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The Big Bang “crisis”

i. Horizon problem: does our Universe belong to … a 
set of measure zero?

ii. Flatness problem: do we need to fine-tune the 
initial conditions of our Universe?

iii. Cosmic fluctuation problem: how did 
perturbations come from?



Particle horizon (Rindler 1956)
The particle horizon (=past event horizon) at cosmic time t is the 

distance travelled by a photon (pr other null-like particle) since 
the beginning of time to the considered time. This 
cosmological horizon measures the proper distance from 
which one could possibly retrieve information, hence the 
distance of causal corelation among events.
• By integrating the FRW line element with ds=0, one finds a 

proper horizon distance

dparticle horizon(t)

• where in the last approximate equality we introduced the so-
called Hubble radius dH(t) = c/H(t) which yields an effective 
estimate of the distance of causal correlation

€ 

= a(t)c dt '
0

t

∫ /a(t') ≈ c /H(t)



Kinney 2003

The comoving scale 
of  causal correlation

rH(t) = 1 / a(t)H(t)

grows with time

The horizon problem



Last scattering surface: CMB photons 
decouple at recombination epoch 
z~1100 (tr~ 400,000 years)

Light could have travelled
L ~ c tr (horizon) 
Such a distance would 
subtend an angle of 
about 1 degree. 

We actually see 
CMB photons with 
nearly the same
T at bigger angular 
scales >7° (e.g. COBE satellite).

The CMB at last scattering (recombination)  
Consists of 105 causally disconnected regions.  

>7°

2 causally
disconnected
regions at 
recombination

The horizon problem

Adapted from http://benasque.org/2011Astrophysics/talks_contr/172_Lewis.pdf 



Evolution of 
the comoving 
Hubble radius

To solve the horizon problem one 
needs a period when rH

decreases with time, i.e. a period 
of  accelerated expansion:

a > 0
..

i.e. the comoving scale 
of causal correlation rH(t) 
decays with time during 
inflation



Solution of the horizon problem

The horizon problem is solved if a region that was causally connected at the beginning of inflation, 
ti, whose typical size is dH(ti) = a(ti) rH(ti) after inflating by a factor 

is able to contain the present Hubble radius scaled back to the end of inflation tf: 

rH(ti) ≥rH(t0)

This is possible only if rH(t) decreases with time during inflation: 

for a suitable time-interval
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“Minimal inflation”: Z=Zmin
Take Z=Zmin such that rH(t0)=rH(ti). From the definition of Z one finds

which, for inflation final temperature not far from the Planck energy
(TPlanck~1019GeV), and for a nearly de Sitter equation of state winf=-1, leads 
to a minimum number of inflation e-folds

Ninf ~ 60

With such a choice W0=Wi which automatically solves the flatness problem. 
More in general 

(W0
-1-1)/(Wi
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Solution of the horizon problem

About 60 e-folds of 
inflation suffice to 
solve the horizon 
and flatness 
problems. Inflation 
usually lasts much 
much longer.

Kinney 2003



Evolution of the density parameter:
flatness problem

The density parameter 
decreases with time if 
the Universe expansion is 
decelerated. One needs a 
fine-tuning of ~ 60 orders 
of magnitude (!) at the 
Planck time in order to 
allow for a density 
parameter of order unity 
today! A period of 
accelerated expansion
automatically solves the 
problem.



Kinematics of 
inflation

The accelerated expansion can 
be realized by many different 
types of scale factor time-
dependence, originating from 
different equations of state 
(w=p/r) during inflation. For 
slow-roll inflation this in turn 
comes from a choice of the 
inflaton potential V(j).

.



The rise and fall ... of the comoving Hubble horizon
(late-time dark energy dominance neglected for simplicity)

credits: Coles & Lucchin 2002

inflation

radiation and matter eraspre-inflation era (if any)

last scattering



A brief history of the inflationary model 

n 1979 – 1980 A. Starobinski shows that a de Sitter stage in the early Universe is 
driven by trace anomalies of quantum fields in an external gravitational field; 
this phase is later terminated by the generation of scalar field fluctuations 
(“scalarons”) è a stochastic background of gravity-waves should be the 
observable relic of this early phase.

n 1981 A. Guth shows that “Inflation” (i.e. a quasi-de Sitter expansion phase in the 
early Universe) is caused by a first-order phase transition (“Old Inflation”); this 
phase solves the “monopole overproduction problem” of phase transitions at 
high temperature è the horizon and flatness problems find automatic solution. 
However, the phase transition never gets to an end (“graceful exit problem”). 
Similar ideas were in (Brout et al. 1978; Suto 1981; Kazanas 1981; ). 

n 1982 A dynamical symmetry-breaking mechanism is invoked to avoid the 
graceful exit problem of Guth’s model in two independent analyses (Albrecht & 
Steinhardt 1982; Linde 1982). The “New Inflation” model is based on the slow-
rolling of a scalar field along an almost flat potential. This scalar field is initially 
associated to the Higgs sector of GUT



A brief history of the inflationary model
n 1982 – 1983 Many independent groups (Guth & Pi; Starobinski; Hawking; 

Bardeen, Steinhardt & Turner) show that during slow-rolling inflation scalar 
perturbations are created by quantum vacuum oscillations of the scalar field, 
leading to density fluctuations dr/r ~ l1/2 where l is the self-coupling constant of 
the scalar field. Consistency with the observed isotropy of the CMB constrains l 
to be much less than 10-4 . This leads to two classes of problems: the thermal 
initial conditions problem and the nature of the scalar field which needs to be 
very weakly coupled with the rest of the world (it must be a “singlet”)

n 1983 A. Linde proposes a new class of models, called “Chaotic Inflation”, where 
thermal initial conditions (i.e. a metastable state) are replaced by an unstable 
initial scalar-field state motivated by Heisenberg uncertainty relation near the 
Planck scale.  

n 1983 Particle-physics theorists argue that Supersymmetry might be the natural 
environment for such a weakly coupled scalar field, which can be easily added as 
a novel scalar sector to the theory: the “Inflaton”. 



A brief history of the inflationary model

n 1986 A. Linde notices that chaotic inflation is the most probable state of the 
Universe. Only a tiny fraction of the inflated Universe ends the accelerated phase 
undergoing reheating, thus leading to a post-inflation phase resembling the 
observed Universe. The vast majority of the Universe volume undergoes “Eternal 
Inflation”. This necessarily calls for the use of the “Anthropic Principle” in 
cosmology. 

n 1999 The detection of the first Doppler peak in the CMB anisotropies by the 
BOOMERanG and MAXIMA collaborations gives strong support to the inflationary 
prediction of a flat (W = 1) Universe.

n 2003 WMAP yields spectacular support to all the most important predictions of 
inflation: flat Universe, adiabatic and nearly scale-invariant density perturbations, 
T-E cross-correlation, …! Only the inflation generated gravitational-wave 
background is yet undetected.

n 2013-2018 Planck provides the stringent constraints on models of inflation and 
constrains primordial non-Gaussianity to small values, giving support to the 
simplest inflation models. 



We are here

We seek information
about very early times 
and very high energies
E~1016 GeV ... or lower

T~1 MeV

Zeq~3500

Zrec~1100



Major events in the 
cosmic history

Credits: Baumann 2012



Inflation in the early Universe

• Inflation is an epoch of accelerated expansion in the early Universe 
( ~ 10-34 s after the “Big Bang”) which allows to solve two 
inconsistencies of the standard Big Bang model (horizon: why is the 
Universe so homogeneous and isotropic on average + flatness: why 
is the Universe spatial curvature so small even ~ 14 billion years 
after the Big Bang?).

• Inflation (Brout et al. 1978; Starobinski 1980; Kazanas 1980; Sato 
1981; Guth 1981; Linde 1982, Albrecht & Steinhardt 1982; etc. ...) is 
based upon the idea that the vacuum energy of a scalar quantum 
field, dubbed the “inflaton”, dominates over other forms of energy, 
hence giving rise to a quasi-exponential (de Sitter) expansion, with 
scale-factor

a(t) ≈ exp(Ht) 



Inflation predictions
• Quantum vacuum oscillations of the inflaton (or  other scalar fields, such as 

the “curvaton”) give rise to classical fluctuations in the energy density, 
which provide the seeds for Cosmic Microwave Background (CMB) 
radiation temperature anisotropies and polarization, as well as for the 
formation of Large Scale  Structures (LSS) in the present Universe.

• All the matter and radiation which we see today must have been generated 
after inflation (during “reheating”), since all previous forms of matter and 
radiation have been tremendously diluted by the accelerated expansion 
(“Cosmic no-hair conjecture”).  

• In full generality a stochastic gravitational-wave background is predicted, 
whose amplitude is related to the energy scale during inflation. 



Inflation dynamics

• Different models of inflation derive from different potentials and different 
initial conditions. Old inflation (Guth 1981) assumes thermal initial 
conditions (which are very difficult to achieve). Chaotic inflation (Linde 1983) 
is based on the application of the uncertainty principle at Planck energies.



Chaotic inflation

Credits: Andrei Linde 2013



Two simple but very important examples
“Large field”  models “Small field”  models 

SMALL FIELD EXCURSION
Δφ << MPl

LARGE FIELD EXCURSION
Δφ > MPl

typical of ``caothic inflation scenario’’
(Linde `83)

``power law inflation’’ (Lucchin & Matarrese‘85)

from spontaneous symmetry breaking or 
Goldstone,  axion models (Linde; Albrecht, 
Steinhardt `82; Freese et al ‘90)



Inflation and the inflaton
Consider a simple real scalar field:                                             

3 ingredients: 

- The scalar field (the so called inflaton field)
- the gravitational field (i.e., the metric)
- the ``rest of the world’’: fermions, gauge bosons, other scalars….(I will come back 
later to this) 

–



Inflation and the Inflaton

Standard kinetic term Inflaton potential: describes the self-interactions
of the inflaton field and its interactions with the 
rest of the world 

Think the inflaton mean field as a particle moving under a force 
induced by the potential V 

Ex: 

= –



Why does a scalar field work well in driving inflation?       
Because a scalar field can provide an energy density   
that remains (almost) constant in time

Energy momentum tensor

For a real scalar field, minimally coupled (i.e. without coupling to gravity like              )



Let us look in more details into the dynamics of a scalar field in 
a curved space-time

This is our master equation: the Klein-Gordon equation for a scalar
field in a FRW metric

Scalar field eq. of motion



Background evolution

Split the scalar field as a (classical) background + a (quantum) fluctuation

Dropping the fluctuation we obtain

If the potential energy dominates over the kinetic term we obtain acceleration (w<1/3) and,
in the limit w à - 1 we get de Sitter evolution 

a(t) ≈ exp(Ht)



Quantifying slow-roll dynamics

Using the approximate
Friedmann and 
Klein-Gordon eqs.:

Define two (first-order) 
slow-roll parameters, which 
need to be << 1 for successful
slow-roll inflation to occur

Inflation demands

ß also useful



Inflation ends when the inflaton field starts to ``feel’’  
the curvature of the potential 

So when                (and in general                  ) inflation comes to an end 

The kinetic energy is not negligible anymore; 
the field starts then to oscillate around the minimum 
of the potential with frequency 

The oscillations are damped because in this regime the inflaton 
field decays into lighter particles with a decay rate  

The kinetic energy is transferred to other
lighter particles (release of latent heat). 
These particles thermalizes and start to 
dominate à the standard FRW universe starts

REHEATING PHASE

credits: Nicola Bartolo



Physical meaning of inflaton fluctuations
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The effect of inflaton fluctuations is to produce a space-dependent time-delay
dt in the evolution of the homogeneous mode j. We would then expect density 
fluctuations dρ/ρ ~ Hdt .



Perturbing geometry



Perturbed LHS of Einstein’s eqs.

Expanding to first order in the metric perturbation the Christoffel symbols 
first and the Ricci tensor next one arrives at:



Perturbed RHS of Einstein’s 
& Klein-Gordon eqs.



Gauge transformations

from: Riotto (2002)



Gauge transformations & gauge invariance

Under a gauge transformation our 
“scalar” perturbations transform 
as follows:

àBeware of pure-gauge modes and of
gauge artifacts (“tenacious myths”)!

Two ways out: choose a gauge (but take 
care of residual gauge ambiguities)

Define gauge-invariant  quantities (e.g. 
by linearly combining perturbations)

Bardeen’s g.-i. potentials



Useful gauge-invariant variables



Classical evolution of scalar perturbations

Before discussing the evaluation of the scalar-field fluctuations, let’s 
discuss how this information can be transferred to the post-inflationary 
evolution.  

We need a gauge-invariant quantity that changes smoothly when the
Universe changes its equation of state: 

inflaton à radiation à matter à dark energy domination

The quantity z remains (approximately) constant outside the horizon, as long as non-
adiabatic pressure terms do not appear (e.g. isocurvature perturbations)  



Scalar mode equation of motion 
in a quasi-de Sitter stage

the 0-0 component (energy constraint) and the i-i components give

In the longitudinal gauge (B=E=0), using Einstein’s eqs., the i≠j components yield                                           

the 0-i components (momentum constraints) yield



Combining the previous eqs. One obtains an equation only for (e.g.) the gravitational potential ψ

On super-horizon scales, using the background equation of motion and the definition of slow-roll 
parameters one can show that the gravitational potential is nearly constant, which upon replacement in 
the momentum constrain, gives 

Scalar mode equation of motion 
in a quasi-de Sitter stage

This result can be used in the perturbed Klein-Gordon equation to obtain (still on super-horizon scales)

Rescaling the scalar field variable as dck= dfk /a we obtain



Solving for the scalar mode



Action functional for cosmological GW

• Let’s start from the action for Gravity + a neutral scalar field (which is 
what we need to describe standard inflation models)

• Let’s now focus on the gravitational part and perturb it up to second 
order in tensor modes, we find



Equation of motion for (linear) GW
• By functionally differentiating the previous equation we easily find

• At this level the RHS can only vanish, as our scalar field cannot source tensor modes. Similarly, 
a perfect fluid will not give rise to tensor contributions in the RHS of Einstein’s equations. Ford 
and Parker (1977) showed that this equation can be connected with the Klein-Gordon eq. for a 
minimally-coupled neutral scalar field once you Fourier transform and account for the GW 
polarozation tensor, namely:

2

à1111111111111111111111111111111111111

l=+,x

GWs have only (9à6-1-3=) two independent degrees of freedom, corresponding to the two polarization 
states of the graviton

aaaà1111111111111111111111111111aa



Equation of motion for (linear) GW
The resulting e.o.m. reads 

Let us now study the qualitative behavior of its solutions. We can identify two main regimes depending on the 
relative magnitude of the second and third term. First, consider the case in which aʹʹ/a ≪ k2. Ignoring the second 
term in parentheses, the equation for v becomes that of a free harmonic oscillator, so that tensor perturbations 
oscillate with a damping factor 1/a. This approximation corresponds to overlook the effect of the expansion of 
the Universe. To make explicit the physical condition corresponding to this regime, notice that, since aʹʹ/a 
∼(aʹ/a)2, aʹʹ/a ≪ k2 corresponds to k ≫ aH, i.e. to the sub-horizon behavior (check for example the case of a de 
Sitter space-time where a(τ ) ∼1/τ ). Keeping in this regime, the solution of the above eq. reads

which means that the amplitude of the modes of the original field hij decrease in time with the inverse of the 
scale-factor as an effect of the Universe expansion. Consider now the regime in which the second term is 
negligible with respect to the third one: k2 ≪ aʹʹ/a. There are two possible solutions

which corresponds to h ∝ const. and a decreasing in time solution, respectively. This situation clearly 
corresponds to the super-horizon regime. In particular we will be interested in the solutions with constant 
amplitude.

(1)



Quantization of cosmological GW
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Quantization of GW in de Sitter space

Note: this approach can be trivially extended to any inflation model. See Abbott and Wise (1984).
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Quantization of cosmological GW
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Generation of cosmological seeds

Particle creation in 
either strong (Hawking 
1972) or rapidly varying
(Parker 1969) 
gravitational fields 

Schrödinger (1939): “an
alarming phenomenon”. 

In QED the analogous 
effect in a strong electric 
field is known as “Klein 
paradox”

Kinney 2003



Power-spectrum of primordial GW

• We can now write the tensor-mode power-spectrum

so that on super-horizon scales the following power spectrum holds

which we can rewrite as 

• Notice that it is almost scale-invariant, which means that all the GW produced, nearly frozen on 
super-horizon scales, have all the same amplitude. Moreover, the tensor spectral index is negative 
(”red spectrum”)  if dH/dt < 0 in agreement with the Null Energy Condition (NEC). For nT > 0 
(which requires violation of NEC!) it is indicated as “blue spectrum”. We refer to the case in which 
nT = 0 as “scale-invariant” (historically “cosmological white-noise”). Here AT is the tensor 
amplitude at some pivot scale k∗ and nT is the tensor spectral index. 



Consistency relation
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Energy density of GW
Let us now introduce some useful definitions, in particular to identify the GW energy-density. Consider the 
weak-field limit, where GW can be described as space-time ripples propagating on a fixed background. The 
vacuum field equations read Gμν = 0, which is equivalent to Rμν = 0. Making explicit the Ricci tensor as a sum of a 
background term and perturbative terms up to second order,

one can deduce from the vacuum equations, how the presence of the GW affects the background (where, for 
example, R(2)

μν (h) indicates the contribution to the Ricci tensor which contains terms as ∼h · h). The terms that 
play this role then can be interpreted as a stress-energy tensor tμν due to the presence of GW. In this direction it 
is useful to note that Rμν can be written as a sum of two kinds of terms, those representing a smooth 
contribution and others which encode the fluctuating part. Each of the two contributions vanishes on its own. 
The background term varies only on large scales with respect to some coarse-graining scale, therefore we are 
interested in the equation for the smooth contributions. The only linear term R(1)

μν(h) solves by itself R(1)
μν(h)=0. 

Then, the remaining equation for the smooth part of the vacuum equation reads:

where ⟨. . .⟩ indicates the average over several wavelengths which extracts the smooth contribution with respect 
to the coarse-graining scale.



Energy density of GW

An analogous reasoning can be enlarged to the Einstein tensor, so that one gets the 
following Einstein equations, in vacuum:

The terms on the RHS tell how the presence of GW affects the background metric, 
then they can be interpreted as the GW stress-energy tensor tμν, apart from a factor 
8πG. In terms of the tensor perturbations of the metric it reads:



Energy density if GW

From the previous equation, the GW energy-density, on a FRW 
background, reads

Where primes denote differentiation w.r.t. conformal time t and 
(1/a)d/dt = d/dt. However, more often one makes use of the GW 
energy-density per logarithmic frequency interval, normalized to the 
critical density



Gravity-wave background from inflation

• As originally noticed by Starobinski (1979) an early period of quasi-de Sitter 
evolution leaves its imprint in terms of a low-amplitude stochastic 
background of gravitational waves (see also Grishchuck 1975, Rubakov et 
al. 1982, Fabbri & Pollock 1982, Abbott & Wise 1984) which originated from 
quantum vacuum fluctuations of (linearized) spin-2 gravitational 
perturbations (“gravitons”), left the horizon during inflation (hence 
remaining frozen and unobservable) and re-entered the horizon recently, 
hence becoming potentially observable as classical tensor perturbations of 
space-time.  

• The detection of these primordial gravitational waves represents the 
“smoking gun” proof of the validity of the inflationary theory, otherwise 
very hard to “falsify”; other crucial specific imprints being: the existence of 
perturbations with a super-horizon seed (detected!), specific non-Gaussian 
signatures of primordial perturbations (strongly constrained by Planck, 
which supports the simplest inflation models).



Slow-roll parameters and cosmological 
observables

Scalar (comoving curvature) 
perturbation power-spectrum

Tensor (gravity-wave) 
perturbation power-spectrum
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PLANCK 2018: TEMPERATURE ANISOTROPIES



PLANCK 2018: POLARIZATION ANISOTROPIES



Planck 2018 TT-spectrum

aaaaaaaa



and ... including polarization

Planck 2018



Baseline LCDM results 2018 
(Planck legacy: Temperature+polarization+CMB lensing)

Mean s [%]

Ωbh2 Baryon density 0.02237 0.00015 0.7

Ωch2 DM density 0.1200 0.0012 1

100θ Acoustic scale 1.04092 0.00031 0.03
t Reion. Optical depth 0.0544 0.0073 13
ln(As 1010) Power Spectrum 
amplitude 3.044 0.014 0.7

ns Scalar spectral index 0.9649 0.0042 0.4
H0 Hubble 67.36 0.54 0.8
Ωm Matter density 0.3153 0.0073 2.3
s8 Matter perturbation 
amplitude 0.8111 0.0060 0.7

• Most parameters 
determined at (sub-) 
percent level!

• Best determined parameter 
is the angular scale of 
sound horizon θ to 0.03%.

• t lower and tighter 
due to HFI data at 
large scales.

• ns 8s away from scale 
invariance (even in 
extended models, always 
>3s)

• Best (indirect) 0.8%
determination of the 
Hubble constant to date.

credits: S. Galli



Planck 2018 constraints on inflation models

Marginalized joint 68% and 95% CL regions for ns and r0.002 from Planck in combination
with other datasets, vs. theoretical prediction of selected inflation models.



Best fit: Starobinsky model
• A. Starobinski in 1980 proposed a model for the Early Universe 

originally motivated by conformal (trace) anomaly. This corresponds to 
the Lagrangian (Jordan frame) 

L = R + R2/6M2

• The corresponding action in the Einstein frame  leads to a plateau + an 
exponential branch
• Question: is there a way to distinguish Starobinski’s model from Higgs 

inflation?
• Hint: look at disformal (“Lifshitz scaling”) anomalies (Celoria & 

Matarrese, in preparation; see also Celoria, Matarrese & Pilo 2018: 
symmetry of continuous media with constant equation of state).



“B2KP” constraints
Ø Joint Analysis of BICEP2/Keck Array and Planck Data (2015):

<<... The final result is expressed as a likelihood curve for r,
and yields an upper limit r0.05 < 0.12 at 95% confidence.
Marginalizing over dust and r, lensing B-modes are detected
at 7.0 σ significance.>>

BB spectrum of the BICEP2/Keck maps
before and after subtraction of the dust
contribution, estimated from the cross-
spectrum with Planck 353 GHz. The error
bars are standard deviations of simulations,
which, in the latter case, have been scaled
and combined in the same way.
The inner error bars are from lensed-
CDM+noise sims, while the outer error bars
are from lensed-CDM+noise+dust sims.



Consequences for high energy physics

For values of r ≈10-1, inflation probes the GUT scale, i.e. 
high-energy scales never achievable in laboratories

The many observational confirmations of inflation predictions 
(may) provide evidence of physics beyond the Standard Model of 
particle physics 

Who is the inflaton?? 

This question has become more and more pressing.



Tensor-to-scalar ratio

Cooray 2004



Standard inflation is still alive ... and in very 
good shape!

Standard inflation i.e.

• single scalar field
• canonical kinetic term
• slow-roll dynamics
• Bunch-Davies initiual vacuum state
• standard Einstein gravity

which predicts O(10-2) primordial NG signal, still consistent with 
data.



Testable predictions of inflation

Cosmological aspects

o Critical density Universe
o Almost scale-invariant and nearly Gaussian, adiabatic density 

fluctuations
o Almost scale-invariant stochastic background of relic gravitational waves

Particle physics aspects

o Nature of the inflaton
o Inflation energy scale



Final remarks on Part II

• Inflation is a very successful theory (a “paradigm”?), which solves the main internal 
contradiction of the standard “Hot Big Bang” theory and provides a physical mechanism 
for the generation of the seeds out of which CMB anisotropies and polarization have 
originated.

• The prediction of a stochastic gravitational-wave background appears to be ubiquitous: it 
is a consequence of the lack of Weyl invariance of the gravitational-wave action.

• Detecting cosmological GWs is a very hard task. We have to search for indirect 
consequences, such as effects on CMB anisotropies and polarization.

• The quantum-to-classical transition of cosmological GW has to be properly understood.


