

Multimessenger Observatory Model

Study of gravitational wave in association with other astrophysical phenomena.

Observation of Gravitational Waves from Binary Black Hole Merger

- The black holes orbit one another creating a sequence of GW
- 2) The frequency increases as well as the emitted GW energy while the orbits shrink
- After a huge spike, the two compact objects form a single black hole, shutting off definitively

GW impulsive sources

Collimate jet

Magnetar

NS-NS merger

NS-BH merger

Isotropic emission

Searching for correlation between GW impulsive signals and EM signals

G. Modestino, & G. Pizzella, LNF-97/038, 1997 G. Modestino et al. (RC oll.) Front. Object in Astr. Part. Phys (World Scientific, S **55**, 295, 1998 P. Astone et oll.), LNF-98-001, 1998 one, M. Bassan, A&A Suppl. Ser. 138, 605, 1999 L. A G. Barbiellini, M. Bassan et al. A&A Suppl. S. 138, 603, P. Astone et al. (ROG Coll.), Phys. Rev. Lett. 84, 14, 2000 P. Astone *et al.* (ROG Coll.), Phys. Rev. D 66, 102002, 2002 P. Astone et al. (ROG Coll.), Phys. Rev. D 71, 042001, 2005 P. Astone et al. (ROG Coll.), Class. Quantum Grav. 23, S169, 2006 P. Astone et al. (ROG Coll.), Class. & Quantum Grav. 21 S759, 2006 P. Astone et al. (ROG Coll.), Phys. Rev. D 76, 102001, 2007 G. Modestino & G. Pizzella, A&A 364, 419, 2000 G. Modestino & A. Moleti, Phys. Rev. D 65 022005, 2002 G. Modestino & G. Pizzella, Phys. Rev. D 83, 062004, 2011

LNF Multimessenger Experimental Observation

Multimessenger Observation Questions

Multimessenger Observation Strategy

GW signal measurement

Trigger Time Signal Amplitude Frequency Evolution Equation of State (EOS) EM signal detection (GRB, GF, SGR, Afterford Time Brightness Duration time (Long-Short GRB classification)

Correlation analysis

Multimessenger Observation Model

The measurement results are reported in a single outline

- Collecting the most accredited theoretical models for impulsive signals (supernova, kilonova, magnetar, binary compact system merger, NS-NS, NS-BH)
- Comparing the observed events in light of EOS and of experimental physical parameters (using Open Data, Galactic Circular Network (GCN), referenced scientific literature)