Positronium lifetime as a new biomarker in cancer diagnostic

Ewelina Kubicz 24.09.2019

"Is Quantum Theory exact?

From quantum foundations to quantum applications"

Outline

- 1. Motivation
- 2. Cancer vs normal cells
- 3. PALS studies of tumor and normal tissues in vitro
- 4. PALS studies of cells cultures in vitro
- 5. Summary and future plans

1. Motivation

- → Positronium lifetime and intensity are related with temporal dynamics of nanostructures in cells and tissues
- ightarrow Possibility to determine early and advanced stages of carcinogenesis by observing changes in biomechanical parameters between normal and cancer cells
- → Combining J-PET scanner with PALS technique new biomarker in cancer diagnosis

2. Cancer vs normal cells

Cell 144, March 4, 2011 646-674

3. PALS setup

- → Two BaF₂ detectors with resolution ~250 ps (FWHM)
- ightarrow ²²Na source in Kapton foil with activity ~ 1 MBq sandwich between sample
- ightarrow PALS spectra analysis with PALS Avalanche program developed by K. Dulski J-PET collaboration

K. Dulski et al., Analysis procedure of the positronium lifetime spectra for the J-PET detector, Acta Phys. Polon. B48 no. 10, 1611 (2017)

3. PALS studies of tumor and normal tissues in vitro

Cardiac Myxoma

- → Primitive connective tissue tumor (benign), very rare in comparison to metastatic tumors
- \rightarrow 75 % of them are located in the left atrium
- → Occur mainly in people over the age of 50

Non fixed - tumor sample measured with mediastinal adipose tissue for comparison

Patient ID	Sex	Age
1	man	70
2	man	58
3	woman	59
4	woman	85
5	woman	60
6	man	64

3. PALS - tissues in vitro - not fixed

2

3

5

Tumor

Cardiac Myxoma - not fixed

Normal

3. PALS - cell vs tissues in vitro - not fixed

Cardiac Myxoma

- \rightarrow Tumor sample placed in Collagenase II 200 U/ml soluble in DMEM+10% FBS + P/S for 48 h
- → Squeezed through 70 um nylon mesh to isolate cells from extracellular matrix
- → Cells were seeded on flasks and culture in DMEM + 10% FBS + P/S

0 h

24 h

72 h

Patient ID	Sex	Age
2	man	58
3	woman	59

4. PALS studies of cells culture in vitro

Human cell lines:

- 1) Melanocytes HEMa-LP from ThermoFisher
- 2) Melanoma WM115 from ATCC
- 3) Melanoma WM266 from ATCC
- → Cultured in M254/RPMI 1640 medium supplemented with HGMS-2/10% Fetal Bovine Serum, Penicillin 100U/ml and Streptomycin 100 ug/ml → Culture was incubated at 37°C in 5% CO₂ humidified atmosphere rinse

HEMa-LP

WM115

Each samples contains cells from 8 x 75cm² flasks, harvest upon 100% confluation (>10⁸ cells).

Alive Cells in 37 C deg.

With EGCG or Vit C

HEMa-LP

WM115

WM266

4. PALS - cells culture in vitro

Human cell lines:

- 1) Melanocytes HEMa-LP from ThermoFisher
- 2) Melanoma WM115 from ATCC
- 3) Melanoma WM266 from ATCC
- $\rightarrow\,$ Cells were measured in 37 C deg. for 1 h

Rate of change =			
100% *(V _{before} -	V_{after})/	\mathbf{V}_{after}	

Cell Line	Viability Rate of change [%]
HEMa-LP	2.06
WM115	5.22
WM266	2.03

- ightarrow For WM266 cell line 7 repetitive measurements were done
- \rightarrow Results from all are the in the line with each other within 2 sigma uncertainty

 \rightarrow 3 repetition from each cell line were

measured

→ Given results are calculated as an average value from all repetitive measurements

4. PALS - cell culture with Vitamin C and EGCG

FR scavengers \rightarrow eg. antioxidants, prevent free radical induced tissue damage by preventing the formation of radicals, scavenging them, or by promoting their decomposition.

Vitamin C (L-ascorbic acid) \rightarrow found in various foods, functions as an antioxidant

EGCG (Epigallocatechin gallate) \rightarrow found mostly in green tea, 100x more powerful antioxidant than Vit. C

- → Before PALS measurement each flask was incubated for 2 h with media and antioxidant substance in given concentration
- → Again media with antioxidant in the same concentration was added during passage before centrifuging cells for PALS measurement

4. PALS - cell culture with EGCG and Vit. C

Cytotoxicity of EGCG and Vit C. → cell viability was checked after 24 h incubation in given concentration

4. PALS - cell culture with Vit. C

Vit. C	HEMA	WM115	WM266
Concentration [uM]	Viability RoC [%]	Viability RoC [%]	Viability RoC [%]
0	2,13	5,99	0,21
100	10,31	4,75	0,52
1000	4,76	1,68	0,31
4000	7,14	4,00	0,32

4. PALS - cell culture with EGCG

EGCG	HEMA	WM115	WM266
Concentration [uM]	Viability RoC [%]	Viability RoC [%]	Viability RoC [%]
0	2,13	5,99	0,21
10	6,00	0,44	1,36
100	9,46	4,18	0,52
400	4,10	0,11	0,72

5. Summary and future plans

- → PALS is applicable to study biological structures
- → Preliminary results shown that PALS parameters differ for normal and cancer cells and tissue

- → Studies with alive cell cultures and tissues comparing normal vs cancer → increasing statistic
- → Checking for possible o-Ps formation model in living cells

Thank you for attention

3. PALS - tissues in vitro - fixed

Cardiac Myxoma - fixed

Fixed in formalin, samples ~2 mm thick

Patient ID	Sex	Age	Sample ID
1	woman	72	1-6
2	man	61	7
3	man	59	8-10
4	woman	54	11-13

4. PALS - cells culture - freeze dried

Human cell lines:

- 1) Melanocytes HEMa-LP from ThermoFish
- 2) Melanoma WM115 from ATCC
- 3) Melanoma WM266 from ATCC

Cells were freeze - dried in -80 C deg., 0.0375 mbar for 24 h

Freeze Mediums:

- 1) M254/RPMI 1640+ P/S+ 20% FBS + 10% DMSO
- 2) 10% DMSO + PBS w/o $^{2+}$ Ca, $^{2+}$ Mg
- 3) PBS w/o ²⁺Ca, ²⁺Mg
- 4) 1.5 M PROH(propylene glycol) + 0.5 M D-trehalose in PBS w/o ²⁺Ca, ²⁺Mg
- 5) 0.25 M D-trehalose in PBS w/o ²⁺Ca, ²⁺Mg