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Cosmological Perturbation Theory

• Cosmological perturbation theory was developed, mostly in the sixties, although there even earlier 
studies:

• E. M. Lifschitz, J. Phys. (Moscow) 10, 1l6 (1946)
• E. M. Lifschitz and I. M. Khalatnikov, Adv. Phys. 12,  185 (1963)
• S. W. Hawking, Astrophys. J. 145, 544 (1966)
• E. R. Harrison, Rev. Mod. Phys. 39, 862 {1967)
• R. K. Sachs and A. M. Wolfe, Astrophys. J. 147, 73 (1967)
• G. B. Field, in Galaxies and the Universe, edited by A. Sandage, M. Sandage, and J. Kristian (University of Chicago Press, 

Chicago, 1975)
• P. J. E. Peebles, The Large Scale Structure of the Universe (Princeton University Press, Princeton, 1980).

• In all these cases the definition of perturbation entails a comparison between the physical (perturbed) 
space-time and an idealized background which is usually taken as the homogeneous and isotropic FLRW 
model. 

• The subsequent classification of modes (scalar, vector and tensor) unavoidably depends on the choice 
of background. 



The development of cosmological 
perturbation theory and the gauge problem
• The perturbative approach is a fundamental tool in General Relativity (GR), where exact solutions 

of Einstein’s Equations (EE) are most often too idealized to properly represent the realm of natural 
phenomena. In other words, exact solutions of EE describe only particular manifolds endowed with 
symmetries. We can extend our knowledge of the physical universe by considering small deviations 
from these symmetries: this is the so called “perturbation theory”.

• Unfortunately, the invariance of GR under diffeomorphisms (two solutions of EE are physically 
equivalent if they are diffeomorphic to each other) makes the very definition of perturbations 
gauge-dependent. Consider diffeomorphisms, δgμν = L gμν, where L gμν is the Lie derivative of the 
metric tensor. The invariance of EE generates redundant degrees of freedom (“pure gauge 
modes”), that must be suppressed because they have no physical meaning. The traditional way to 
do it is through a gauge fixing. Alternatively, one can look for “gauge-invariant” perturbations, 
which are not affected by such transformations (Bardeen 1980). While this approach is easy at first 
order it becomes very complex at higher-order and some “tricks” have to be adopted.

• A gauge choice or gauge fixing is an identification of a map between the perturbed (i.e. physical) 
and the background (idealized) space-times. Generic perturbations are not invariant under a gauge 
transformation è gauge problem.
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Physical vs. Backround (FLRW) manifolds
Bardeen 1980: "A one-to-one correspondence between points
in the background and points in the physical space-time carries
these coordinates over into the physical spacetime and defines
a choice of gauge. A change in the correspondence, keeping
the background coordinates fixed, is called a gauge
transformation, to be distinguished from a coordinate
transformation which changes the labelling of points in the
background and physical spacetime together.
The perturbation in some quantity is the difference between
the value it has at a point in the physical spacetime and the
value at the corresponding point in the background
spacetime.”

“A gauge transformation induces a coordinate transformation in the physical spacetime, but it also changes the
point in the background spacetime corresponding to a given point in the physical spacetime. Thus, even if a
quantity is a scalar under coordinate transformations, the value of the perturbation in the quantity will not be
invariant under gauge transformations if the quantity is non-zero and position dependent in the background.”

A choice of coordinates defines a “threading” of
space-time into lines (corresponding to fixed spatial
coordinates) and “slicing” into hypersurfaces
(corresponding to fixed times).



Cosmological perturbations. I

• A gravitational perturbation can be written as a small variation of the 
metric

• where the unperturbed metric represents the background universe, which 
we will consider to be the FLRW metric for homogeneous and isotropic 
universes

• where a(t) is the scale factor, t is the conformal time and 3gij is the metric 
tensor for a 3-dimensional space of uniform curvature K, and the choice of 
the space coordinates is left arbitrary.



Cosmological perturbations: scalars
The homogeneity and isotropy of the background allow a separation of the time dependence and 
the spatial one, so without losing any generality we can expand an arbitrary perturbation over 
spatial spherical harmonics Q(n). Through these functions perturbations can be classified in scalar, 
vector and tensor quantities, according to how they transform under spatial coordinate 
transformations in the background spacetime.

A scalar perturbation has a spatial dependence derived from scalar harmonics, which are 
the solutions of the scalar Helmholtz’s equation:

where −k2 is the eigenvalue of the Laplace-Beltrami operator D. Vectors and tensor quantities         
associated with scalar perturbations can be built from covariant derivatives of Q(0) and the spatial   
metric tensor; let us define the vector

and the traceless symmetric tensor



Cosmological perturbations: vectors and 
tensors
A vector perturbation is proportional to Qi

(0) , but it describes a divergenceless component that 
cannot be constructed from scalar harmonics; instead it must be proportional to vector harmonic 
functions, which are solutions of the vector Helmholtz’s equation

The second rank traceless symmetric tensor associated with the vector harmonics is

In the same way a tensor perturbation will be proportional to the solutions of the tensor 
Helmholtz’s equation



More on tensor perturbations

• Tensor perturbations affect only the traceless part of the metric tensor and the stress-energy 
tensor:

• Note that no density or isotropic pressure perturbation is associated with vector or tensor 
perturbations.



Mode independence and mode-mixing

• At the linear level modes are mutually independent (in every possible 
sense):
oDifferent Fourier (or more general eigenmodes of your basis) modes evolve 

independently.
o Scalar, vector and tensor modes are mutually independent.

• If you go to order n in perturbation theory:
oDifferent Fourier modes are coupled (non-linearity à non-Gaussianity)
oOnly scalars, vectors and tensor of the same order n remain mutually 

independent.



Active vs. Passive view

• There are two approaches to calculate how perturbations change under a gauge 
transformation. For the active view we study how perturbations change under a 
mapping, where the map directly induces the transformation of the perturbed 
quantities. In the passive view instead the relation between the two coordinate 
systems is specified, and we calculate how the perturbations are changed under 
coordinate transformations. 
• In the active approach the transformation of the perturbed quantities is evaluated 

at the same coordinate point, whereas in the passive approach the transformation 
is taken at the same physical point.



Active approach

The starting point in the active approach is the exponential map, telling us how a tensor T transforms, once the generator of 
the gauge transformation, ξμ, has been specified. The exponential map is T  à

Expanding the vector ξμ and the exponential map up to 2-nd order we get

Note that the background quantities are not affected by the mapping.

Applying the map to the coordinate functions xμ we get a relation for the coordinates of a point q and a point p as 

However, in this approach we do not need this eq. to calculate how perturbations change under a gauge transformation, it 
simply tells us how the coordinates of the points p and q are related.

Credits: Malik & Wands 2009



Passive approach

In the passive approach we specify the relation between two coordinate systems directly, and then calculate the change in the
metric and matter variables when changing from one system to the other. In order to make contact with the active approach, 
discussed above, we take the last eq. as our starting point. Note, that all quantities in the passive approach are evaluated at 
the same physical point. This can be rewritten to give a relation between the ‘‘old’’ (untilted) and the ‘‘new’’ (tilded) 
coordinate systems, evaluated at the same physical point q.

The starting point in the passive approach is to identify an invariant quantity, that allows us to relate quantities to be evaluated 
in the two coordinate systems. This could be e.g. the energy density, which is a 4-scalar, or the line element, etc...

Credits: Malik & Wands 2009



Perturbations of the metric tensor – I.

• The components of a perturbed FLRW metric can be written as:



Perturbations of the metric tensor – II.

aaa

aaa

aaa



Perturbations of the metric tensor (up to 
second order)

(1)



Einstein tensor – FLRW background

Primes denote differentiation w.r.t. conformal time t.



Einstein tensor – linear order (up to vector 
modes)
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Einstein tensor – Second order (neglecting 
linear vector and tensor modes)



Einstein tensor – Second order (neglecting 
linear vector and tensor modes)



Einstein tensor – Second order (neglecting 
linear vector and tensor modes)



Einstein tensor – Second order (neglecting 
linear vector and tensor modes)



Gauge transformations – I. 
(see Matarrese, Mollerach & Bruni 1998, Appendix 
A).

• Gauge choices for perturbations entail the comparison of the tensor field representing a certain 
physical and/or geometrical quantity in the perturbed spacetime with the tensor field 
representing the same quantity in the background spacetime. Gauge transformations entail the 
comparison of tensors at different points in the background spacetime. A smallness parameter l
is involved, so that these comparisons are always carried out at the required order of accuracy in 
l , using Taylor expansions. The comparison of tensors is meaningful only when we consider them 
at the same point. Therefore, if we want to compare a tensor field T at points p and q, we need to 
define a transport law from q to p. This gives us two tensors at p, T, itself, and the transported 
one, which can now be directly compared.











Lie derivatives
aaaaa
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Gauge tranformations in practice
• The gauge tranformation is determined by the vectors xµ

(r)

• Splitting their time and space parts we can write

• Here a(r) and b (r) are scalars, whereas d (r) is a vector. 
• No tensor modes are involved à linear tensor modes (GW) are gauge-invariant



Gauge fixing



Poisson gauge



Synchronous (and time-orthogonal) gauge



Other popular gauges
• Spatially flat gauge

• Uniform density gauge



Comoving gauge
Important remark: if and only if pressure
gradients vanish (as e.g. in the case of
pressureless matter + cosmological
constant) we can simultaneously fix our
gauge to be synchronous, time-orthogonal
and comoving.



Second-order tensor modes are not gauge-
invariant
• Second order perturbations of the metric read:

• If we focus only on the spatial traceless part of the metric we find

which clearly involves several divergence-less contributions in the transformation



General recipe for gauge-invariace
• It is possible to establish a condition for gauge-invariance to a given perturbative order n even without 

knowledge of the gauge transformation rules holding at that order. Let’s focus here on gauge invariance up to 
second order only. The most natural definition of gauge invariance is that a tensor T is gauge invariant to 
order n if and only if                    , for every k≤ n. Let is define

• Thus, a tensor T is gauge invariant to second order if         

• Let’s now consider the infinitesimal point transformation

and

• Hence in two arbitrarily chosen gauges we have

and   

• This condition implies                                              for every vector field xµ . Therefore, apart from trivial cases—
i.e., constant scalars and combinations of Kronecker deltas with constant coefficients—gauge invariance to 
second order requires that                                in any gauge. This condition generalizes to second order the 
standard results for first-order gauge invariance and is easily extended to order n.



A practical recipe to build “gauge-invariant” 
quantities
Malik & Wands 1998, 2004 noticed the following: 
• A gauge-invariant theory of linear perturbations about FRW metric was proposed by 

Bardeen (1980), but no such gauge-invariant formalism has been developed for non-
linear cosmological perturbations. According to the Stewart-Walker lemma (1974) in 
fact, “any truly gauge-independent perturbation must be constant in the background 
spacetime”. This apparently limits our ability to make a gauge-invariant study of 
quantities that evolve in the background spacetime, such as, e.g., density perturbations 
in the expanding Universe.

• One can however construct gauge-invariant definitions of unambiguous – i.e. physically 
defined – perturbations, which – in spite of not being automatically gauge-independent 
(i.e. with no gauge dependence, such as perturbations about a constant scalar field) –
are in general gauge-dependent (such as the curvature perturbation) but can have a 
gauge-invariant definition once their gauge-dependence is fixed (such as the curvature 
perturbation on uniform-density hypersurfaces). This technique, however may lead to 
some troubles in the case of transformations which rescale the background (e.g. 
Weinberg 2003).

• This technique should be used with extra-care when starting from the synchronous 
gauge, which is affected by residual gauge ambiguities.



à Handle with care the traditional statement: “Linear theory always 
yields the leading contribution on large scales”

àRather say: “Linear theory yields the leading contribution of 
quantities like the power-spectrum on large scales, but higher-order 
statistics get their leading contribution on large scales by higher-order 
perturbation theory. E.g. the leading-order large-scale contribution to 
the bispectrum is coming from second-order perturbation theory. 
Moreover, quantities like e.g. the ratio of the skewness to the 
variance squared do not converge to zero on large scales (but the 
ratio of the skewness to the 3/2 power of the variance does vanish on 
large scales).”  

àAs a general rule: the answer depends on the considered observable!

Tenacious myths of higher-order perturbation 
theory



Final remarks on Part I

• Cosmological perturbations are defined as deviations from the 
background FLRW model.
• A gauge issue affects most perturbation modes. Exact gauge-

invariance almost impossible to implement beyond linear order.
• Mode-mode coupling (hence non-Gaussianity) is a generic feature, as 

soon as one goes beyond linear theory, and it also implies that scalar 
and vector modes feed tensor modes, scalar and tensor modes feed 
vector modes, tensor and vector modes feed scalar modes. This has 
profound consequences for cosmological observables (Tomita 1967; 
Matarrese et al. 1998; …).


