differ from gauge to gauge. See alsoYuan

et al. (2019) and Gong (2020)



Scalar-induced second-order (vector) and tensor
modes produce CMB B-mode polarization

— RdCP

* Mollerach, Harari & Matarrese (2004) showed that a
nonvanishing B-mode polarization unavoidably arises from
pure scalar initial perturbations, thus limiting our ability to
detect the signature of primordial gravitational waves
generated during inflation. This secondary effect
dominates over that of primordial tensors for an [P
inflationary tensor-to-scalar ratio r<107®. The magnitude of S S
the effect is smaller than the contamination produced by v
the conversion of polarization of type E into type B, by AN
weak gravitational lensing. However, the lensing signal can o o
be cleaned, making the secondary modes discussed here 2
the actual background limiting the detection of small
amplitude primordial gravitational wave.

from Fidler et al. (2014)

* A more refined analytical calculation was performed by
Fidler et al. (2014) % oy "

Figure 1. Angular power spectrum Cy "~ of the intrinsic B-polarisation in the CMB. In this and in
the following figures, we show the Cp’s multiplied by a factor 7;‘3,,!, (2.7255 x IOGuK)Q with respect
to the equations in the text. Upper panel: breakdown of the intrinsic signal (solid blue curve) into
its components, according to eq. (4.5). The BB contribution (solid) dominates over the quadratic
contributions l}( IE) (dotted) and (I E')(I E') (dot-dashed), due to the partial cancellation between the
redshift and temperature corrections eq. (3.13), as explained in the text. Lower panel: the intrinsic
signal (solid blue curve) is comparable to that from primordial gravitational waves (dashed orange
curves) with 7 &2 1077 at £ = 100 and r & 5 x 107® at £ & 700. It is always subdominant with respect
to the lensing-induced B-modes (red curve) and the E-modes (green curve).




Post-inflationary evolution of GW

Let us have a look at how GW behave at the time of radiation and matter domination, when
accelerated expansion has already ended. Inflation stretches tensor perturbations wavelengths to
super-horizon scales, making their amplitude almost frozen. During the radiation and subsequent
matter eras, tensor perturbation wavelengths re-enter the horizon sequentially. When this happens the
decaying solution has substantially disappeared, so what re-enters the causally connected space is the
almost scale-invariant power spectrum at the time of first horizon crossing, which occurred during
inflation. Then, modes that are inside the horizon, start oscillating with amplitude damped by a factor
1/a. In particular, the GW field equation becomes a Bessel equation with the following solutions
respectively, in terms of h; modes:

3]1(:1\77'))

hi(7) = hiijo(kT), Ak () = b ( kT

radiation era matter era

where h,is the amﬁlitude at horizon crossing and j, and j; are the Bessel functions. Looking at the
dependence on k, these solutions tell us that tensor perturbations start oscillating with a damping
factor greater for high frequency waves. During an era of pure dominance of the cosmological constant,
the space-time assumes a de Sitter metric so that the scale-factor evolves in a exponential way, as
during inflation in case of € = 0. Then, in such an epoch, the form of the solution of the GW equation of
motion is given by the standard inflationary solution.



Damping of GW by cosmic neutrinos

Weinberg (2004) showed that the free-streaming of cosmic neutrinos (i.e. after their decopling) produces a
traceless transverse part of the anisotropic stress tensor which affects the propagation of cosmological
gravitational waves, reducing their squared amplitude by 35.6% for wavelengths that enter the horizon during
the radiation-dominated phase, independent of any cosmological parameters. This decreases the tensor
temperature and polarization correlation functions for these wavelengths by the same amount. The effect is less
for wavelengths that enter the horizon at later times. At the longest wavelengths the decrease in the tensor
correlation functions due to neutrino free streaming being about 10%.

3a|. [ V2
7 hij_

2

a

Consider the GW equation

The neutrino stress-energy tensor contains their phase-space distribution which is a solution of the Boltzmann
equation in a perturbed FLRW universe. GW contribute to these perturbations and therefore affect the neutrino
anisotropic stress

h )+2a’(“)/' )+ 7/ ) 24 ;a’(“)\)z[ulx’ U)h!(U)dU
)+ ————h;(u 1 (u) =—241 (u (u—U)h:.(U)dU,
t dt’ -
where u=k 2 and  f,=p./p is the mean neutrino contribution to the energy density.
Jh a(r



GW as extra-radiation (modes well inside the
horizon)

The energy density of a GW background decays with the expansion of the universe
as relativistic degrees of freedom, i.e. pgy % @™ . This means that a GW background

acts as an additional radiation field in the universe, contributing to the background
expansion rate as

> > % ap\* ap\3
H%(a) = H} Kpgg" +Q?ad) (;") +Q°, (;‘)) +Qf{]

We can then give a constraint on the GW energy density redshifted up to the
present number in terms of the number of extra neutrino species

| ~10%
h2 T 43 7
( l pGW) < B (85( 0)) g ANy = 5.6 x ]O_6AN1//
0

Pc gs(T)
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Cosmological SGWB anisotropies

* A derivation of the angular power spectrum of cosmological anisotropies, using a
Boltzmann approach, has been obtained in [Alba & Maldacena 2016 (1512.01531),

Contaldi 2017 (1609.08168) , Bartolo et al 2019 (1908.00527)] Bartolo et al. 2019b;
2019c

* Anisotropies in the cosmological background are imprinted both at its production and
by GW propagation through the large-scale scalar and tensor perturbations of the
universe. Note that the first contribution is not present in the CMB radiation (as the
universe is not transparent to photons before recombination), causing an order one
dependence of the anisotropies on frequency.

* We provided a new method to characterize the cosmological SGWB through its
possible deviation from a Gaussian statistics. In particular, the SGWB will become a
new probe of the primordial non-Gaussianity of the large-scale cosmological
perturbations.



Anisotropies of SGWB from inflation

inflation “Emission surface” of gravitons:
/\/ End of inflation!!!

Adopt a Boltzmann equation approach:
GWs of high frequency propagating
through large-scale (low frequency)
cosmological perturbations

Two contributions to anisotropies of SGWB
Propagation through large-scale

cosmological perturbations
(both scalar and tensor!!)

1. At production

2. by GW propagation to the observer

The SGWB also brings frequency information, in contrast with CMB (apart from spectral distortions)

Credits: N. Bartolo



Anisotropies of SGWB from inflation

Boltzmann equation approach

of . Of ov 00 1, . Ohy; | Of
—J ? : Y a0 —0
(’977+n 8xz+[(977 "opi T2 on q@q
(3
R/_/ - -
Y
Free streaming: Gravitational effects that imprint anisotropies during propagation
keeps memory of initial
conditions!!!
of Lo
of =—q EP I'(n,Z,q,n) I the case of CMB
f Cons = 0T/T
Oln Q : S .
6GW - [4 - aCIEIVqu(n Q)] I (777 L, q, n)

H/_J

fixed by Planck distribution in the case of the CMB Credits: N. Bartolo



Anisotropies of the SGWB from inflation

FI — eiku(mn—n)p (771117 Ea q, fﬁ)
Anisotropies at production:
O(1)-dependence on frequency g

> T (777 i q. n) _ /” dn/%‘ku(n’n){f‘ (77/7 E, q, n) 6(n — nin)}
Tlin

a[xp(n', l%’)+c1>(n/, l%’)} 1 ah,.j(n’, l%')}

+® (7, k) 6 (' — 1)+

_nn .
on’ 2" oy
Anisotropies from propagation through Anisotropies from propagation through
scalar perturbations tensor perturbations

14
> T'(n)=> > TuwYm() — T =Tumi(q) + Toms+ Comr

/¢ m=—~¢
FE /dgkXT(X k » 110 77111)
Seed: can be T\(n;, k, q) Corh; Transfer function

Credits: N. Bartolo



Frequency dependence of initial anisotropies

" (o, Zo, q, 1) = L1 (no, Zo, @y @) + I's (no, Zo, ) + I'r (no, Zo, 1)

q, 1
-

What about initial conditions?
What about their frequency dependence?

e This contribution is completely erased by collisions in the case of

CMB anisotropies (and frequency dependence in CMB arises only
at second-order in the perturbations).

* Instead for the case of a primordial SGWB visible at
interferometers scales this term is present and can lead to
anisotropies with large (order-one) frequency dependence.

Credits: N. Bartolo



Non-Gaussianity in SGB anisotropies

Induced by:
* |nitial conditions (e.g. in PBH models)
* Propagation through non-Gaussian scalar modes

* Propagation through non-Gaussian tensor modes (e.g. as those arising from

second-order scalar modes, as originally proposed by K. Tomita (1967);
Matarrese & Mollerach 1997, ... =2 note that also tensor modes generate GW
at second order; Matarrese, Mollerach & Bruni 1998: Mollerach, Harari &

Matarrese 2004).

* Use Weinberg theorem for adiabatic modes to study NG in squeezed
limit avoiding potential gauge artifacts.



“Standard” PNG model

Many prlmordlal (mflatlonarg) models of no (3

8E)ace yt e simple formula (Salopek & Bond

ssianity can be re gresented in conflguration
Spergel 2001)

au
90; Gangui et al. 1994; Verde et al. 1999; Komatsu

D=, +fy« (2 -<02>) + gy« (D3 -<p>> ¢ ) + ...

where @ is the large-scale gravitational potential (more precisely ® = 3/5 T on superhorizon scales,
where T is the gauge-invariant comoving curvature perturbation), (I),_ its linear Gaussian contribution

and_f the dimensionless non-linearity parameter (or more %enerally non-linearity function). The
percen% of non-Gaussianity in CMB data implied by this mode

NG % ~10° |fl

~ 10 | gy |

“non-Gaussian = non-dog”
(Ya.B. Zel’dovich)




Bispectrum & PNG: theoretical expectations

* Primordial NG probed fundamental physics during inflation, being sensitive
to (sel )/nteract/ons of fields present during inflation (different inflationary
models predict different amplitudes and shapes of the bispectrum)

* Standard models of slow-roll inflation predict only a tiny deviation from
Gaussianity (Salopek & Bond "90; Gangui, Lucchin, Matarrese & Mollerach
1995; Acquaviva, Bartolo, Matarrese & Riotto 2003; Maldacena 2003),
arising from non-linear ravitational interactions durlng inflation. See,
Matarrese, Pilo & RoIIo%n pre aration), for a discussion of the observablhty
of Maldacena’s consistency rela tlon

Planck results are fully consistent with such a prediction!

* PNG probes interactions among particles at inflation energy scales. See
literature on probing string-theory via osullatory PNG (Arkani-Hamed &
Maldacena 2015 “Cosmological collider physics”; Silverstein 2017 “The
dangerous irrelevance of string theory”).



Planck 2018 results IX: Planck collaboration 2019

PNG Planck project (Coordinators: S. Matarrese & B. Wandelt)

 Constrain (with high precision) and/or detect primordial non-Gaussianity (NG)
as due to (non-standard) inflation

« We tested: local, equilateral, orthogonal shapes (+ many more) for the
bispectrum and constrain primordial trispectrum parameter gy, (t,, constrained
in previous release).

e We have completed the final, Planck legacy release, which improves the 2015
results in terms of more refined treatment of E-mode polarization (including
low-| region).



CMB bispectrum representation

1mam3 _
BZQQ = <aflMlat’2m2a€3M3> €3

X4
— 1283
- miymomsy bt’l 82[3

Gaunt integrals
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|
|
L
0 L 4
Triangle condition: ) < €, + {3 for {1 > {5, {3, +perms.
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Resolution: (1,03, 03 < Cpax s 01,62, (3 €N



Bispectrum shapes (modal representation)
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The Planck bispectrum (modal; 2018)
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fy, from Planck 2018 bispectrum (KSW)

Shape Independent Lensing subtracted
SMICA T
Local ......... 6.7+ 5.6 -05+ 5.6
Equilateral . . . . .. 4 +67 5 +67
Orthogonal . .. .. —-38 +37 —-15 37
SMICA T+E
Local ......... 41+ 5.1 -09+ 5.1
Equilateral . . . . .. -25 +47 -26 +47
Orthogonal . .. .. -47 +24 -38 +24

Planck collaboration 2019



CMB constraints on tensor PNG

Table 14. Results for the tensor nonlinearity parameter f,;"/ 10
obtained from the SMICA, SEVEM, NILC, and Commander tem-
perature and polarization maps. The central values and the er-
rors (68 % CL) extracted from ¢, + {, + {3 = even (“Even”),
{1 + (> + {3 = odd (**Odd™), and their whole domain (“All”") are
separately described. One can see that all T-only results are in
good agreement with both the Planck 2015 ones (PCNG15) and
WMAP ones (Shiraishi et al. 2015).

Planck collaboration 2019

Even Odd All
............ 4+ 17 100 + 100 6+16
............ 33+ 67 —-570+720 29 + 67
.......... 11 +14 1+ 18 8+11
............ 4+ 17 90 + 100 6+16
............ 75+ 75 —790 + 830 70+75
.......... 16 + 14 2+ 20 13+12
............ 4+ 17 90 + 100 6+16
............ —16 + 81 —540 + 820 —-19 £ 80
.......... 6+ 14 3+ 21 5+11
Commander
............ 5+17 90 + 100 6+16
............ 21 £ 69 —1200 + 700 13 +69
.......... 10+ 14 -2+ 19 7+11




PNG and precision cosmology

* PNG is currently the highest precision test of Standard Inflation
models.

e With Planck:

e PNG constrained at better than ~ 0.01%
e Flatness constrained at ~ 0.1%
e |socurvature mode constrained at~ 1%



Astrophysical Stochastic Gravitational-Wave
Background (ASGWB)

* A gravitational wave stochastic background of astrophysical origin may
result from the superposition of a large number of unresolved sources
since the beginning of stellar activity.

* Its detection would put very strong constrains on the}physical properties of
compact objects, the initial mass function or the star formation history.

* Qualitatively one expects that the ASGWB will be dominated by sources
typically 3—4 orders of magnitude fainter in luminosity than sources in
relatively nearby galaxies at 10—-100 Mpc (z = 0.002—0.02).

Credits: D. Bertacca 2019



ASGWB anisotropies

* Angular power-spectrum obtained by Cusin et al. (2017, 2018a,b), considering
the presence of inhomogeneities in the matter distribution and working with a
coarse-graining approach, which allow to probe GW sources on cosmological,
galactic and sub-galactic scales.

* Predictions for the GW angular power spectrum have been derived by Jenkins et
al (2018a,b), where both analytical expression and numerical studies, using a
mock galaxy catalogue from Millennium simulation, are presented.

* Bertacca et al. (2019) accounted for all projection effects, adopting the cosmic
rulers formalism and gauge-invariant variables, as done for galaxy surveys,
finding results fully analogous to those obtained for other cosmic backgrounds
from unresolved sources (e.g. CIB analysis by Desjacques et al. 2019). Alternative
approach presented by Pitrou et al. (2019).



SGWB generated by black-hole mergers in the
frequency range of LIGO-Virgo

f,=50 Hz £, =200 Hz
—— X = Den + Kaiser 0.6 —— X = Den + Kaiser
0.3F X = Den + Kaiser + Doppler - X = Den + Kaiser + Doppler
5 — X =Al 5 Uy — X =Al '
T T
QO QO
~ ~
" E
X X
QO
| |
<o 0.1 Mo
S S
0.0r o
10!
[ { from: Bertacca et al. 2019

Only unresolved sources contribute to the SGWB. We consider GWs emission in f, = 50 Hz and f, = 200
Hz channels, assuming that all black-hole binaries have members with masses (MBH;, MBH,) = (15

M@, 15 M) and zero spin. For simplicity, we assume here that all the events come from halos with
mass My, = 1012 M.



Angular resolution of GW detectors
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Angular multipole /

from: Baker et al. 2019

|dealized angular resolution for different detector configurations (see text). The relative sensitivity to
different angular multipoles is obtained by integrating the spherical response to a cross- correlation baseline
weighted by a simple model of the noise spectrum based on the individual detector arm lengths.
Convolution with the detector response functions and the sky-phase coverage would give additional
structure on top of the idealized case.



GW carry information on the earliest epochs
in the cosmic history
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Primordial GWs are out of equilibrium since the Planck scale (photons at 0.3 eV) so
they carry information about the Universe at really high energies
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Final remarks on Part Il

* GW carry information on the earliest epochs of the cosmic history =
anisotropies of the GWB represent a snapshot the Universe at GW
decoupling/GW production at horizon exit during inflation

* Unlike the CMB, the GWB is non-thermal, hence its frequency spectrum is
also representative of the physical processes occurring at those very early
epochs.

* Presently SGWB anisotropies are likely to be dominated by the background
produced by unresolved astrophysical sources, which has to be studied in
great detail. Is the latter Gaussian, as commonly claimed?



Concluding remarks: the next challenge

* Inflation provides a causal mechanism for the generation of cosmological
perturbations

 CMB and LSS data fully support the detailed predictions of inflation

* The direct detection of:

 Primordial Gravitational-Wave Background

* Primordial non-Gaussianity

with the specific features predicted by inflation would provide strong
independent support to the model.



