

Dalitz plot analysis for the o-Ps \rightarrow 3 γ decay with J-PET

Raffaele Del Grande^{1,2*}

¹ INFN Laboratori Nazionali di Frascati, Frascati, Italy
² CENTRO FERMI - Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", Roma, Italy

On the behalf of the J-PET collaboration

Is Quantum Theory exact? From quantum foundations to quantum applications

Frascati, 23-27 September 2019

Goal of the analysis

First experimental o-Ps Dalitz plot determination

$$o-Ps \rightarrow \gamma_1 \gamma_2 \gamma_3$$

QED prediction:

$$\sigma_{3\gamma} = \frac{4e^6}{vm_e^2} \cdot \int_0^{m_e} \int_{m_e - \omega_1}^{m_e} \frac{(\omega_1 + \omega_2 - m_e)^2}{\omega_1^2 \omega_2^2} d\omega_1 d\omega_2$$
$$= \frac{4e^6}{vm_e^2} \cdot \frac{\pi^2 - 9}{3}$$

Goal of the analysis

First experimental o-Ps Dalitz plot determination

Gamma quanta energies

Using the Hits positions in the scintillators:

$$X_i = (x_i, y_i, z_i)$$
 $i=1,2,3$

assuming the annihilation point in the center of the detector O = (0, 0, 0)

angles are defined
$$\theta_{ij} = a\cos(\mathbf{X}_i \square \mathbf{X}_j / |\mathbf{X}_i| |\mathbf{X}_j|)$$

Energies can be determined using angles between momentum vectors

$$E_{1} + E_{2} + E_{3} = 2 m_{e}$$

$$p_{1x} + p_{2x} + p_{3x} = 0$$

$$p_{1y} + p_{2y} + p_{3y} = 0$$

$$p_{1z} + p_{2z} + p_{3z} = 0$$

$$\begin{split} E_1 &= -2m_e \frac{-\cos\theta_{13} + \cos\theta_{12}\cos\theta_{23}}{(-1 + \cos\theta_{12})(1 + \cos\theta_{12} - \cos\theta_{13} - \cos\theta_{23})}, \\ E_2 &= -2m_e \frac{\cos\theta_{12}\cos\theta_{13} - \cos\theta_{23}}{(-1 + \cos\theta_{12})(1 + \cos\theta_{12} - \cos\theta_{13} - \cos\theta_{23})}, \\ E_3 &= 2m_e \frac{1 + \cos\theta_{12}}{1 + \cos\theta_{12} - \cos\theta_{13} - \cos\theta_{23}}. \end{split}$$

Dalitz plot for the o-Ps \rightarrow 3 γ

Run-5 data

Small Chamber measurements:

```
β<sup>+</sup> source: sodium-22 (^{22}Na \rightarrow ^{22}Ne* + e+ + ^{+} + ^{+} + ^{-}
```

porous material: amberlite polymer XAD-4

Run-5 data

Hits in the scintillators:

- \rightarrow **3 hits**: 3 γ from the o-Ps decay
- \rightarrow **4 hits**: 3 y from the o-Ps + prompt y

CUT 1: selection based on the energy deposited in the scintillators (using the TOT information)

 $TOT_1 < 25 \text{ ns}$ & $TOT_2 < 25 \text{ ns}$ & $TOT_3 < 25 \text{ ns}$

Hits: $(x^{Hit}, y^{Hit}, z^{Hit}, t^{Hit}) \rightarrow \text{Using the coordinates of the 3 Hits the decay plane is found.}$

$$d = \mathbf{v_1} \cdot \hat{\mathbf{n}}$$

CUT2: The decay plane has to contain the annihilation point

CUT3: The three photons are emitted at the same time

- distance from the annihilation point $r_i = \operatorname{sqrt}(x_i^{\operatorname{Hit} 2} + y_i^{\operatorname{Hit} 2} + z_i^{\operatorname{Hit} 2})$
- annihilation time determination for γ_i
 t_{ai} = t_i^{Hit} r_i / c
- $ta = \frac{1}{3} (ta1 + ta2 + ta3)$

$$\sigma_{ta} = \text{sqrt}(\frac{1}{3} [(t_{a1} - t_a)^2 + (t_{a2} - t_a)^2 + (t_{a3} - t_a)^2])$$

$$\sigma_{ta} < 1 \text{ ns}$$

CUT4: Scattering background rejection (ordering $\theta_{12} < \theta_{23} < \theta_{31}$)

Background: scatterings in the strips

CUT4: Momentum conservation $(\theta_{12} < \theta_{23} < \theta_{31})$

CUT4: Momentum conservation ($\theta_{12} < \theta_{23} < \theta_{31}$)

Monte Carlo simulations

1. Signal:

o-Ps
$$\rightarrow \gamma_1 \gamma_2 \gamma_3$$

$$(\mathsf{Hit}_1^{}\,,\,\mathsf{Hit}_2^{}\,,\,\mathsf{Hit}_3^{}\,) = (\,\gamma_1^{}\,,\,\gamma_2^{}\,,\,\gamma_3^{}\,)$$

2. Background:

$$e^+ e^- \rightarrow \gamma_1 \gamma_2 + scattering$$

$$(Hit_1, Hit_2, Hit_3) = \{ (\gamma_1, \gamma_1, \gamma_2), (\gamma_1, \gamma_1, \gamma_1), \dots \}$$

Goal: Disentangle the signal from the background using a fit of the data with MC distributions

Very preliminary fit

Missing component

NEXT STEP:

Separated MC simulations for o-Ps \rightarrow 3 γ as follows:

- 1. 3 Hits are from the o-Ps gammas
- 2. at least one hit is from scatterings

Run-7 data

Run-7 data

Entries

721379

Conclusions

- FIRST experimental Dalitz plot for the o-Ps → 3 γ decay will be produced with the J-PET detector;
- Monte Carlo simulations are fundamental for the determination of new events selection criteria;
- Run-7 data are promising → a considerable amount of o-Ps events can be selected (simultaneous fit of the spectra)

Thank you for your attention