Cosmological
Perturbation Theory
and Primordial
Gravitational Waves

SIGRAV International School 2020 Gravity:
, General Relativity and beyond. Astrophysics,
Sabino Matarrese Cosmology and Gravitational Waves

Vietri sul Mare 3-7 February 2020

Dipartimento di Fisica e Astronomia “Galileo Galilei”

Universita degli Studi di Padova, Italy
INFN Sezione di Padova

INAF Osservatorio Astronomico di Padova

-

Societa Italiana di Relativita
Generale e Fisica della Gravitazione

GSSI LAquila, Italy




e Cosmological Perturbation Theory. Gauge
transformations: scalar, vector and tensor modes.

e Generation of gravitational waves during inflation.

e Second-order tensor modes. Linear evolution of
GW. Upper bounds on the gravitational-wave
background (GWB). Anisotropy and non-
Gaussianity of the GWB.
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The Big Bang “crisis”

i.  Horizon problem: does our Universe belong to ... a
set of measure zero?

ii. Flatness problem: do we need to fine-tune the
initial conditions of our Universe?

iii. Cosmic fluctuation problem: how did
perturbations come from?



Particle horizon (Rindler 1956)

The particle horizon (=past event horizon) at cosmic time t is the
distance travelled by a photon (pr other null-like particle) since
the beginning of time to the considered time. This
cosmological horizon measures the proper distance from
which one could possibly retrieve information, hence the
distance of causal corelation among events.

* By integrating the FRW line element with ds=0, one finds a
proper horizon distance

dpart/cle hor/zon(t) = Cl(t)Cfdf /Cl(t) C/H(t)

* where in the last approximate equality we introduced the so-
called Hubble radius d,(t) = ¢/H(t) which yields an effective
estimate of the distance of causal correlation




The horizon problem

_ The Horlzon Problem
The comoving scale

of causal correlation

ru(t) =1 / a(t)H(t)

grows with time

r=111N

B1GBANG

Kinney 2003



The horizon problem

Last scattering surface: CMB photons
decouple at recombination epoch
z~1100 (t,~ 400,000 years)

Light could have travelled
L~ ct, (horizon)

Such a distance would
subtend an angle of
about 1 degree.

We actually see
CMB photons with
nearly the same
T at bigger angular
scales >7° (e.g. COBE satellite). »

causally
disconnected

regions at
z~1000 = recombination

The CMB at last scattering (recombination)
Consists of 10° causally disconnected regions.

Adapted from http://benasque.org/2011Astrophysics/talks_contr/172_Lewis.pdf



Evolution of

L

|_

ne comoving

ubble radius

To solve the horizon problem one
needs a period when rx
decreases with time, i.e. a period
of accelerated expansion:

i.e. the comoving scale
of causal correlation ry(t)
decays with time during
inflation




Solution of the horizon problem

The horizon problem is solved if a region that was causally connected at the beginning of inflation,
t, whose typical size is dy(t;) = a(t;) ry(t;) after inflating by a factor

is able to contain the present Hubble radius scaled back to the end of inflation t:

ry(t) 2ry(to)

This is possible only if ry(t) decreases with time during inflation:

for a suitable time-interval



“Minimal inflation”: Z=7

min

Take Z=Z_ ., such that r(t;)=ry(t;). From the definition of Z one finds

which, for inflation final temperature not far from the Planck energy
(Tranc~101°GeV), and for a nearly de Sitter equation of state w,=-1, leads
to a minimum number of inflation e-folds

Ninf ~ 60

With such a choice Q,=Q. which automatically solves the flatness problem.
More in general



Solution of the horizon problem

About 60 e-folds of trrflation solves the Horizon Problam
inflation suffice to '

solve the horizon
and flatness
problems. Inflation
usually lasts much
much longer.

Kinney 2003



Evolution of the density parameter:
flatness problem

The density parameter
decreases with time if

the Universe expansion is
decelerated. One needs a
fine-tuning of ~ 60 orders
of magnitude (!) at the
Planck time in order to
allow for a density
parameter of order unity
today! A period of
accelerated expansion
automatically solves the
problem.




Kinematics of
INTlation

1)

The accelerated expansion can
be realized by many different
types of scale factor time-
dependence, originating from
different equations of state
(w=p/p) during inflation. For
slow-roll inflation this in turn
comes from a choice of the
inflaton potential V(o).
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The rise and fall ... of the comoving Hubble horizon

(late-time dark energy dominance neglected for simplicity)

r0 § last scattering

inflation

pre-inflation efa (if any) iation and matter eras

/

-

Figure 7.4 Evolution of the comoving cosmological horizon v.(t) in a universe charac-
terised by a phase with an accelerated expansion (inflation) from t; to t¢. The scale [y enters
the horizon at t;, leaves at tp and re-enters at t3. In a model without inflation the horizon
scale would never decrease so scales entering at ty could never have been in causal contact
before. The horizon problem is resolved if r.(tg) < v (t;).

credits: Coles & Lucchin 2002



A brief history of the inflationary model

M 1979 —-1980 A. Starobinski shows that a de Sitter stage in the early Universe is
driven by trace anomalies of quantum fields in an external gravitational field;
this phase is later terminated by the generation of scalar field fluctuations
(“scalarons”) = a stochastic background of gravity-waves should be the
observable relic of this early phase.

B 1981 A. Guth shows that “Inflation” (i.e. a quasi-de Sitter expansion phase in the
early Universe) is caused by a first-order phase transition (“Old Inflation”); this
phase solves the “monopole overproduction problem” of phase transitions at
high temperature = the horizon and flatness problems find automatic solution.
However, the phase transition never gets to an end (“graceful exit problem”).
Similar ideas were in (Brout et al. 1978; Suto 1981; Kazanas 1981; ).

M 1982 A dynamical symmetry-breaking mechanism is invoked to avoid the
graceful exit problem of Guth’s model in two independent analyses (Albrecht &
Steinhardt 1982; Linde 1982). The “New Inflation” model is based on the slow-
rolling of a scalar field along an almost flat potential. This scalar field is initially
associated to the Higgs sector of GUT



A brief history of the inflationary model

B 1982 - 1983 Many independent groups (Guth & Pi; Starobinski; Hawking;
Bardeen, Steinhardt & Turner) show that during slow-rolling inflation scalar
|oerturbations are created by quantum vacuum oscillations of the scalar field,
eading to density fluctuations dr/r ~ 1¥2where | is the self-coupling constant of
the scalar field. Consistency with the observed isotro]py of the CMB constrains |
to be much less than 10# This leads to two classes of problems: the thermal
initial conditions problem and the nature of the scalar field which needs to be
very weakly coupled with the rest of the world (it must be a “singlet”)

M 1983 A. Linde proposes a new class of models, called “Chaotic Inflation”, where
thermal initial conditions (i.e. a metastable state) are replaced by an unstable
|Pr}|t|alksca|a|1r—f|eld state motivated by Heisenberg uncertainty relation near the

anck scale.

W 1983 Particle—}physics theorists argue that Supersymmetry might be the natural
environment for such a weakly coupled scalar field, which can be easily added as
a novel scalar sector to the theory: the “Inflaton”.



A brief history of the inflationary model

B 1986 A. Linde notices that chaotic inflation is the most probable state of the
Universe. Only a tiny fraction of the inflated Universe ends the accelerated phase
undergoing reheating, thus leading to a post-inflation phase resembling the
observed Universe. The vast maTjority of the Universe volume undergoes “Eternal
Inflation”. This necessarily calls for the use of the “Anthropic Principle” in
cosmology.

B 1999 The detection of the first Doppler peak in the CMB anisotropies by the
BOOMERanG and MAXIMA collaborations gives strong support to the inflationary
prediction of a flat (W = 1) Universe.

B 2003 WMAP vields spectacular support to all the most important predictions of
inflation: flat Universe, adiabatic and nearly scale-invariant density perturbations,
T-E cross-correlation, ...! Only the inflation generated gravitational-wave
background is yet undetected.

B 2013-2018 Planck provides the stringent constraints on models of inflation and
constrains primordial non-Gaussianity to small values, giving support to the
simplest inflation models.



Today

Life on earth

Acceleration
Dark energy dominate

Solar system form -
Star formation peak
Galaxy formation era\ y

Earliest visible galaxies

e

Recombination 0
Helic raoianon aecoupies (C

Matter domination
Onset of gravitational collapse

Nucleosynthesis
Lignt elements crearea — D, He, L

Nuclear fusion begins

Quark-hadron transition
Protons and neutrons formed

Electroweak transition
Electromagnetic and weak nuclear
forces first differentiate

Supersymmetry breaking

Axions etc.?

Grand uni_fiqation transition [===

Electr

cluD W

Inflation

Quantum gravity wall
Spacetime description breaks down

14 billion years

——= 11 billion years

—— 0.01 seconds

—— > We are here

»
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~ 3 billion years _

700 miIIjon years

Z...~1100
5,000"ygars Zeq™~3500
— 3 minutes T~1 MeV

We seek information

about very early times
and very high energies
E~10'® GeV ... or lower



Major events in the
cosmic history

Credits: Baumann 2012

Time Energy
Planck Epoch? <1078 s 10'® GeV
String Scale? > 1078 s | <108 GeV
Grand Unification? ~ 10736 s 1015 GeV
Inflation? > 1073 s | £ 10" GeV
SUSY Breaking? < 107195 > 1 TeV
Baryogenesis? <1079 s >1TeV
Electroweak Unification 107105 1 TeV
Quark-Hadron Transition 1074 s 102 MeV
Nucleon Freeze-Out 0.01 s 10 MeV
Neutrino Decoupling ls 1 MeV
BBN 3 min 0.1 MeV
Redshift
Matter-Radiation Equality 104 yrs 1eV 104
Recombination 10° yrs 0.1 eV 1,100
Dark Ages 10° — 108 yrs > 25
Reionization 10® yrs 25 —6
Galaxy Formation ~ 6 x 10% yrs ~ 10
Dark Energy ~ 10? yrs ~ 2
Solar System 8 x 107 yrs 0.5
Albert Einstein born 14 x 10° yrs 1 meV 0




Inflation in the early Universe

* |nflation is an epoch of accelerated expansion in the early Universe
(~ 10345 after the “Big Bang”) which allows to solve two
inconsistencies of the standard Big Bang model (horizon: why is the
Universe so homogeneous and isotropic on average + flatness: why
is the Universe spatial curvature so small even ~ 14 billion years
after the Big Bang?).

 |Inflation (Brout et al. 1978; Starobinski 1980; Kazanas 1980; Sato
1981; Guth 1981; Linde 1982, Albrecht & Steinhardt 1982; etc. ...) is
based upon the idea that the vacuum energy of a scalar quantum
field, dubbed the “inflaton”, dominates over other forms of energy,
hence giving rise to a quasi-exponential (de Sitter) expansion, with
scale-factor

a(t) = exp(Ht)



Inflation predictions

e Quantum vacuum oscillations of the inflaton (or other scalar fields, such as
the “curvaton”) give rise to classical fluctuations in the energy density,
which provide the seeds for Cosmic Microwave Background (CMB)
radiation temperature anisotropies and polarization, as well as for the
formation of Large Scale Structures (LSS) in the present Universe.

e All the matter and radiation which we see today must have been generated
after inflation (during “reheating”), since all previous forms of matter and
radiation have been tremendously diluted by the accelerated expansion
(“Cosmic no-hair conjecture”).

* |n full generality a stochastic gravitational-wave background is predicted,
whose amplitude is related to the energy scale during inflation.



Inflation dynamics

» Different models of inflation derive from different potentials and different
initial conditions. Old inflation (Guth 1981) assumes thermal initial
conditions (which are very difficult to achieve). Chaotic inflation (Linde 1983)
is based on the application of the uncertainty principle at Planck energies.

' i Old inflation
Vi Vi

Chaotic mnflation

bubble nucleation

(a) (b)




Chaotic inflation

No need for false vacua, thermal equilibrium, and phase
transitions. Just use any sufficiently flat potential.

SPACE-TIME FOAM

HEATING
OF UNIVERSE

{

\4

s
~

SCALAR FIELD
Credits: Andrei Linde 2013



Two simple but very important examples

“Large field” models

V(g) oxx ¢

typical of “caothic inflation scenario”
(Linde "83)

V(¢) o< expp/p]

“power law inflation” (Lucchin & Matarrese‘85)

LARGE FIELD EXCURSION
Ad > My,

V(¢)
A

“Small field” models

o)

from spontaneous symmetry breaking or
Goldstone, axion models (Linde; Albrecht,
Steinhardt '82; Freese et al ‘90)

¢ < p < Mpy

SMALL FIELD EXCURSION
A Ad) << Mp|

- .

N

\/ -

reheating

¢CMB ¢end
-

A¢



Inflation and the inflaton

Consider a simple real scalar field:

1 1 |
5= [dtay=g [§R - 20 0,60,6~ V(9)| | = Sen + 5.

3 ingredients:

- The scalar field (the so called inflaton field)

- the gravitational field (i.e., the metric)

- the "rest of the world”’: fermions, gauge bosons, other scalars....(l will come back
later to this)



Inflation and the Inflaton

lg/w(/ﬁ,,u(b,u o (975)

2 \
Standard kinetic term Inflaton potential: describes the self-interactions

of the inflaton field and its interactions with the
rest of the world

£¢[¢7 g,ul/] ==

Think the inflaton mean field as a particle moving under a force
induced by the potential V V(o)

A




Why does a scalar field work well in driving inflation?

Because a scalar field can provide an energy density
that remains (almost) constant in time

Energy momentum tensor

o _ 2 05 [OV=gLy) 4 3(\/—9£¢)]
Vg og N

For a real scalar field, minimally coupled (i.e. without coupling to gravity like ¢ Rng )

1

igaﬁﬁa(b 8ﬁ¢ - V(fb))

oL
T,Libl/ — 2(9.9/;1{ R glﬂ/ﬁgb — 8/L¢al/¢ — Juv <




Scalar field eq. of motion

Let us look in more details into the dynamics of a scalar field in

a curved space-time

35,
0¢

=0 — Lo

oV

O

d+3Hp — ——

V2q5 oV
a? 0P

This is our master equation: the Klein-Gordon equation for a scalar

field in a FRW metric




Background evolution

Split the scalar field as a (classical) background + a (quantum) fluctuation

P = §é2+V(¢),

()(IL) - ()(.(l") + (5(,:’)(X, t) 1
Py = §¢2 - V().

Dropping the fluctuation we obtain

6+3HO+V'(6)=0 py _ 39"V
ps 302 +V |

If the potential energy dominates over the kinetic term we obtain acceleration (w<1/3) and,
in the limit w = - 1 we get de Sitter evolution

Vie)> & EERp Do~ —ps EEEP |alt)=exp(H




Quantitying slow-roll dynamics

Using the approximate
Friedmann and
Klein-Gordon egs.:

Define two (first-order)
slow-roll parameters, which
need to be << 1 for successful
slow-roll inflation to occur

’ 4

a

a

(V)2

GG 0 < V() = —— < H?
3 v
AT — (A *- 7 :
3Ho = —-V'(¢) b < 3Ho — V" < H.

n

_ —E__:ilﬂ'Gﬂ%? 1 (V)g

L2 2~ 167G\ V
1 ‘[}?’H 1 ‘L}?’H

~ 3G (1_) T 3H?

= n—€= —E < also useful

—=H+H*=(1—¢€) H*

‘ Inflation demands € < 1



Inflation ends when the inflaton field starts to feel”

the curvature of the potential

g:H—I-H2:(1—6)H2
a

Sowhen ¢ ~ ] (andin general n ~ 1) inflation comes to an end

REHEATING PHASE | The kinetic energy is not negligible anymore;
V(¢) the field starts then to oscillate around the minimum
of the potential with frequency V> H?

The oscillations are damped because in this regime the inflaton
field decays into lighter particles with a decay rate I’¢

é+3H</.5+F¢¢:— o — Py +3Hpy = —Lypy

The kinetic energy is transferred to other
lighter particles (release of latent heat).
These particles thermalizes and start to

dominate = the standard FRW universe starts

¢ credits: Nicola Bartolo




Physical meaning of inflaton fluctuations

Following Guth & Pi (1982), let's consider a scalar field ¢ evolving in de Sitter space — time

with scale - factor a(t) = "

é+3Hp=-V'+e "V’¢

and let ¢(¢) be a homogeneous solution, then @(Xx,?) = (1) + o(x,1).

The quantity o¢ satisfies the perturbed Klein - Gordon equation

5 +3HSp~—V"S5p+e V¢ while ¢ obeystothe equation @ +3H@p=-V"¢

The term e *"V*d ¢ decays with time and becomes soon negligible, hence 5¢(X,¢) and ¢(?) satify
the same equation. Moreover, the Wronskian W{o ¢, ¢} obeys to

W =-3HW =W =We >0 (large times).
Hence, at large times the most general solution reads 0@(x,t) ~ —o7(x)p(¢)
which, to first order in o7 yields @¢X,t)~o(t-67(x))

The effect of inflaton fluctuations is to produce a space-dependent time-delay
otin the evolution of the homogeneous mode . We would then expect density
fluctuations dop/p ~ Hor.




Perturbing geometry

To allow for deviations from homogeneous and isotropic universe
perturb the FRW line-element (scalar perturbations only)

ds®> = a’((=1=2A)d7* + 20,Bdrda’ + (1 —2¢)0y + DyE) da* da’).

Equivalently, write the covariant metric tensor as:

[ —1-24 0.B 1
Guv = @ ' o , _D.ij = ((91C)J — %C)j,j Vz)

whose inverse reads:

o L[ 124 OB
! a2 OI-B (]. + 2&_,)61] - DUE




Perturbed LHS of Einstein’s egs.

Expanding to first order in the metric perturbation the Christoffel symbols
first and the Ricci tensor next one arrives at:

(N a L 1. ,
Z O0.0"B — 6= '+ 20,0 + 5 0" D.,-A E:

a

(SC;OO = -2 P

L a” a'\’ ) R a’ .
0Goy=-2—B+|—| B+ 20,v + 3(‘);,_» DE +2—0,A
a 15 Z (1
- a a’ a” fa'\?
0Gi; = (2— A4+d—y +4—A-2 (— ) A
: a a a a



Perturbed RHS of Einstein’s
& Klein-Gordon egs.

Next consider the scalar field perturbation and look at its first-order effects
on the stress-energy tensor and scalar field equation of motion
, OV

0Tho = 69’ &' + 2AV(d)a” + a® = 00
do

o(X,T) = ¢(T) + 0p(X,7)
(;‘TU? = (—). 5(3 (f), + é‘iB @,2 — OIB V( C)} Cl?' p
Stress-energy tensor i

o - 2 9 d"; ~(1) ' » ) -
\ ()TIJ = (()(;')’ (,")’ —_ A(.")’& — a” T()ll"(,f) —_ -{"i‘ (;.;')/2 + ‘2-«; " ((r)) ”_"') ()Z.j
oo
1 " o,
+ 5 D,ij w - D.]E % ((:')) a” .
f
~ a . = | ) ) -
Klein-Gord §o" + 2 =89 — 0,000 — A'd — 3¢'¢ — 0,0'B &
~ (‘-)217 9 ) U‘]
= —00 a — 2 A

" do? 0o




Gauge transformations

A gauge i

s a map between points of the physical

(perturbed) space-time and points of the background.
A gauge transformation is a change of such a map.
This can be mimicked by a coordinate transformation

oh = gM + §zt 7 scalars vector
o’ = &(x");
(S.L" = C)IJ(}(.I‘M) -|- '(,‘2(;1;“); ‘j‘;"al-’-(,l'l — U’

Its effect on a tensor quantity Q is given by the Lie
derivative of the quantity along the infinitesimal
four-vector defining the coordinate transformation

5Q = 6Q + £52Qu

E.g., for a scalar f (e.g. the density) one gets:

Sf=6f—f¢°

Reference Spacelike

7 = const Hypersurface

Spatial
Sections
Flat

Actual 5

7T = CO,

, 7
AL (L7 ¥,
AL LTS
L FALTSAAT L17
SRR

Spatial
Sections

Curved

from: Riotto (2002)




Gauge transformations & gauge invariance

Under a gauge transformation our
“scalar” perturbations transform
as follows:

—>Beware of pure-gauge modes and of
gauge artifacts (“tenacious myths”)!

=N
I
=N
I
./r\_
=
l
I
o

waf!
|
oy
1
"
1

eyl
|
0
+

Two ways out: choose a gauge (but take
care of residual gauge ambiguities)

Define gauge-invariant quantities (e.g.
by linearly combining perturbations)

Bardeen’s g.-i. potentials

1 EN
(I):—-4+—[(—B+_>(l] .
a 2

U= —op — l,'\"‘lEJri(B _ 5) .
6 a 2



Useful gauge-invariant variables

The gauge-invariant (by construction) quantity
g=z_:»+’Hi’f=r.-+ Rl
P P

represents the curvature perturbation on spatial slices of uniform energy density.
For the scalar field fluctuation, one can analogously define the g.-i. variable.

-~ R c |/ [ L"
()““)((-T) = —0Q + (‘.‘), (—) _—

Alternatively, the so-called gauge-invariant Sasaki-Mukhanov variable

O ) o' ) (_:) (,-:) R
J=004+ — V=004 —v=—K
- | H H H

represents the inflaton perturbation on spatially flat gauges.
Hence: the inflaton perturbation and the curvature perturbation are related via a gauge-
transformation!




Classical evolution of scalar perturbations

Before discussing the evaluation of the scalar-field fluctuations, let’s
discuss how this information can be transferred to the post-inflationary

evolution.

We need a gauge-invariant quantity that changes smoothly when the
Universe changes its equation of state:

inflaton = radiation = matter = dark energy domination

The quantity € remains (approximately) constant outside the horizon, as long as non-
adiabatic pressure terms do not appear (e.g. isocurvature perturbations)

D= IS §
S 1}_}_‘“ ]ndﬂ




Scalar mode equation of motion
iIn a quasi-de Sitter stage

In the longitudinal gauge (B=E=0), using Einstein’s eqgs., the i#j components yield
0,0, (b —A)=0= 1= A

the 0-i components (momentum constraints) yield
. . Y0,
v+ H=47Gddd = ¢ H—.

)

the 0-0 component (energy constraint) and the i-i components give

: V2 e i
— 3H (! + ) - - = 4G (rm(') — % + \"'r\.(‘))

.. . 9
a a\- } . % s o3 T s e

- 2— + (—) ) — .':;Hl,“ — Y = — ((,)()(,) — (_)2(,‘ — \ '0(,)) .
a a




Scalar mode equation of motion
In @ quasi-de Sitter stage

Combining the previous eqgs. One obtains an equation only for (e.g.) the gravitational potential

2

. 5\ . y 2
Vg + (H — 2(—)> Uy + 2 (H — H2> Uy + =t =0

) o a=
On super-horizon scales, usingthe background equation of motion and the definition of slow-roll
parameters one can show that the gravitational potential is nearly constant, which upon replacement in
the momentum constrain, gives

'\“j‘.'k + :{l/!\.\‘."k + (‘ il —+— ()( /[") l\‘(. N — “

This result can be used in the perturbed Klein-Gordon equation to obtain (still on super-horizon scales)

O

W == €
O
Rescaling the scalar field variable as 3y, = 8¢, /a we obtain
- L/, 1\.
oxXp — — (1/2 — I) oxx =0

et

1

9 9 o
/ = I —+ 9(— — 3/}




Solving for the scalar mode

For constant v (which is consistent with being at first order in the slow-roll
approximation the scalar field eq. of motion is solved by

y = 4 {{I:(U_*_%)% N —T Hl(,l)(_]”—)

—

and its complex conjugate. On super-horizon scales one has

_ l(u—é)%.‘z(u—é) F(l/) 1 (—]."T)%_U.
I'(3/2) v’.Z—/\

Reminding the definition of the curvature a.i. perturbation

H - IR 11
R = —V¥ — —,(\r',"')((’l‘) = ——
O A
we finally find
R Y 2. AN AL L A T S
Prlk) = — |=| = 2 ( ) aH A | =
272 | 2 2mp2e \ 27 aH ‘\NaH

With “scalar spectral index” = ngz —1=3— 20 = 25 — Ge




Action functional for cosmological GW

* Let’s start from the action for Gravity + a neutral scalar field (which is
what we need to describe standard inflation models)

‘ . — 1. . |
S = /d4.z'\.,f'—g [;ﬂ[élR - gg“ OOy —V (p)} :

‘.
—

* Let’'s now focus on the gravitational part and perturb it up to second
order in tensor modes, we find

. M2 | , .. 1 2
S — 8P‘ /d417 a?(t) |:hz'jh-ij - (thtj)h]



Equation of motion for (linear) GW

* By functionally differentiating the previous equation we easily find
V2h;: — a®hi; — 3aah;; = 0
1] - Mg Qltiy = Y.

* At this level the RHS can only vanish, as our scalar field cannot source tensor modes. Similarly,
a perfect fluid will not give rise to tensor contributions in the RHS of Einstein’s equations. Ford
and Parker (1977) showed that this equation can be connected with the Klein-Gordon eq. for a

minimally-coupled neutral scalar field once you Fourier transform and account for the GW
polarozation tensor, namely:

aMp) d3k . |
_ p A A .
Vij = Thij viji(X,t) = / (23 E 'Ul(< ')(t)egj)(k)em *
A=+,x T A=(+,x)
\>
where ef-;;“x) is a polarization tensor satisfying the conditions e;; = e, k'ei; = 0,

eii = 0, with +, x the two GW polarization states

GWs have only (926-1-3=) two independent degrees of freedom, corresponding to the two polarization
states of the graviton



Equation of motion for (linear) GW

The resulting e.o.m. reads
| _ a .
'vl(()") U (/ﬂ‘)‘ — —) -vl('()") = 0. (1)

Let us now study the qualitative behavior of its solutions. We can identify two main regimes depending on the
relative magnitude of the second and third term. First, consider the case in which a"/a <« k2. Ignoring the second
term in parentheses, the equation for v becomes that of a free harmonic oscillator, so that tensor perturbations
oscillate with a damping factor 1/a. This anroximation corresponds to overlook the effect of the expansion of
the Universe. To make explicit the physical condition corresponding to this regime, notice that, since a''/a
~(a'/a)?, a'"/a K k2 corresponds to k > aH, i.e. to the sub-horizon behavior (check for example the case of a de
Sitter space-time where a(t ) ~1/t). Keeping in this regime, the solution of the above eq. reads

vi(T) = Ae™*T

which means that the amplitude of the modes of the original field h; decrease in time with the inverse of the
scale-factor as an effect of the Universe expansion. Consider now the r_e%lme in which the second term is
negligible with respect to the third one: k? «< a'/a. There are two possible solutions

v(T) xa and wi(7T) x 1/a?,

which corresponds to h o« const. and a decreasing in time solution, respectively. This situation clearly
correl_spands to the super-horizon regime. In particular we will be interested in the solutions with constant
amplitude.



Quantization of cosmological GW

Now we calculate more accurately the power spectrum of tensor perturbations, solv-
ing (1) . We perform the standard quantization of the field writing

ol = v (r)alM + vp(r)a?)l,

where the modes are normalized so that they satisfy v v, —vrv,” = —i, and this condition

ensures that a( ) and a( )T behave as the canonical creation and annihilation operators.
Following the snnplest and most natural hypothesis as initial condition, we assume that

the Universe was in the vacuum state defined as ay )|0) = 0 at past infinity, that is the
“Bunch-Davies vacuum state”

Equation (1) is a Bessel equation, which, in case of de Sitter spacetime, has the
following exact solution

ok(r) = V=7 |CLH{D (=kr) + CoHP) (—kr)| |



Quantization of GW in de Sitter space

where C',C5 are integration constants, H ,(,1), H,SQ) are Hankel functions of first and
second order and v ~ 3/2 + e. Remember we have negative sign to 7 because, from
its definition, it lies in —oo < 7 < 0. To determining C; and C53, we impose that in
the UV regime, that is sub-horizon scales, the solution matches the plane-wave solution
e‘“”/ v2k found before. This hypothesis is a direct consequence of the Bunch-Davies
vacuum condition. Using the asymptotic form of Hankel functions

H{V (x> 1) ~ \/iei(z‘%”‘%), HP (x> 1) ~ | —eie-57-7)
T T

the second term in the solution has negative frequency, so that we have to fit Cy = 0,
while matching the asymptotic solution to a plane wave leads to

Ci = \/TEGZ'('&%)%.

Then the exact solution becomes

vk = gei(V“L%)% V—rHW (k7).

Note: this approach can be trivially extended to any inflation model. See Abbott and Wise (1984).



Quantization of cosmological GW

In particular, for our purpose we are interested in the super-horizon wavelength be-
haviour, where the Hankel function reads

HY(z < 1) ~ /2/me" 3272 [D(v) /T(3/2)] 27,

so that the fluctuations on such scales become

. ™ 3 F(I/) ]. 1
_ (iv—3)39(v—3) _kT)z7Y
vk = € T :
k I'(3/2) \/Qk( )

where IT' is the Euler function.



Generation of cosmological seeds

Particle creation in
either strong (Hawking
1972) or rapidly varying
(Parker 1969)
gravitational fields

Schrodinger (1939): “an
alarming phenomenon”.

In QED the analogous
effect in a strong electric
field is known as “Klein

paradox”

Inflation + QM = Fluctuations

Particle/antiparticle pair

Black hole:
Hawking radiation

Inflation: expansion

Ny v d

Kinney 2003



Power-spectrum of primordial GW

® We can now write the tensor-mode power-spectrum

1{.3
Pr(k) =5 >
- A

so that on super-horizon scales the following power spectrum holds

12
h{()‘)’

8 (H\?[ k \ % . k™"
Pr(k) 7 (27r> (QH) which we can rewrite as Pr(k) T (k )

/%

* Notice that it is almost scale-invariant, which means that all the GW produced, nearly frozen on
super-horizon scales, have all the same amplitude. Moreover, the tensor spectral index is negative
("red spectrum”) if dH/dt < 0 in agreement with the Null Energy Condition (NEC). For n; > 0
(which requires violation of NEC!) it is indicated as “blue spectrum”. We refer to the case in which
ny =0 as “scale-invariant” (historically “cosmological white-noise”). Here A; is the tensor
amplitude at some pivot scale k, and n; is the tensor spectral index.



Consistency relation

Consistency relation. In the considered inflationary scenario an interesting con-
sistency relation holds between quantities which involve tensor perturbations. To get it,
we introduce the tensor-to-scalar ratio

A (k)
As(k.)’

r(k,) =

that yields the amplitude of the GW with respect to that of the scalar perturbations
at some fixed pivot scale . this quantity depends on the time-
evolution of the inflaton field, as
w ()
"=/ | 7 3
Mgl H

that is = 16e. Furthermore, we have shown that a nearly scale-invariant spectrum of
tensor modes is expected, being n = —2e. Therefore at the lowest order in slow-roll
parameters, one finds the following consistency relation

T = —8nr.



Energy density of GW

Let us now introduce some useful definitions, in particular to identify the GW energy-density. Consider the
weak-field limit, where GW can be described as space-time ripples propagating on a fixed background. The
vacuum field equations read G,,, = 0, which is equivalent to R, = 0. Making explicit the Ricci tensor as a sum of a
background term and perturbative terms up to second order,

one can deduce from the vacuum equations, how the presence of the GW affects the background (where, for
example, R1?), (h) indicates the contribution to the Ricci tensor which contains terms as ~h - h). The terms that
play this role then can be interpreted as a stress-energy tensor t,, due to the presence of GW. In this direction it
Is useful to note that R, can be written as a sum of two kinds of terms, those representing a smooth
contribution and others which encode the fluctuating part. Each of the two contributions vanishes on its own.
The background term varies only on large scales with respect to some coarse-graining scale, therefore we are
interested in the equation for the smooth contributions. The only linear term R(l)w(hgsolves by itself R, (h)=0.
Then, the remaining equation for the smooth part of the vacuum equation reads:

Ry + (R) =0

where (. . .) indicates the average over several wavelengths which extracts the smooth contribution with respect
to the coarse-graining scale.



Energy density of GW

An analogous reasoning can be enlarged to the Einstein tensor, so that one gets the
following Einstein equations, in vacuum:

[a—

_ _ . 1.
Guy — R#l/ — _ngl/ — {xR;(l?;/)}l — ;g,“/{‘R(Z)}

e

o

The terms on the RHS tell how the presence of GW affects the background metric,
then they can be interpreted as the GW stress-energy tensor t, apart from a factor
8nG. In terms of the tensor perturbations of the metric it reads:

1
SAEREV YR

o~
|

——(8,hy;0,h)



Energy density if GW

From the previous equation, the GW energy-density, on a FRW
background, reads

1 /1.7 j
Pew = 35—~ 3 (hi; (x,7) R (X,7)).

Where primes denote differentiation w.r.t. conformal time t and
(1/a)d/dt = d/dt. However, more often one makes use of the GW
energy-density per logarithmic frequency interval, normalized to the

critical density

1 dpgw  oIT ‘
Qoaw (k,7) = Pey - Pe = 3H2/87r6
pe dInk




Gravity-wave background from inflation

* As originally noticed by Starobinski (1979) an early period of quasi-de Sitter
evolution leaves its imprint in terms of a low-amplitude stochastic
backqround of gravitational waves (see also Grishchuck 1975, Rubakov et
al. 1982, Fabbri & Pollock 1982, Abbott & Wise 1984) which originated from
quantum vacuum fluctuations of (linearized) spin-2 gravitational
perturbations (“gravitons”), left the horizon during inflation (hence
remaining frozen and unobservable) and re-entered the horizon recently,

hence becoming potentially observable as classical tensor perturbations of
space-time.

e The detection of these primordial gravitational waves represents the
“smoking gun” proof of the validity of the inflationary theory, otherwise
very hard to “falsify”; other crucial specific imprints being: the existence of
perturbations with a super-horizon seed (detected!), specific non-Gaussian

signatures of primordial perturbations (strongly constrained by Planck,
which supports the simplest inflation models).



Slow-roll parameters and cosmological
observables

M2 v/ 2
e = —2 ( ) E =MV Mp = (8zGn) "2 -

vV Scalar (comoving curvature)
n= MI% (—) perturbation power-spectrum

n,—1=-6&+2n
n—1 dn,/dnk =-2&+16en—24¢°

- 1 (H\*[ k
,’/%(k)IzM%E 2 aH, Tensor (gravity-wave)

perturbation power-spectrum
x o N2, p ot [r=2L=1l6e

- 2 nr p
Pr(k) = o (hhT) = ( ) ( ) 1" 7
\ 2 Vi MI% 271 aH, nr = iy




PLANCK 2018: TEMPERATURE ANISOTROPIES




PLANCK 2018: POLARIZATION ANISOTROPIES
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Planck 2018 TT-spectrum
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and ... including polarization

Planck 2018
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Baseline LCDM results 2018

(Planck legacy: Temperature+polarization+CMB lensing)

()ph? Baryon density 0.02237  0.00015 0.7
.2 DM density 0.1200 0.0012 1
1000 Acoustic scale 1.04092 0.00031 0.03
T Reion. Optical depth 0.0544 0.0073 13
In(A. 1019) power Spectrum

amplitude 3.044 0.014 0.7
N  Scalar spectral index 0.9649 0.0042 0.4
Ho  Hubble ©/.50 0.54 0.0
(), Matter density 0.3153 0.0073 2.3
Og Matter perturbation

amplitude 0.8111 0.0060 0.7

credits: S. Galli

Most parameters
determined at (sub-)
percent level!

Best determined parameter
is the angular scale of
sound horizon 6 to 0.03%.

T lower and tighter

due to HFI data at
large scales.

n,8c away from scale
invariance (even in
extended models, always
>30)

Best (indirect) 0.8%
determination of the
Hubble constant to date.




Planck 2018 constraints on inflation models
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Best fit: Starobinsky model

e A. Starobinski in 1980 proposed a model for the Early Universe
originally motivated by conformal (trace) anomaly. This corresponds to
the Lagrangian (Jordan frame)

L =R + R?/6M?

* The corresponding action in the Einstein frame leads to a plateau + an
exponential branch

e Question: is there a way to distinguish Starobinski’s model from Higgs
inflation?

e Hint: look at disformal (“Lifshitz scaling”) anomalies (Celoria &
Matarrese, in preparation; see also Celoria, Matarrese & Pilo 2018:
symmetry of continuous media with constant equation of state).



“B2KP” constraints

» Joint Analysis of BICEP2/Keck Array and Planck Data (2015):
<<... The final result is expressed as a likelihood curve for r,
and yields an upper limit ry,; < 0.12 at 95% confidence.
Marginalizing over dust and r, lensing B-modes are detected

at 7.0 o significance.>>

BB spectrum of the BICEP2/Keck maps
before and after subtraction of the dust
contribution, estimated from the cross-
spectrum with Planck 353 GHz. The error
bars are standard deviations of simulations,
which, in the latter case, have been scaled
and combined in the same way.

The inner error bars are from lensed-
CDM+noise sims, while the outer error bars
are from lensed-CDM+noise+dust sims.
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Conseqguences for high energy physics

For values of r =107, inflation probes the GUT scale, i.e.
high-energy scales never achievable in laboratories

1/4
V14— 1,94 x 1016 (o%) GeV

The many observational confirmations of inflation predictions
(may) provide evidence of physics beyond the Standard Model of
particle physics

Who is the inflaton??

This question has become more and more pressing.



Tensor-to-scalar ratio
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Standard inflation is still alive ... and in very
good shape!

Standard inflation i.e.

single scalar field

canonical kinetic term

slow-roll dynamics

Bunch-Davies initiual vacuum state
standard Einstein gravity

which predicts O(102) primordial NG signal, still consistent with
data.



Testable predictions of inflation

Cosmological aspects

o Critical density Universe

o Almost scale-invariant a@arly Ga@, adiabatic density
fluctuations

o Almost scale-invariant stochastic background of re@vitational w@

Particle physics aspects

o Nature of the inflaton
o Inflation energy scale



Final remarks on Part ||

* Inflation is a very successful theory (a “paradigm”?), which solves the main internal
contradiction of the standard “Hot B|§ Bang” theory and provides a physical mechanism
for the geaneration of the seeds out of which CMB anisotropies and polarization have
originated.

e The prediction of a stochastic gravitational-wave background appears to be ubiquitous: it
is a consequence of the lack of Weyl invariance of the gravitational-wave action.

* Detecting cosmoloEicaI GWs is a very hard task. We have to search for indirect
consequences, such as effects on CMB anisotropies and polarization.

* The guantum-to-classical transition of cosmological GW has to be properly understood.



