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Cosmological Perturbation Theory

. Cosdmological perturbation theory was developed, mostly in the sixties, although there even earlier
studies:

E. M. Lifschitz, J. Phys. (Moscow) 10, 116 (1946)

* E. M. Lifschitz and I. M. Khalatnikov, Adv. Phys. 12, 185 (1963)
S. W. Hawking, Astrophys. J. 145, 544 (1966)

e E.R. Harrison, Rev. Mod. Phys. 39, 862 {1967)

e R.K.Sachs and A. M. Wolfe, Astrophys. J. 147, 73 (1967)

* G.B. Field, in Galaxies and the Universe, edited by A. Sandage, M. Sandage, and J. Kristian (University of Chicago Press,
Chicago, 1975)

P.J. E. Peebles, The Large Scale Structure of the Universe (Princeton University Press, Princeton, 1980).

* |In all these cases the definition of perturbation entails a comparison between the physical (perturbed)

spageitime and an idealized background which is usually taken as the homogeneous and isotropic FLRW
model.

* The subsequent classification of modes (scalar, vector and tensor) unavoidably depends on the choice
of background.



The development of cosmological
perturbation theory and the gauge problem

The perturbative approach is a fundamental tool in General Relativity (GR), where exact solutions
of Einstein’s Equations (EE) are most often too idealized to properly represent the realm of natural
phenomena. In other words, exact solutions of EE describe only particular manifolds endowed with
symmetries. We can extend our knowledge of the physical universe by considering small deviations
from these symmetries: this is the so called “perturbation theory”.

Unfortunately, the invariance of GR under diffeomorphisms (two solutions of EE are physically
equivalent if they are diffeomorphic to each other) makes the very definition of perturbations
gauge-dependent. Consider diffeomorphisms, 6g,, =< g,,, where £ g, is the Lie derivative of the
metric tensor. The invariance of EE generates redundant degrees of freedom (“pure gauge
modes”), that must be suppressed because they have no physical meaning. The traditional way to
do it is through a gauge fixing.

A gauge choice or gauge fixing is an identification of a map between the perturbed (i.e. physical)
and the background (idealized) space-times. Generic perturbations are not invariant under a gauge
transformation =2 gauge problem.
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Physical vs. Backround (FLRW) manifolds

Bardeen 1980: "A one-to-one correspondence between points
in the background and points in the physical space-time carries
these coordinates over into the physical spacetime and defines
a choice of gauge. A change in the correspondence, keeping
the background coordinates fixed, is called a gauge
transformation, to be distinguished from a coordinate
transformation which changes the labelling of points in the
background and physical spacetime together.

The perturbation in some quantity is the difference between
the value it has at a point in the physical spacetime and the
value at the corresponding point in the background
spacetime.”
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A choice of coordinates defines a “threading” of
space-time into lines (corresponding to fixed spatial
coordinates) and “slicing” into hypersurfaces
(corresponding to fixed times).

“A gauge transformation induces a coordinate transformation in the physical spacetime, but it also changes the
point in the background spacetime corresponding to a given point in the physical spacetime. Thus, even if a
guantity is a scalar under coordinate transformations, the value of the perturbation in the quantity will not be
invariant under gauge transformations if the quantity is non-zero and position dependent in the background.”



Cosmological perturbations. |

* A gravitational perturbation can be written as a small variation of the
metric

Gij — Gij + 09ij

 where the unperturbed metric represents the background universe, which
we will consider to be the FLRW metric for homogeneous and isotropic
universes

ds® = a.2('r)[—dT2 + 3g-z'.jd:v""d:uj ]

* where a(t) is the scale factor, tis the conformal time and 3gij is the metric
tensor for a 3-dimensional space of uniform curvature K, and the choice of
the space coordinates is left arbitrary.



Cosmological perturbations: scalars

The homogeneity and isotropy of the background allow a separation of the time dependence and
the spatial one, so without losing any generality we can expand an arbitrary perturbation over
spatial spherical harmonics Q™. Through these functions perturbations can be classified in scalar,
vector and tensor quantities, according to how they transform under spatial coordinate
transformations in the background spacetime.

A scalar perturbation has a spatial dependence derived from scalar harmonics, which are
the solutions of the scalar Helmholtz’s equation:

AQY + k200 — ¢

where —k? is the eigenvalue of the Laplace-Beltrami operator A. Vectors and tensor quantities
associated with scalar perturbations can be built from covariant derivatives of Q® and the spatial
metric tensor; let us define the vector

o 1 0

and the traceless symmetric tensor



Cosmological perturbations: vectors and
tensors

A vector perturbation is proportional to Q,®, but it describes a divergenceless component that
cannot be constructed from scalar harmonics; instead it must be proportional to vector harmonic
functions, which are solutions of the vector Helmholtz’s equation

The second rank traceless symmetric tensor associated with the vector harmonics is

Q('l)‘i-j _ Q(l)'ilj + Q(l)JI'i-)

1
S

In the same way a tensor perturbation will be proportional to the solutions of the tensor
Helmholtz’s equation

AQ(Q)'I'-J' n k‘ZQ(?)'ij -0



More on tensor perturbations

* Tensor perturbations affect only the traceless part of the metric tensor and the stress-energy
tensor:

gij = a2(1)[g55(Z) + 2HP (1)Q (7))
T = Poldj + 71 (1)Q;”]

* Note that no density or isotropic pressure perturbation is associated with vector or tensor
perturbations.



Mode independence and mode-mixing

* At the linear level modes are mutually independent (in every possible
sense):

o Different Fourier (or more general eigenmodes of your basis) modes evolve
independently.

o Scalar, vector and tensor modes are mutually independent.

* If you go to order n in perturbation theory:
o Different Fourier modes are coupled (non-linearity = non-Gaussianity)

o Only scalars, vectors and tensor of the same order n remain mutually
independent.



Active vs. Passive view

* There are two approaches to calculate how perturbations change under a gauge
transformation. For the active view we study how perturbations change under a
mapping, where the map directly induces the transformation of the perturbed
guantities. In the passive view instead the relation between the two coordinate

systems is specified, and we calculate how the perturbations are changed under
coordinate transformations.

* In the active approach the transformation of the perturbed quantities is evaluated

at the same coordinate point, whereas in the passive approach the transformation
is taken at the same physical point.



Active approach

The starting point in the active approach is the exponential map, telling us how a tensor T transforms, once the generator of
the gauge transformation, ¢, has been specified. The exponential mapisT =2 T = e&T,

Expanding the vector ¢, and the exponential map up to 2-nd order we get -
To = Tp,

I L 3 1,, 1, —~
5° =€ + 55 & +0(€). exp(E:) = 1+ €fy, +56 £, + 56 £e, +--- €6T; = €8T + efs, To,

N | 25T, = €2 (8T, + £, To + £2, T + 2£¢,6T;)
Note that the background quantities are not affected by the mapping.

Applying the map to the coordinate functions x* we get a relation for the coordinates of a point g and a point p as

1 . ,
x*(q) = x"(p) + €&} (p) + 562 (&1, (DE"(p) + &' (D))

However, in this approach we do not need this eq. to calculate how perturbations change under a gauge transformation, it
simply tells us how the coordinates of the points p and g are related.

Credits: Malik & Wands 2009



Passive approach

In the passive approach we specify the relation between two coordinate systems directly, and then calculate the change in the
metric and matter variables when changing from one system to the other. In order to make contact with the active approach,

discussed above, we take the last eq. as our starting point. Note, that all quantities in the passive approach are evaluated at
the same physical point. This can be rewritten to give a relation between the “old” (untilted) and the “new”’ (tilded)

coordinate systems, evaluated at the same physical point qg.
~ 1 . L,
@) =x"(@) — &7 @ + €5 (6@ 5" @ - £'(@)

The starting point in the passive approach is to identify an invariant quantity, that allows us to relate quantities to be evaluated
in the two coordinate systems. This could be e.g. the energy density, which is a 4-scalar, or the line element, etc...

Credits: Malik & Wands 2009



Perturbations of the metric tensor — I.

* The components of a perturbed FLRW metric can be written as:

, ro .
+2 —,1,(7) )
? ;;rfw )

g200=—a’(7)




Perturbations of the metric tensor — II.

The functions ¢, & (T) (™ and X where (r) = (1),(2), stand for the rth—order perturbations of the metric.
Notice that such an expansmn coul(i a priori include terms of arbitrary order, but for our purposes the first and
second—order terms are sufficient. It is standard use to split the perturbations into the so—called scalar, vector and
tensor parts according to their transformation properties with respect to the 3-dimensional space with metric d;;,
where scalar parts are related to a scalar potential, vector parts to transverse (divergence—free) vectors and tensor
parts to transverse trace—free tensors. Thus in our case

w,f") = 8iw™ + wg"‘) ,

%55 = Dix® +8ix5” + 0" + x5} »

(r) is a symmetric transverse and trace—free tensor,

where w; and y; are transverse vectors, i.e. Biwgr) = Bixz(-' =0, x;;
O’X“ =0, xl( ) = =0) and D;; = 0;0; — (1/3) 6;; V? is a trace—free operator.

Here and in the following latin indices are raised and lowered using 6*7 and di;, respectively.



Perturbations of the metric tensor (up to
second order)

goo = —a*(1) (1+2d>(1)+c'>(2)) :

1
goi = (T) (3 w(l)—i— alw(2)+ 2WQ)) ’

. | 1
a*(T) [(1 — 29D — (2)) ij + Dij ( D+ QY(Z)) + Xi;

gij

1 2 2 2
+ 5 (0P +0ix ”+»<§J))] .



Einstein tensor — FLRW background

The Einstein tensor in a spatially flat FRW background is given by

Primes denote differentiation w.r.t. conformal time .



Einstein tensor — linear order (up to vector
modes)

The first—order perturbations of the Einstein tensor components are
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Einstein tensor — Second order (neglecting
linear vector and tensor modes)

The second—order perturbed Einstein tensor components are given by

a

(¢ 1 ] 1
§DG0 = _l (%) 5(2) 4 32 v(z) V2@ 4 %\7%(2) _ Zakai D*iy @
2

a

/
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_ %vz Dyix D D™D 4 5 9k Diy® Dimy (D) 4 %akamX(l)aiDmiX(l)

3 . 1 . / / a . / 1 .
- ga‘D“mx(” 9; DimxV + gD"‘x(” Diix™V" + ;D’”’x“) Diex™V + Zasz‘jX(l)aJD‘kx(l)



Einstein tensor — Second order (neglecting
linear vector and tensor modes)

1
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Einstein tensor — Second order (neglecting
linear vector and tensor modes)
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Einstein tensor — Second order (neglecting
linear vector and tensor modes
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Gauge transformations —|I.
(see Matarrese, Mollerach & Bruni 1998, Appendix

A).

e Gauge choices for perturbations entail the comparison of the tensor field representing a certain
physical and/or geometrical quantity in the perturbed spacetime with the tensor field
representing the same quantity in the background spacetime. Gauge transformations entail the
comparison of tensors at different points in the background spacetime. A smallness parameter A
is involved, so that these comparisons are always carried out at the required order of accuracy in
A , using Taylor expansions. The comparison of tensors is meaningful only when we consider them
at the same point. Therefore, if we want to compare a tensor field T at points p and g, we need to
define a transport law from g to p. This gives us two tensors at p, T, itself, and the transported
one, which can now be directly compared.



The simplest transport law we need to consider is the Lie
dragging by a vector field, which allows us to compare T

with its pullback T(M\) (the new tensor defined by this trans-
port). To fix ideas, let us first consider, on a manifold M, the
comparison of tensors at first order in A (which we shall
define shortly). Suppose a coordinate system x* has been
given on (an open set of) M, together with a vector field &.
From dx#/dN=¢&#, & generates on M a congruence of
curves x#(N\): thus A\ is the parameter along the congruence.
Given a point p, this will always lie on one of these curves,
and we can always take p to correspond to A =0 on this. The
coordinates of a second point ¢ at a parameter distance A
from p on the same curve will be given by

SEON) =xPANEE+ - - - (Al)

where the x* are the coordinates of p and the x* are those of
q. approximated here at first order in A. Equation (Al) is
usually called an ‘‘infinitesimal point transformation,”” or an
“‘active coordinate transformation’

- . At the same time, we may think that a new
coordinate system y* has been introduced on M, defined in
such a way that the y coordinates of the point ¢ coincide
with the x coordinates of the point p: using Eq. (Al) it then
follows from this definition that

vH(g):=x*(p)=x*(q) —NE*(x(p))+---
=x"(q)—N&M(x(g))+---. (A2)

In practice, we have in this way defined at every point a
“‘passive coordinate transformation’” (i.e., just an ordinary
relabeling of point’s names), which at first order reads

VE(N)=xF—NEF+- -, (A3)

Suppose now that a tensor field has been given on M:
e.g., to fix ideas, consider the vector field Z with components
Z" in the x-coordinate system. In the same way that we
defined a new coordinate system y* once a relation between
points was assigned through Eq. (A1) by the action of £, so

we can now define a new vector field Z, with components Z*
in the x coordinates, such that these components at the coor-
dinate point x*(p) are equal to the components Z'# the old
vector Z has in the y coordinates at the coordinate point
v(gq):

_ ‘ A ,
Z"(X(p))FZ"‘(\'(Q)):L‘—rv Z"(x(q)). (Ad)

x(q)

The last equality in this equation is just the ordinary (pas-
sive) transformation between the components of Z in the two
coordinate systems: we need it in order to relate Z and Z in
a single system (the x frame here), thus eventually obtaining
a covariant relation. Indeed, substitution of Eq. (A3) into Eq.
(A4) and a first-order expansion in A about x(p) in the right-

hand side (RHS) gives
ZH(N)=ZFHNEZF+ - - -, (AS)

£,ZM =7 E— 7, (A6)



where, given that the point p is arbitrary, the dependence of

all terms on x(p) has been omitted. The vector field Z is
called the pullback of Z, because it is defined by dragging Z
back from ¢ to p, an operation that gives at p a new vector

with components Z#, given by Eq. (A4). In the particular
case of the transformation (A3) this is the Lie dragging.
Now, having at the same point two vectors, these can be

directly compared: at first order, Z(\) and Z are related by
Eqgs. (AS), (A6). In fact. in the limit A —0, it is this compari-
son that allows us to define the Lie derivative, with compo-
nents (A6): Eq. (Al5) below generalizes this to a generic
tensor 7.

Although the story so far is a textbook one (cf. [29.35—
37]). recalling it in some detail allows us to easily extend it
to higher order. First, one has to realize that Eq. (A1) is just
the first-order Taylor expansion about x(p) of the solution of
the ordinary differential equation dx*/dA=§&* defining the
congruence x*(\) associated with &. The exact solution of
this equation is the Taylor series | -

| A
x#(g)=x4(p) + NEH(x(p))+ 5 & LE (x(p))+ -,
(A7)
on using dx*/d\=§&", dzx”'/d)\2=§ﬁ,§", etc. In practice,
since p and ¢ are arbitrary, we may simply write

2

xE(N)=xF+NEF+ S & LE (A8)

=exp[ AE]x”. (A9)

The latter exponential notation is useful, in that it allows us

to see the coordinate functions x* as the pullbacks of the
functions x* given by the exponential pullback operator
exp[A£,]. Furthermore, it is clearly seen by exp[(A;+A)£,]
=exp[\£¢]Jexp[A£,] that the point transformations (AS)
form a one-parameter group of transformations. Using again
the definition y*(g):=x"(p) for the y coordinates, we get,
from Eq. (A7),

2

\2
YE(N)=xtoNER g e (ALD)

on expanding all terms about x(¢), eventually omitting again
the x(¢g) dependence, since ¢ is arbitrary. Finally, using Eq.
(A10) into Eq. (A4) and expanding all the terms about x(p),

we get the x components Z*(\) of the pullback Z(\), which
reads [39]

Z#(\)=[exp[ A £(]Z]* (A11)

2

)\._
=ZHHNEZF+ £ ZF+ - -
(A12)

Equation (A4) is readily generalized to more general ten-
sors than Z: we simply have to add to the RHS of Eq. (A4)
the right number of transformation matrices. Thus, the pull-

back T of a tensor field T of type (p.q) is defined by having
x components given by



Tﬂl"‘“p,,l...,,q(,\t(p))

:=TI”,I..-I-LPV (\v(q))

1" ¥

dyH1 dyHr dxP1 dxPa

dx*1 ox% Jy*l Jav'e
. : x(q)

XTI g (x(q). (A13)

Using Eq. (A10) as above then gives. omitting indices for
brevity,

)

- A~
T\ =T+\E T+ 7gegn cen, (Al4)

To summarize, each of the diffeomorphisms forming a
one-parameter group, as mathematicians call the transforma-
tions generated by a vector field ¢ and represented in coor-
dinates by Eq. (A9), gives rise to a new field, the pullback

T(\), from any given tensor field T and for any given value
of N\. Thus 7(\) and 7 may be compared at every point,
which allows one to define the Lie derivative along & as the
limit A\— 0 of the difference 7(\)—1T":

1
—[T(\)—T].  (AlS)

d -
£ T:=[—} T(\N)=1lim
¢ dA A=0 -0 N

At higher order we have

k

kr. —
£§T.— N

T(\). (Al6)
A=0

On the other hand, the relation at each point between any

tensor field 7 and its pullback 7(\) is expressed at the re-
quired order of accuracy by the Taylor expansion (Al4).

In order to proceed, considering more general point trans-
formations than Eq. (A8) and more general Taylor expan-
sions than Eq. (Al4), some general remarks are in order.
First, it should be noticed that the definition v*(gq)
:=x*(p) for the y-coordinate system is completely general,
given a first coordinate system (the x frame here) and any
suitable association between pairs of points (more precisely,
any diffeomorphism), of which the one-parameter group of
transformations (A8) is a particular example. Second, the
same generality is present in the definition of the pullback,
Eq. (A13). which is also independent from the specific type
of transformation chosen.



B o ~_ we have shown that the action of
any given one-parameter family of transformations can be
represented by the successive action of one-parameter
groups, in a fashion that, to order A2, reminds us the motion
of the knight on the chessboard:

2
;"()\)z-"”“\%)“‘7(55),v§{1)+§f§))+ e
(A17)

A vector field &, is associated with the Ath one-parameter
group of transformations, with parameter A\ (we denote A\
=\). Similarly to the knight, the action of the transformation
(A17) first moves from point p (with coordinates x*) by an
amount \ along the integral curve of &)y [i.e., according to
Eq. (A8)]: then, it moves along the integral curve of £p) by
an amount \,=\?/2. At each kth higher order, a new vector
field £, is involved, generating a motion by A k=)\k/k!.
Thus, the action of a one-parameter family of transforma-
tions is approximated, at order £, by a “‘knight transforma-
tion’” of order k L 1, of which Eq. (A17) is
the second-order example.

Given the “‘knight transformation’ (A17). we can now
use it to define the y coordinates, which will be given by

vE(q):=x*(p)=x*(q) —NE(1)(x(p))

— 5 [0 o ())& (x(2)) + € (x(p))]

T (A18)

Expanding the various quantities on the RHS around ¢. and
omitting the x(g) dependence, Eq. (A18) becomes, finally,

| N’ |
YEN) =xt =N+ 5 ()8~ ) T
(A19)

Using again the case of the vector field Z as our paradigmatic
example, we can now derive the pullback Z(\) generated by
a one-parameter family of transformations. Substituting Eq.
(A19) into Eq. (A4), and expanding again every term about
x(p), we obtain the x components Z*(\) of Z(\), which
(after properly collecting terms) at second order read

7

= o2
Z"’()\)ZZ"+)\£§(1)Z”’+ ?(£§(D+£§(2))Z"‘+ cee
(A20)

For a generic tensor 7', again omitting indices for brevity, use
of Eq. (A19) in Eq. (A13) obviously gives

9
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T—T+)\£§(1)T+ ?(£§(1)+£ ) T+---.  (A21)

§2)



Lie derivatives

The Lie derivative of any tensor 7 of type (p.q) (a
tensor with p contravariant and ¢ covariant indices, which
we omit here and in the following) is also a tensor of the
same type (p.q). For a scalar f, a contravariant vector Z and
a covariant tensor 7' of rank 2. the expressions of the Lie
derivative along ¢ are, respectively,

£/=1 u&". (1)
£,ZM=7"¢"— 17", (2)
£7,,=T 0 o+ 0T+ 5T (3)

Expressions for any other tensor can easily be derived from
these. A second or higher Lie derivative is easily defined
from these formulas; e.g.. for a vector we have £§Z
=£(£,Z): since one clearly sees from Eq. (2) that £.Z is
itself a contravariant vector, one needs only to apply Eq.

(2) two times to obtain the components of £§Z. Similarly,
one derives expressions for the second Lie derivative of any
tensor.



Gauge tranformations in practice

* The gauge tranformation is determined by the vectors ¢* ,

 Splitting their time and space parts we can write

and

with 9.d7"=0.
* Here ol and 3 ") are scalars, whereas d (") is a vector.

* No tensor modes are involved = linear tensor modes (GW) are gauge-invariant



Gauge fixing

N

Asm&,«c‘,ﬂe&»/% ve oon ";ﬂ P
%}f@hﬂ ﬁwar/nwé{% /ch-&/ad“ "f;f'j &’@Z
o ﬁ } an A see %'W&«ce%ﬁe. uzwzm //‘;
177 AR AL AP a/uy sl ia /&,7/2’%4@2{?9:« %D;
Hoce AR, fafrs | duet %%‘m,o/ éy P&;é
bl chioices g/ 2 Lo Seobis adA ot
recta.

Qv/ us [_o&«Fﬂ//éc Zh( Do /QM /@7( 549,‘4,_0,



Poisson gauge
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Synchronous (and time-orthogonal) gauge
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Other popular gauges

. Spatially flat gauge
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Comoving gauge
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Important remark: if and only if pressure
gradients vanish (as e.g. in the case of
pressureless  matter +  cosmological
constant) we can simultaneously fix our
gauge to be synchronous, time-orthogonal
and comoving.



Second-order tensor modes are not gauge-
Invariant

e Second order perturbations of the metric read:

_ (0) (0)
()gp.v Ogy,v_i_ ££ Dgpv+££‘ )gp,v £§(qu,v

* If we focus onIy on the spatial traceless part of the metric we find

a’ f ’
=(2)_ (2) (1)r (1) (1) (1) \
X = x5 +2 X; +2—Xi )+ 2X5 €+ ( 44’(1)+0f<1)f’0+5(1>(’k+4 a)|(d(; + DB
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(1) (1) (1)r (l) S K (1)
+2| Qo —a;+&; a 02wy~ “(1)+5(1)) ]

30

[ 1
(1) (1) (1) (1)k N 1) <1> (1) gk.1
+2 (- Xkt éeatEGk)E _30 (2Xix &t E&x)EN)

T2 (d(zJ)+Dzj.B(’))

which clearly involves several divergence-less contributions in the transformation



General recipe for gauge-invariace

* |tis possible to establish a condition for gauge-invariance to a given perturbative order n even without
knowledge of the gauge transformation rules holding at that order. Let’s focus here on gauge invariance up to

second order only. The most natural definition of gauge invariance is that a tensor T is gauge invariant to
order n if and only if 8T =6'T | for every k< n. Let is define °T:=T,, 8T:=48'T

* Thus, a tensor T is gauge invariant to second order if 8T =T and 6T =ST.

* Let’s now consider the infinitesimal point transformation

()\)_rﬁq_)\g(l) X (1“5(1)4-5 (\3) and T()\)=T()\)+)\£§(“T+,‘,—(£§(l)+£§(2})1’+(9()\3)
* Hence in two arbitrarily chosen gauges we have
)\2
— 2 3 ST
T(N)=To+\oT+ - &T+O(\), 6T=0T+£¢, T,
) and
_ _ x- _ N2~_ ~2 -~ 2

 This condition implies £:70=0 and £.67=0 for every vector field &* . Therefore, apart from trivial cases—
i.e., constant scalars and combinations of Kronecker deltas with constant coefficients—gauge invariance to
second order requires that 7,=0 and 67=0 in any gauge. This condition generalizes to second order the

standard results for first-order gauge invariance and is easily extended to order n.



A practical recipe to build “gauge-invariant”

guantities

Malik & Wands 1998, 2004 noticed the following:

* A gauge-invariant theory of linear perturbations about FRW metric was proposed by
Bardeen (1980), but no such gauge-invariant formalism has been developed for non-
linear cosmological perturbations. According to the Stewart-Walker lemma (1974) in
fact, “any truIK gauge-independent perturbation must be constant in the background
spacetime”. This apparently limits our ability to make a gauge-invariant study of
guantities that evolve in the background spacetime, such as, e.g., density perturbations

in the expanding Universe.

* One can however construct gauge-invariant definitions of unambiguous —i.e. physically
defined — perturbations, which — in spite of not being automatically gauge-independent
(i.e. with no %auge dependence, such as perturbations about a constant scalar field) —
are in general gauge-dependent (such as the curvature perturbation) but can have a
gauge-invariant definition once their gauge-dependence is fixed (such as the curvature
perturbation on uniform-density hypersurfacesL. This technique, however may lead to
some troubles in the case of transformations which rescale the background (e.g.
Weinberg 2003).

e This technique should be used with extra-care when starting from the synchronous
gauge, which is affected by residual gauge ambiguities.



Tenacious myths of higher-order perturbation
theory

= Handle with care the traditional statement: “Linear theory always
vields the leading contribution on large scales”

—>Rather say: “Linear theory yields the leading contribution of
guantities like the power-spectrum on large scales, but higher-order
statistics get their leading contribution on large scales by higher-order
perturbation theory. E.g. the leading-order large-scale contribution to
the bispectrum is coming from second-order perturbation theory.
Moreover, quantities like e.g. the ratio of the skewness to the
variance squared do not converge to zero on large scales (but the

ratio of the skewness to the 3/2 power of the variance does vanish on
large scales).”

—As a general rule: the answer depends on the considered observable!



Final remarks on Part |

e Cosmological perturbations are defined as deviations from the
background FLRW model.

* A gauge issue affects most perturbation modes. Exact gauge-
invariance almost impossible to implement beyond linear order.

* Mode-mode coupling (hence non-Gaussianity) is a generic feature, as
soon as one goes beyond linear theory, and it also implies that scalar
and vector modes feed tensor modes, scalar and tensor modes feed
vector modes, tensor and vector modes feed scalar modes. This has
profound consequences for cosmological observables (Tomita 1967;
Matarrese et al. 1998; ...).



