# Is Quantum Theory Exact?

From quantum foundations to quantum applications LNF – *Frascati 2019* 

# Wave Equations Derived From First Order Invariance Conditions\*

<sup>\*</sup>Giuseppe Nisticò - University of Calabria & INFN - Italy

# QUANTUM THEORY OF A FREE PARTICLE:

#### STARTING FROM SIMMETRY PRINCIPLE:

The Theory is invariant under Galilei transformations

- **↓** By mathematical deduction
- ↓ methods by Bargmann, Mackey, Wigner

# Quantum Theory of a FREE particle:

- Specific Hilbert space  $\mathcal{H} = L_2(\mathbb{R}^3, \mathbb{C}^{2s+1})$
- Position operators:  $Q_{\alpha}\psi(\mathbf{x}) = x_{\alpha}\psi(\mathbf{x})$
- Wave Equation  $i\frac{d\psi_t}{dt}(\mathbf{x}) = -\frac{1}{2\mu} \sum_{\alpha} \frac{\partial^2 \psi_t}{\partial x_{\alpha}^2}(\mathbf{x})$

#### THIS THEORY IS EXACT!

# **Real question:**

Can the Quantum Theory of an *interacting* particle be considered exact?

Yes, if a deductive development is discovered that yields such a theory.

For instance, if the currently practized wave equation

$$i\frac{d\psi_t}{dt}(\mathbf{x}) = -\frac{1}{2\mu} \sum_{\alpha} \left( \frac{\partial}{\partial x_{\alpha}}(\mathbf{x}) - a_{\alpha}(\mathbf{x}) \right)^2 \psi_t(\mathbf{x}) + \Phi(\mathbf{x})\psi_t(\mathbf{x})$$

can be derived from physical principles.

#### **PROBLEM:**

Extension of the deductive method for free particle to an interacting particle does not work:

Galilei group  $\mathcal{G}$  is NOT a SYMMETRY group

# Theorem of Wigner, Theorem of Mackey -

- Specific Hilbert space  $\mathcal{H} = ?$
- No Position operators:  $Q_{\alpha}$
- No Wave equation: H = ?

THE APPROACH STOPS!

# THE PRESENT WORK IDENTIFIES AN OBJECTIVE CRITERIUM FOR EXACTENESS OF INTERACTING PARTICLE WAVE EQUATIONS, RELATED TO THE "DEGREE" OF INVARIANCE LEFT BY THE SPECIFIC INTERACTION

- I. Mathematical tools
- II. Quantum Transformations for interacting systems
- III. Development of the theory
- IV. Exact Wave equations for interacting particle
  - V. Specific Wave equations

#### I. MATHEMATICAL TOOLS

#### **NOTATION:**

 ${\cal H}$  Hilbert space of the Quantum Theory

- $\mathcal{U}(\mathcal{H})$  unitary operators
- $S(\mathcal{H})$  density operators (states)
- $\Omega(\mathcal{H})$  self-adjoint operators (observables)
- $\Pi(\mathcal{H})$  projection operators
- G Galilei group
- $\mathcal{E} = \mathbb{R}^3 \, \text{(S)} \, SO(3)$ , Euclide subgroup:

$$g \in \mathcal{E}$$
,  $g(\mathbf{x}) = R^{-1}\mathbf{x} - R^{-1}\mathbf{a}$ 

#### I. MATHEMATICAL TOOLS

# **Definition:** projective representation of a group:

A mapping  $U: G \to \mathcal{U}(\mathcal{H})$  with  $U(e) = \mathbb{I}$ such that  $U_{g_1g_2} = \sigma(g_1, g_2)U_{g_1}U_{g_2}$ ,  $\sigma(g_1, g_2) \in \mathbb{C}$ 

$$\mathcal{E} = \mathbb{R}^3 \, \text{(S)} \, SO(3), \, g(x) = R^{-1}x - R^{-1}a$$

Let  $U: \mathcal{E} \to \mathcal{U}(\mathcal{H})$ ,  $g \to U_g$  be a proj. rep. of  $\mathcal{E}$ 

**Definition.** Given a projective representation U of  $\mathcal{E}$ , an *Imprimitivity System* for U is a PV measure

 $E:\mathcal{B}(\mathbb{R}^3)\to\Pi(\mathcal{H})$  such that

$$U_g E(\Delta) U_g^{-1} = E(g^{-1}(\Delta)), \quad \forall g \in \mathcal{E}$$

#### I. MATHEMATICAL TOOLS

# Mackey's imprimitivity theorem

If  $E: \mathcal{B}(\mathbb{R}^3) \to \Pi(\mathcal{H})$  is an imprimitivity system for a *continuous* proj. rep.  $U: \mathcal{E} \to \mathcal{U}(\mathcal{H})$ 

Then a proj.rep.  $L: SO(3) \rightarrow \mathcal{U}(\mathcal{H}_0)$  exists:

$$\mathcal{H} = L_2(\mathbb{R}^3, \mathcal{H}_0),$$

$$(U_g\psi)(\mathbf{x}) = L_R\psi(g(\mathbf{x}))$$

$$E(\Delta)\psi(\mathbf{x}) = \chi_{\Delta}(\mathbf{x})\psi(\mathbf{x})$$

modulo unitary isomorphisms

# II. Quantum Transformations of observables

Wigner Theorem and Imprimitivity Theorem

Main tools to derive Quantum Theory

They require that:

- i) every  $g \in \mathcal{G}$  is a symmetry, to assign  $U_g$  unitary (Wigner theorem),
- ii)  $g \to U_g$  should be a projective representation.

Active interpretation  $\Rightarrow g$  is not a symmetry: (i) fails

# II. Quantum Transformations of observables

**Def.**  $g \in \mathcal{G}$ ,  $\Sigma \xrightarrow{g} \Sigma_g$ ,  $\mathcal{M}_1, \mathcal{M}_2$  measuring devices.  $\mathcal{M}_1, \mathcal{M}_2$  indistinguishable relative to  $(\Sigma, \Sigma_g)$  if  $\mathcal{M}_1$  is relatively to  $\Sigma$  identical to what is  $\mathcal{M}_2$  relatively to  $\Sigma_g$ .

# Quantum Transformation corresponding to $g \in \mathcal{G}$ .

$$S_g^{\Sigma}: \Omega(\mathcal{H}) \to \Omega(\mathcal{H}), \ A \to S_g^{\Sigma}[A] \equiv B$$

 $B = S_g^{\Sigma}[A]$  is an observable measurable by a device  $\mathcal{M}_2$  indistinguishable relative to  $(\Sigma, \Sigma_g)$ , from a device  $\mathcal{M}_1$  that measures A,

# II. Quantum Transformations of observables

# **General Properties of Quantum Transformations**

(S.1) 
$$S_g^{\Sigma}: \Omega(\mathcal{H}) \to \Omega(\mathcal{H})$$
 is bijective.

(S.2) If 
$$B = f(A)$$
 then  $f(S_g^{\Sigma}[A]) = S_g^{\Sigma}[f(A)]$ .

If the device of A is relatively to  $\Sigma$  identical to the device of  $S_g^{\Sigma}[A]$  relatively to  $\Sigma_g$ ,

then transforming both outcomes by the same f does not affect relative indistinguishability.

(S.3) 
$$S_{gh}^{\Sigma}[A] = S_g^{\Sigma_h}[S_h^{\Sigma}[A]]$$

For each  $g \in \mathcal{G}$ , consider  $S_g^{\Sigma}$ 

**Theorem.** Conditions (S.1), (S.2) imply that Wigner theorem apply, so that an essentially unique operator  $U_g$ , unitary or anti-unitary, exists for  $g \in \mathcal{G}$  such that

$$S_g^{\Sigma}[A] = U_g A U_g^*, \quad \forall A \in \Omega(\mathcal{H}).$$

Furthermore,

if  $g \to S_g^{\Sigma}|_{\Pi(\mathcal{H})}$  is Bargmann-continuous then  $g \to U_g$  is continuous and each  $U_g$  is unitary.

 $U: \mathcal{G} \to \mathcal{U}(\mathcal{H})$  exists such that  $U_g A U_g^{-1} = S_g^{\Sigma}[A]$ 

But  $g \to U_g$  is NOT a projective representation: Imprimitivity theorem does not apply!

### Idea:

 $\sigma$ -conversion  $\{g \to U_g\} \to \{g \to \widehat{U}_g\}$ 

where  $V_g$  is a unitary and continuous in g such that  $g \to \hat{U}_g = V_g U_g$  is a projective representation

**Remark:** A  $\sigma$ - conversion always exists.

 $g \to \hat{U}_g = V_g U_g$  continuous proj. representation  $\Rightarrow$  9 generators  $\hat{P}_{\alpha}$ ,  $\hat{J}_{\alpha}$ ,  $\hat{G}_{\alpha}$  exist such that  $[\hat{P}_{\alpha}, \hat{P}_{\beta}] = 0$ ,  $[\hat{J}_{\alpha}, \hat{J}_{\beta}] = i\epsilon_{\alpha\beta\gamma}\hat{J}_{\gamma}$ ,  $[\hat{J}_{\alpha}, \hat{P}_{\beta}] = i\epsilon_{\alpha\beta\gamma}\hat{P}_{\gamma}$ ,  $[\hat{G}_{\alpha}, \hat{G}_{\beta}] = 0$ ,  $[\hat{J}_{\alpha}, \hat{G}_{\beta}] = i\epsilon_{\alpha\beta\gamma}\hat{G}_{\gamma}$ ,  $[\hat{G}_{\alpha}, \hat{P}_{\beta}] = i\delta_{\alpha,\beta}\mu$ .

$$\Rightarrow \quad \widehat{U}_g \mathbf{F} \widehat{U}_g^{-1} = \mathbf{g}(\mathbf{F}), \quad \mathbf{F} = \frac{\widehat{\mathbf{G}}}{\mu}, \quad g \in \mathcal{E}$$
 (Cov)

Given  $\Delta \to E(\Delta)$  common PV measure of **F** 

$$\widehat{U}_g \mathbf{F} \widehat{U}_g^{-1} = \mathbf{g}(\mathbf{F}) \text{ (Cov)} \Rightarrow \widehat{U}_g E(\Delta) \widehat{U}_g^{-1} = \mathbf{g}^{-1}(\Delta)$$

 $\Delta \to E(\Delta)$  imprimitivity system for  $\hat{U} \mid_{\mathcal{E}}$ :

Now Imprimitivity Theorem applies:

A proj. rep. 
$$L: SO(3) \to \mathcal{U}(\mathcal{H}_0)$$
 exists so that

$$\mathcal{H} = L_2(\mathbb{R}^3, \mathcal{H}_0), \quad (F_\alpha \psi)(\mathbf{x}) = x_\alpha \psi(\mathbf{x}),$$
  
If  $g(\mathbf{x}) = R^{-1}\mathbf{x} - R^{-1}\mathbf{a}, \quad (\widehat{U}_g \psi)(\mathbf{x}) = L_R \psi(g(\mathbf{x}))$ 

Irred. representations  $\leftrightarrow$  elementary particle:

$$\mathcal{H}_0 = \mathbb{C}^{2s+1}$$
,  $\hat{J}_\alpha = F_\beta \hat{P}_\gamma - F_\gamma \hat{P}_\beta + S_\alpha$ 

 $S_{\alpha}$  spin operators in  $\mathbb{C}^{2s+1}$ 

# Quantum Theory of a Localizable Particle

Formalism is obtained, but the position operators  ${\bf Q}$  not identified: then it is meaningless!

# Def. (Position operator).

For any  $g \in \mathcal{G}$ , let  $g_t : \mathbb{R}^3 \to \mathbb{R}^3$  be its function.

Position a time t observable is a tern

$$\mathbf{Q}^{(t)} = (Q_1^{(t)}, Q_2^{(t)}, Q_3^{(t)}); \qquad \mathbf{Q}^{(0)} \equiv \mathbf{Q}.$$

such that  $S_g^{\Sigma}[\mathbf{Q}^{(t)}] = g_t(\mathbf{Q}^{(t)}),$ 

i.e. 
$$U_g \mathbf{Q}^{(t)} U_g^{-1} = g_t(\mathbf{Q}^{(t)})$$

To attain an effective theory of a particle

- To concretely identify Q
- to determine the wave equation

$$Q = F$$
?

**Theorem.** Let Q be position at time 0 operators.

$$\mathbf{Q} = \mathbf{F}$$
 if and only if  $\hat{U}_g \mathbf{Q} \hat{U}_g^{-1} = S_g^{\Sigma}[\mathbf{Q}] = U_g \mathbf{Q} U_g^{-1}$ 

 $U_g o \widehat{U}_g$  preserves covariance properties of  ${f Q}$ : "Q-covariant  $\sigma$ -conversion"

# IV. EXACT WAVE EQUATION

**Theorem.** If the interaction admits Q-covariant  $\sigma$ -conversion then  $f_{\alpha}(\mathbf{x}) \in \Omega(\mathcal{H}_0)$  and  $\eta_{\alpha}(\mathbf{x}) \in \Omega(\mathcal{H}_0)$  exist such that

$$i[H, \mu Q_{\alpha} - \eta_{\alpha}(\mathbf{Q})] = \hat{P}_{\alpha} - f_{\alpha}(\mathbf{Q})$$

Different specific forms of H satisfy (DynEq)

$$H = -\frac{1}{2\mu} \sum_{\alpha} \frac{\partial^2}{\partial x_{\alpha}^2}, \ H = \frac{1}{2\mu} \sum_{\alpha} \left( -i \frac{\partial}{\partial x_{\alpha}} \right)^2 + \Phi(\mathbf{x}) \ \dots$$

Problem: characterize them *Physically* 

# V. DERIVING SPECIFIC WAVE EQUATIONS

The general law

$$i[H, \mu Q_{\alpha} - \eta_{\alpha}(\mathbf{Q})] = \hat{P}_{\alpha} - f_{\alpha}(\mathbf{Q})$$

was implied by the invariance of the covariance properties of  ${\bf Q}$  after  $\sigma$ -conversion:

$$U_g \mathbf{Q} U_g^{-1} = S_g^{\Sigma}[\mathbf{Q}] \rightarrow (\sigma\text{-conv}) \rightarrow \hat{U}_g \mathbf{Q} \hat{U}_g^{-1} = S_g^{\Sigma}[\mathbf{Q}]$$

#### RESULT OF THE RESENT WORK:

The different SPECIFIC forms of Wave Equations (H) are determined by *approximate* invariance of the covariance properties of  $\mathbf{Q}^{(t)}$  (position at time t) with respect to SPECIFIC subgroups of  $\mathcal{G}$ .

Different specific wave equations correspond to different subgroups of (Ist order) invariance

Let the  $\sigma$ -conv. does not affect the covariance properties of  $\mathbf{Q}^{(t)}$  with respect to boosts at first order, i.e.

$$e^{i\hat{G}_{\alpha}u}Q_{\beta}^{(t)}e^{-i\hat{G}_{\alpha}u} = S_{g}^{\Sigma}[\mathbf{Q}^{(t)}] + o^{(t)}(u)$$
$$= Q_{\beta}^{(t)} - \delta_{\alpha\beta}ut\mathbf{I} + o^{(t)}(u) \tag{B}$$

**Theorem.** (Electromagnetic interaction)

If (B) holds then

$$i\frac{d\psi_t}{dt}(\mathbf{x}) = -\frac{1}{2\mu} \sum_{\alpha} \left( \frac{\partial}{\partial x_{\alpha}}(\mathbf{x}) - a_{\alpha}(\mathbf{x}) \right)^2 \psi_t(\mathbf{x}) + \Phi(\mathbf{x})\psi_t(\mathbf{x})$$

where 
$$a_{\gamma}(\mathbf{x}), \Phi(\mathbf{x}) \in \Omega(\mathcal{H}_0 = \mathbb{C}^{2s+1})$$

Invariance of covariance properties of  $\mathbf{Q}^{(t)}$  with respect to spatial translations,  $\hat{U}_g = e^{-i\hat{P}_{\alpha}u}$  i.e.  $\hat{U}_g \mathbf{Q}^{(t)} \hat{U}_g^{-1} = S_g^{\Sigma}[\mathbf{Q}^{(t)}]$ , at first order:

$$e^{-i\hat{P}_{\alpha}a}Q_{\beta}^{(t)}e^{i\hat{P}_{\alpha}a} = Q_{\beta}^{(t)} - \delta_{\alpha\beta}a\mathbf{I} + o^{(t)}(a) \tag{7}$$

**Theorem.** If (T) holds then

$$i\frac{d\psi_t}{dt}(\mathbf{x}) = F(-i\nabla)\psi_t(\mathbf{x}) + \Psi(\mathbf{x})\psi_t(\mathbf{x})$$

where 
$$F(\mathbf{p}), \Psi(\mathbf{x}) \in \Omega(\mathcal{H}_0 = \mathbb{C}^{2s+1})$$

Invariance of covariance properties of  $\mathbf{Q}^{(t)}$  with respect to both:

$$e^{-i\hat{P}_{\alpha}a}Q_{\beta}^{(t)}e^{i\hat{P}_{\alpha}a} = Q_{\beta}^{(t)} - \delta_{\alpha\beta}a\mathbf{I} + o^{(t)}(a) \tag{7}$$

$$e^{i\hat{G}_{\alpha}u}Q_{\beta}^{(t)}e^{-i\hat{G}_{\alpha}u} = Q_{\beta}^{(t)} - \delta_{\alpha\beta}ut\mathbf{I} + o^{(t)}(u)$$
 (B)

**Theorem.** If  $(\mathcal{T})$  and  $(\mathcal{B})$  hold then

$$i\frac{d\psi_t}{dt}(\mathbf{x}) = -\frac{1}{2\mu}\sum_{\alpha} \left(\frac{\partial}{\partial x_{\alpha}} - \hat{a}_{\alpha}\right)^2 \psi_t(\mathbf{x}) + \Phi(\mathbf{x})\psi_t(\mathbf{x})$$

where  $\hat{a}_{\gamma} \in \Omega(\mathcal{H}_0 = \mathbb{C}^{2s+1})$ 

standard but non magnetic interaction

#### **CONCLUSIONS**

Different equations for different first order invariance subgroups.

Wave equations without first order invariance?

Extension to the relativistic case.

Problem: Covariance properties of  $Q^{(t)}$  with respect to Lorentz boosts not available.