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Some Big Issues of modern 
Theoretical Physics are related to the 
problem of “origins”

• The origin of the Universe 
• The origin of Time
• The origin of Large Scale Structure

People search for quantum origins trying to connect
General Relativity to Quantum Mechanics!



The Hamiltonian formulation of 
General Relativity
and the problem of quantization

Following the ADM formalism, the embedding is described by the so-called ( 3 + 1)
form of gμν , that is,

The action is the standard one of GR
minimally coupled to matter

§ K is the trace of the extrinsic curvature Kij at the boundary ∂M of the
4-manifold M and is given by

§ N  and Ni are the lapse and shift arbitrary functions



The Hamiltonian formulation of 
General Relativity
and the problem of quantization

The action for the matter scalar field φ is

which in terms of ( 3 + 1) - variables is

The Hamiltonian 3 -form of the action is then

§ where πij and πΦ are the conjugate momenta  to hij and Φ , respectively



The Hamiltonian formulation of 
General Relativity
and the problem of quantization

The momentum constraint is

while the proper Hamiltonian constraint is

§ where Gijkl is the so-called De Witt metric, explicitly given by

These constraints correspond to the time-space and time-time components of the
Einstein field equations, respectively.

The canonical quantization procedure is essentially based on them.



The Hamiltonian formulation of 
General Relativity
and the problem of quantization

§ The so-called Superspace is the framework where classical dynamics takes
place: it is the space of all 3-metric and matter field configurations hij[[(x),φ(x)]
defined on a 3-manifold.

§ It is infinite dimensional, with a finite number of coordinates v[hij (x),φ(x)] at
every point x of the 3-manifold.

§ The De Witt metric and the metric on matter fields determine the metric on the
Superspace.

§ Its signature is hyperbolic at every point in the 3-surface.

§ The signature of the De Witt metric does not depend on the signature of the
standard space-time.



The Hamiltonian formulation of 
General Relativity
and the problem of quantization

§ The quantum state of the system can be represented by a wave functional
Ψ[hij,φ] in the canonical quantization approach.

§ The wave function does not depend explicitly on the time coordinate t.

§ This is because the 3-surfaces are compact, and thus their intrinsic geometry
fixes almost uniquely their relative position in the 4-manifold.

§ This is the so called Geometrodynamics.

Following the Dirac quantization procedure, the wave function is assumed to be
annihilated by the classical constraints after they have been “transformed” into
operators, that is



The Hamiltonian formulation of 
General Relativity
and the problem of quantization

The equations for Ψ are the momentum constraint

and the Wheeler-De Witt equation (WDW)

§ The momentum constraint implies that the wave function is the same for
configurations {hij (x),Φ(x)} that are related by coordinate transformations in the
3-surface.

§ The momentum constraint is the quantum mechanical expression of the
invariance of the theory under 3-dimensional diffeomorphisms.

§ Similarly, the WDW equation represents the re-parameterization invariance of
the theory.

§ Such an equation is a second-order hyperbolic functional differential equation
describing the dynamical evolution of the wave function in Superspace
(the Wave Function of the Universe).



The Hamiltonian formulation of 
General Relativity
and the problem of quantization

Another approach to the canonical quantization is to derive the wave function by
path integrals.

The wave function is an Euclidean functional integral over a class of 4-metrics
and matter fields, weighted by e−I , where I is the Euclidean action of gravity
plus matter fields, that is,

The sum is over a given class of manifolds M (where B is their boundary), and over
a class of 4-metrics gμν and matter fields φ which induce the 3-metric and matter
field configuration on the 3-surface B

Faddeev–Popov determinant



The Minisuperspace Approach to Quantum Cosmology

Minisuperspaces are restrictions of Superspace where some symmetries are
imposed a priori on the metric and the related matter fields.

For example, we can assume a 4-metric, a homogeneous lapse function N = N(t) and
the shift functions Ni = 0

Being the 3-metric hij homogeneous, it is described by a finite number of functions
of t , qα(t) , where α = 0, 1, 2, . . .(n− 1) .

The Hilbert–Einstein
action can be recast as



The Minisuperspace Approach to Quantum Cosmology

In general, one gets reduced De Witt metric

This equation has the form of a relativistic point particle action where the particles moves
on a n -dimensional curved space-time with a self-interaction potential.

The variation with respect to qα gives the equations of motion
Christoffel symbols derived from the metric fαβ

Varying with respect to N , one gets

that is a constraint equation



The Minisuperspace Approach to Quantum Cosmology

In order to find the Hamiltonian, 
the canonical momenta have to be defined as

and the canonical Hamiltonian is

The Hamiltonian form of the action is

This equation means that the lapse function N is a Lagrange multiplier and then the
Hamiltonian constraint has to be

This is the minisuperspace reduction equivalent to the Hamiltonian constraint of the full
theory, integrated over the spatial hypersurfaces.



The Minisuperspace Approach to Quantum Cosmology

An important issue has
to be addressed

How to interpret the probability measure
in Quantum Cosmology?

Given a wave function Ψ(qα), defined in a minisuperspace, one needs to define a
suitable probability measure.

The WDW equation is a sort of Klein–Gordon equation and a current can be 
defined as

It is conserved and satisfies the relation

thanks to the structure of the WDW equation.



The Minisuperspace Approach to Quantum Cosmology

§ As in the case of Klein–Gordon equation (and, in general, of any hyperbolic
equation), the probability derived from such a conserved current can be
affected by negative probabilities.

Due to this shortcoming, the correct measure  should be

§ Also this assumption can be problematic since one of the coordinates qα is
“time”, so that the above equation is the analogue of interpreting |Ψ(x, t)|2 in
standard Quantum Mechanics as the probability of finding the particle in the
space-time interval dx dt.

This means that a careful discussion on the meaning of time in Quantum
Cosmology has to be pursued.



The Minisuperspace Approach to Quantum Cosmology

§ In summary:

§ Minisuperspaces are restrictions of the Superspace of geometrodynamics.

§ They are finite-dimensional configuration spaces on which point-like Lagrangians
can be defined.  

§ Cosmological models of physical interest can be defined on such minisuperspaces
(e.g. Bianchi models).

§ According to the above discussion, a crucial role is played by the conserved
currents that allow to interpret the probability measure and then the physical
quantities obtained in Quantum Cosmology.

§ In this context, the search for general methods to achieve conserved quantities
and symmetries become relevant.

§ The Noether Symmetry Approach is extremely useful to this purpose.



The Noether Symmetry Approach

By considering a Lagrangian L which is a function defined on the tangent space of
configurations

and  a vector field X  

where dot means derivative with respect to t , and

The condition implies that the phase flux is conserved along X: this means
that a constant of motion exists for L and the Noether
theorem holds:

Taking into account the
Euler–Lagrange equations

it is easy to show that

If                      holds, is a constant of motion!

Emmy



The Noether Symmetry Approach

Alternatively, using the Cartan one-form

and defining the inner derivative

we get if condition                       holds.

§ This representation is useful to identify  cyclic variables!

Using a point transformation on vector field,
it is possible to get

If X is a symmetry also ˜X has this property, then it is always possible to choose a
coordinate transformation so that

and then

It is evident that Q1 is the cyclic coordinate and the dynamics can be reduced.

However, the change of coordinates is not unique and a clever choice is always important.



The Noether Symmetry Approach

§ It is possible that more symmetries are found.
§ In this case more cyclic variables exist.

For example, if X1,X2 are the Noether vector fields and they commute, [X1,X2] = 0,
we obtain two cyclic coordinates by solving the system

If they do not commute, this procedure does not work since commutation 
relations are preserved by diffeomorphisms

In this case X3 = [X1,X2] is again a symmetry since

If X3 is independent of X1,X2, we can go on until the vector fields close the Lie
algebra.



The Noether Symmetry Approach

Any symmetry selects a constant conjugate momentum since, by the Euler–
Lagrange equations, we have

Vice versa, the existence of a constant conjugate momentum means that a cyclic
variable has to exist.

In other words, a Noether symmetry exists!!!

Further remarks on the form of the Lagrangian L are necessary at this point.
We shall take into account time-independent, non-degenerate
Lagrangians i.e.

where Hij is the Hessian determinant.



The Noether Symmetry Approach

As in  analytic mechanics, L can be set in the form

The energy function associated with L is

and by the Legendre transformations

we get the Hamiltonian function and the conjugate momenta. We have all the 
ingredients to construct Minisuperspaces.

§ If n is the dimension of the configuration space (i.e. the dimension of the Mini-
superspace), we get { 1+n(n+ 1)/ 2} partial differential equations whose solutions
assign the symmetry.

§ Such a symmetry is over-determined and, if a solution exists, it is expressed in
terms of integration constants instead of boundary conditions.



The Noether Symmetry Approach

In the Hamiltonian formalism, we have

as it must be for conserved momenta in Quantum Mechanics and the
Hamiltonian has to satisfy the relation

in order to obtain a Noether symmetry

These considerations can be applied to the minisuperspace models of Quantum
Cosmology and to the interpretation of the Wave Function of the Universe.

where



The Noether Symmetry Approach

By a straightforward canonical quantization procedure, we have

The Hamiltonian constraint gives the WDW equation. 
If |Ψ > is a state  of the system (i.e. the Wave Function of the Universe), dynamics is given by 
H |Ψ > =0

If  Noether symmetries exist, we get
depending on the 
number of Noether
symmetries

After quantization, we get which are nothing else but translations
along the Qj axis singled out by the
corresponding symmetry.

Integrating, we obtain oscillatory behavior for
|Ψ> in the directions of symmetries

where m is the number of symmetries, l are the directions where symmetries do not exist, n
is the total dimension of the minisuperspace

§ The m symmetries give first integrals of motion and then the possibility to select classical
trajectories according to the Hartle criterion.



The Noether Symmetry Approach

§ In one and two dimensional minisuperspaces, the existence of a Noether
symmetry allows the complete solution of the problem and to get the full semi-
classical limit of Quantum Cosmology.

§ We can state that, in the semi-classical limit of Quantum Cosmology, the
reduction procedure of dynamics, connected to the existence of Noether
symmetries, allows to select a subset of the solution of WDW equation where
oscillatory behaviors are found.

§ This fact, in the framework of the Hartle interpretative criterion of the Wave
Function of the Universe, gives conserved momenta and trajectories which can
be interpreted as classical cosmological solutions.

§ Vice versa, if a subset of the solution of WDW equation has an oscillatory
behavior, conserved momenta exist and Noether symmetries are present

Noether symmetries select classical universes!



The Noether Symmetry Approach

§ We will show that such a statement holds for general classes of minisuperspaces
and allows to select exact classical solutions.

§ In this sense, the presence of Noether symmetries is a selection criterion for
classical universes.

§ Before this, let us discuss the general problem of Extended Theories of Gravity
and their conformal properties.

§ As we will see, most of theories of gravity can be conformally related to the
Einstein one plus a suitable number of scalar fields. In this sense, the above
standard minisuperspace approach works for any theory of gravity.



Extending 
General Relativity

In Quantum Cosmology, the question of the effective action of gravity is crucial
since, in general, we do not know the initial conditions from which our classical,
observed Universe emerged

This means that general criteria to study minisuperspace models coming from
Extended Gravity are extremely relevant towards a full theory of Quantum Gravity

A.A. Starobinsky, Phys. Lett. B 91, 99 (1980).
G. Magnano, M. Ferraris, M. Francaviglia, GRG 19, 475 (1987)
S. Capozziello , M. Francaviglia, Gen. Relativ. Gravit. 40, 357 (2007)
S. Capozziello, M. De Laurentis, Phys. Rep. 509, 167 (2011)
S. Nojiri, S.D. Odintsov, Phys. Rep. 505, 59 (2011)

We will consider two main features:
§ geometry can couple non-minimally to some scalar field;

• higher-order curvature terms may appear.

In the first case, we have scalar-tensor gravity and in the second case we have
higher-order gravity.



Extending 
General Relativity

A general class of higher-order-scalar-tensor theories in four dimensions is given by 
the action

In the metric approach, the field
equations are obtained by
varying with respect to gμν

§ Gμν is the  Einstein tensor 



Extending 
General Relativity

§ The simplest extension of GR is achieved assuming F = f (R),  ε =  0,  in the action

§ The standard Hilbert–Einstein action is recovered for  f (R) = R

Varying with respect to gαβ , we get

where the gravitational contribution due to higher-order terms can be
reinterpreted as a stress-energy tensor contribution.

This means that additional and higher-order terms in the gravitational action act,
in principle, as a “curvature” stress-energy tensor, related to the form of f (R) .

and, after some manipulations



Extending 
General Relativity

Considering also the standard perfect-fluid matter contribution, we have

The peculiar behavior of f (R) = R  is due to the particular form of the Lagrangian
itself which, even though it is a second-order Lagrangian, can be non-covariantly
rewritten as the sum of a first-order Lagrangian plus a pure divergence term.

It is an effective stress-
energy tensor constructed
by the extra curvature
terms.

In the case of GR,  it identically vanishes while the 
standard, minimal coupling is recovered for the 
matter contribution.



Extending 
General Relativity

From the  general action it is possible to obtain another interesting
case by choosing

The variation with respect to gμν gives the second-order field equations

The energy-momentum tensor relative to the scalar field is

The variation with respect to φ provides the Klein–Gordon equation, i.e. the field equation
for the scalar field:

This last equation is equivalent to the Bianchi contracted identity



Extended Minisuperspace Models

§ The existence of a Noether symmetry for a given minisuperspace is  selection rule 
to recover classical behavior in cosmic evolution

§ Hartle criterion to select correlated regions in the configuration space of 
dynamical variables is directly connected to the presence of a Noether symmetry. 
Such a statement works for  minisuperspace models coming from Extended 
Gravity.

§ The approach is connected to the search for Lagrange multipliers

§ Imposing Lagrange multipliers allows to modify  dynamics and select the form of 
effective potentials. 

§ By integrating the multipliers, solutions can be achieved. 

Such solutions are CLASSICAL UNIVERSES!



Extended minisuperspace models Scalar-tensor Gravity Cosmologies

The case of non-minimally coupled theory of gravity 

Let us restrict to a FRW minisuperspace

The Lagrangian becomes point-like, that is

The configuration space of such a Lagrangian is Q ≡ {a,φ} , i.e. a 
2-dimensional minisuperspace

In this case, it has to be

A Noether symmetry exists if 



Extended minisuperspace models Scalar-tensor Gravity Cosmologies

The system of partial differential equations is

Prime indicates
the derivative
with respect to φ

The number of equations is 4 as it has to be, n = 2 being the Q
dimension

They select  the model since the system  gives α,β , F(φ)  and V (φ) .



Extended minisuperspace models Scalar-tensor Gravity Cosmologies

For example, if the spatial curvature is k =  0, a solution is

s,λ are free parameters

Changing the variables                                    and 

integration constant

The above Lagrangian becomes, for k =  0,

where z  is cyclic and



Extended minisuperspace models Scalar-tensor Gravity Cosmologies

The conjugate momenta are

and the Hamiltonian is

The Noether symmetry is given by

Quantizing the conjugate momenta, we get

and then the WDW equation

The quantum version of
Noether symmetry is

dynamics
results reduced



Extended minisuperspace models Scalar-tensor Gravity Cosmologies

A straightforward integration gives

which is an oscillating wave function where the Hartle criterion is
recovered

§ In the semi-classical limit, we have two first integrals of motion: Σ0
(i.e. the equation for πz ) and EL =  0, i.e. the Hamiltonian which 
becomes the equation for πw

§ Classical trajectories in the configuration space ˜Q ≡ {w,z} are 
immediately recovered

then, going back to Q ≡ {a,φ} , we get the classical cosmological
solutions

which means that Hartle criterion selects classical universes
Depending on the value of s , we get Friedman, power-law, or pole-like
behaviors.



Extended minisuperspace models

Fourth-order Gravity Cosmologies

The case of fourth-order gravity

Reducing the action to a point-like, FRW one,
we have 

where dot means derivative with respect to the cosmic time
The scale factor a and the Ricci scalar R are the canonical
Variables.

Action can be written as

where the Lagrange multiplier is

The definition of R in terms of a and its derivatives 
introduces a constraint which eliminates second  and 
higher order derivatives in the action, and yields  a 
system of second-order differential equations in {a,R} .



Extended minisuperspace models

Fourth-order Gravity Cosmologies

Let us introduce the auxiliary field

so that the Lagrangian becomes

This is an Helmholtz-like Lagrangian and a,p are independent
fields

The potential W(p)  is defined as

is the inverse function of f’

The configuration space is now Q ≡ {a,p}  and p has the 
same role of the above φ

The vector field is



Extended minisuperspace models

Fourth-order Gravity Cosmologies

The system is

The solution of this system, i.e. the existence of a Noether
symmetry, gives α , β  and W(p), it is satisfied for

In particular, we obtain the solutions

Let us discuss separately the solutions



Extended minisuperspace models

Fourth-order Gravity Cosmologies

§ The case s = 0

The induced change of variables

can be written

Lagrangian (whit z cyclic cariable) becomes

The conjugate momenta
are

and the Hamiltonian is



Extended minisuperspace models

Fourth-order Gravity Cosmologies

By canonical quantization, reduced dynamics 
is given by

the wave function has an oscillatory factor, being

The function |χ>  satisfies the Bessel differential equation

whose solutions are linear combinations of Bessel 
functions 

where

The oscillatory regime for this component depends on the
reality of ν and λ



Extended minisuperspace models

Fourth-order Gravity Cosmologies

The wave function of the universe, from
Noether symmetry,  is then

For large w , the Bessel functions have an exponential 
behavior, so that the wave function  can be written as

Due to the oscillatory behavior of Ψ , Hartle’s criterion is
immediately recovered.

By identifying the exponential factor of  with S0 , we can 
recover the conserved momenta πz,πw and select 
classical trajectories.

Going back to the old variables, we get the cosmological 
solutions

It is clear that λ plays the role of a cosmological constant 
and inflationary behavior is asymptotically recovered.



Extended minisuperspace models

Fourth-order Gravity Cosmologies

The case s = −2

The new variables adapted to the foliation for 
the solution are now

and Lagrangian assumes the form

The conjugate momenta are

The Hamiltonian is given by



Extended minisuperspace models

Fourth-order Gravity Cosmologies

Going over the same steps as above, the wave 
function of the universe is given by

and the classical cosmological solutions are

where

w1, z1 and z2 are 
integration constants

Immediately we see that, for large t

which is a power-law inflationary behavior.



Extended minisuperspace models

Higher than fourth-order Gravity Cosmologies

The case of  higher than fourth-order theories of gravity 

The configuration space is Q ≡ {a,R, ☐R}  considering ☐R  as an independent degree of 
freedom.

The FRW point-like Lagrangian is formally

and the constraints and

Now the minisuperspace is 3-dimensional but, again,  Noether symmetries can be selected.

Using the above Lagrange multipliers, we get the Helmholtz point-like Lagrangian

where

and

and



Extended minisuperspace models

Higher than fourth-order Gravity Cosmologies

A  case of physical interest is

where we assume F0 = − 1/ 2, the standard Einstein coupling, z  is the cyclic variable and

we get

and the conserved quantity is

By canonical  quantization and  WDW equation, the Wave Function of the Universe is

where χ and Θ are combinations of Bessel functions. The oscillatory subset of the solution is 
evident and the Hartle criterion is recovered. Classical cosmological solutions are



Discussion and conclusions

§ We have discussed the Minisuperspace
Approach to Quantum Cosmology

§ This one does not give a satisfactory
solution to the full Quantum Gravity
problem, however, it is a useful scheme to
set the problem of boundary conditions
from which should emerge classical
universes, that is, cosmological dynamical
models that could be reasonably observed
with standard astrophysical tools.

§ A main role in this approach is played by
the identification of conserved quantities
that give rise to peaked behaviors in the
Wave Function of the Universe.

§ Such a function is the solution of the WDW
equation, the corresponding of

Schrödinger equation in Quantum Cosmology.



Discussion and conclusions

§ Peaked behaviors mean correlations among
variables and then the possibility to obtain
classical universes according to the Hartle
interpretative criterion.

§ These conserved quantities can naturally be
related to the Noether symmetries of the
theory.

§ In this sense, the Noether symmetries  
allow  to reduce the dynamics and recover 
classical solutions.



Discussion and conclusions

§ The emergence of singularities at finite for such solutions means that symmetries are 
broken for certain values of the parameters.

§ Reversing the argument, if the wave function of the universe is related to the probability
to get a classical cosmological solution, the existence of Noether symmetries tell us
when the Hartle criterion works.

Some remarks are necessary at this point

§ We have to stress that the wave function is only related to the probability to get a certain
behavior but it is not the probability amplitude since, till now, Quantum Cosmology is not a
unitary theory.

§ The Hartle criterion works in the context of an Everett-type interpretation of Quantum 
Cosmology  which assumes the ideas that the Universe branches into a large number of 
copies of itself whenever a measurement is made.

§ This point of view is called Many Worlds  interpretation of Quantum Cosmology



Discussion and conclusions

§ Such an interpretation is just one way of thinking and gives a formulation of Quantum
Mechanics designed to deal with correlations internal to individual, isolated systems.

§ The Hartle criterion gives an operative interpretation of such correlations.

§ In particular, if the wave function is strongly peaked in some region of configuration space,
we predict that we will observe the correlations which characterize that region.

§ if the wave function is smooth in some region, we predict that correlations which 
characterize that region are precluded to the observations.

§ If the wave function is neither peaked nor smooth, no predictions are possible from
observations. In other words, we can read the correlations of some region of
minisuperspace as causal connection.

§ The analogy with standard Quantum Mechanics is straightforward!



Discussion and conclusions

§ By considering the case in which the individual system consists of a large number of
identical subsystems, one can derive from the above interpretation, the usual probabilistic
interpretation of Quantum Mechanics for the subsystems.

§ What we proposed is an approach by which the Hartle criterion can be recovered without
arbitrariness.

§ If a Noether symmetry (or more than one) is selected for a given minisuperspace model,
then strongly peaked (oscillatory) subsets of the wave function of the Universe are found.

§ Vice versa, oscillatory parts of the wave function can be always connected to conserved
momenta and then to Noether symmetries.


