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∗Giuseppe Nisticò - University of Calabria & INFN - Italy

1



QUANTUM THEORY OF A FREE PARTICLE:

STARTING FROM SIMMETRY PRINCIPLE:

The Theory is invariant under Galilei transformations

—– ⇓ By mathematical deduction

—– ⇓ methods by Bargmann, Mackey, Wigner

Quantum Theory of a FREE particle:

—-• Specific Hilbert space H = L2(IR3,C2s+1)

—-• Position operators: Qαψ(x) = xαψ(x)

—-• Wave Equation idψtdt (x) = − 1
2µ
∑
α
∂2ψt
∂x2

α
(x)

THIS THEORY IS EXACT!
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Real question:

Can the Quantum Theory of an interacting particle

be considered exact?

Yes, if a deductive development is discovered that yields

such a theory.

For instance, if the currently practized wave equation

idψtdt (x) = − 1
2µ
∑
α

(
∂
∂xα

(x)− aα(x)
)2
ψt(x) + Φ(x)ψt(x)

can be derived from physical principles.
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PROBLEM:

Extension of the deductive method for free particle

to an interacting particle does not work:

Galilei group G is NOT a SYMMETRY group

⇓ Theorem of Wigner, Theorem of Mackey—————————————————–
• Specific Hilbert space H =?

• No Position operators: Qα

• No Wave equation: H =?

THE APPROACH STOPS!
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THE PRESENT WORK IDENTIFIES

AN OBJECTIVE CRITERIUM FOR EXACTENESS

OF INTERACTING PARTICLE WAVE EQUATIONS,

RELATED TO THE “DEGREE” OF INVARIANCE

LEFT BY THE SPECIFIC INTERACTION

IIVI. Mathematical tools

IVII. Quantum Transformations for interacting systems

VIII. Development of the theory

IIIV. Exact Wave equations for interacting particle

IIIV. Specific Wave equations
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I. MATHEMATICAL TOOLS

NOTATION:

H Hilbert space of the Quantum Theory

- U(H) unitary operators

- S(H) density operators (states)

- Ω(H) self-adjoint operators (observables)

- Π(H) projection operators

- G Galilei group

- E = IR3©s SO(3), Euclide subgroup:

- g ∈ E, g(x) = R−1x−R−1a
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I. MATHEMATICAL TOOLS

Definition: projective representation of a group:

A mapping U : G→ U(H) with U(e) = 1I

such that Ug1g2 = σ(g1, g2)Ug1Ug2, σ(g1, g2) ∈ IC

E = IR3©s SO(3), g(x) = R−1x−R−1a

Let U : E → U(H), g → Ug be a proj. rep. of E

Definition. Given a projective representation U of E,

an Imprimitivity System for U is a PV measure

E : B(IR3)→ Π(H) such that

UgE(∆)U−1
g = E(g−1(∆)) , ∀g ∈ E
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I. MATHEMATICAL TOOLS

Mackey’s imprimitivity theorem

If E : B(IR3)→ Π(H) is an imprimitivity system

for a continuous proj. rep. U : E → U(H)

Then a proj.rep. L : SO(3)→ U(H0) exists:

– H = L2(IR3,H0),

– (Ugψ)(x) = LRψ(g(x))

– E(∆)ψ(x) = χ∆(x)ψ(x)

modulo unitary isomorphisms
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II. Quantum Transformations of observables

Wigner Theorem and Imprimitivity Theorem

Main tools to derive Quantum Theory

They require that:

i) every g ∈ G is a symmetry, to assign Ug unitary

i) (Wigner theorem),

ii) g → Ug should be a projective representation.

Active interpretation ⇒ g is not a symmetry: (i) fails

9



II. Quantum Transformations of observables

Def. g ∈ G, Σ g−→Σg, M1,M2 measuring devices.

M1,M2 indistinguishable relative to (Σ,Σg) if M1 is

relatively to Σ identical to what is M2 relatively to Σg.

Quantum Transformation corresponding to g ∈ G.

aaaaaaaSΣ
g : Ω(H)→ Ω(H), A→ SΣ

g [A] ≡ B

B = SΣ
g [A] is an observable measurable by a device M2

B = SΣ
g [A] indistinguishable relative to (Σ,Σg),

B = SΣ
g [A] from a device M1 that measures A,
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II. Quantum Transformations of observables

General Properties of Quantum Transformations

(S.1) SΣ
g : Ω(H)→ Ω(H) is bijective.

(S.2) If B = f(A) then f(SΣ
g [A]) = SΣ

g [f(A)].

If the device of A is relatively to Σ identical to the

device of SΣ
g [A] relatively to Σg,

then transforming both outcomes by the same f does

not affect relative indistinguishability.

(S.3) SΣ
gh[A] = S

Σh
g [SΣ

h [A]]
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III. DEVELOPMENT OF THE THEORY

For each g ∈ G, consider SΣ
g

Theorem. Conditions (S.1), (S.2) imply that Wigner

theorem apply, so that an essentially unique operator

Ug , unitary or anti-unitary, exists for g ∈ G such that

aaaaaaaSΣ
g [A] = UgAU∗g , ∀A ∈ Ω(H).

Furthermore,

if g → SΣ
g |Π(H) is Bargmann-continuous

then g → Ug is continuous and each Ug is unitary.
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III. DEVELOPMENT OF THE THEORY

U : G → U(H) exists such that UgAU−1
g = SΣ

g [A]

But g → Ug is NOT a projective representation:

Imprimitivity theorem does not apply!

Idea:

σ-conversion {g → Ug} → {g → Ûg}

where Vg is a unitary and continuous in g such that

g → Ûg = VgUg is a projective represenation

Remark: A σ- conversion always exists.
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III. DEVELOPMENT OF THE THEORY

g → Ûg = VgUg continuous proj. representation

⇒ 9 generators P̂α, Ĵα, Ĝα exist such that

[P̂α, P̂β] = 0, [Ĵα, Ĵβ] = iεαβγĴγ, [Ĵα, P̂β] = iεαβγP̂γ,

[Ĝα, Ĝβ] = 0,[Ĵα, Ĝβ] = iεαβγĜγ,

[Ĝα, P̂β] = iδα,βµ.

⇒ ÛgFÛ
−1
g = g(F), F =

Ĝ

µ
, g ∈ E (Cov)

Given ∆→ E(∆) common PV measure of F

ÛgFÛ−1
g = g(F) (Cov) ⇒ ÛgE(∆)Û−1

g = g−1(∆)

∆→ E(∆) imprimitivity system for Û |E:
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III. DEVELOPMENT OF THE THEORY

Now Imprimitivity Theorem applies:

A proj. rep. L : SO(3)→ U(H0) exists so that

H = L2(IR3,H0), (Fαψ)(x) = xαψ(x),

If g(x) = R−1x−R−1a, (Ûgψ)(x) = LRψ(g(x))

Irred. representations ↔ elementary particle:

H0 = IC2s+1, Ĵα = FβP̂γ − FγP̂β + Sα

Sα spin operators in IC2s+1
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III. DEVELOPMENT OF THE THEORY

Quantum Theory of a Localizable Particle

Formalism is obtained, but the position operators Q not

identified: then it is meaningless!

Def. ( Position operator).

For any g ∈ G, let gt : IR3 → IR3 be its function.

Position a time t observable is a tern

aaaaaaaaaaQ(t) = (Q(t)
1 , Q

(t)
2 , Q

(t)
3 ); Q(0) ≡ Q.

such that SΣ
g [Q(t)] = gt(Q

(t)),

i.e.such that UgQ(t)U−1
g = gt(Q

(t))
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III. DEVELOPMENT OF THE THEORY

To attain an effective theory of a particle

• To concretely identify Q

• to determine the wave equation

Q = F?

Theorem. Let Q be position at time 0 operators.

Q = F if and only if ÛgQÛ−1
g = SΣ

g [Q] = UgQU−1
g

Ug → Ûg preserves covariance properties of Q:

Ug → Ûg“Q-covariant σ-conversion”
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IV. EXACT WAVE EQUATION

Theorem. If the interaction admits Q-covariant σ-

conversion then fα(x) ∈ Ω(H0) and ηα(x) ∈ Ω(H0) exist

such that

i[H,µQα − ηα(Q)] = P̂α − fα(Q)

Different specific forms of H satisfy (DynEq)

H = − 1
2µ
∑
α
∂2

∂x2
α

, H = 1
2µ
∑
α

(
−i ∂

∂xα

)2
+ Φ(x) ...

Problem: characterize them Physically
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V. DERIVING SPECIFIC WAVE EQUATIONS

The general law

aaaaaaaaa i[H,µQα − ηα(Q)] = P̂α − fα(Q)

was implied by the invariance of the covariance proper-

ties of Q after σ-conversion:

aUgQU−1
g = SΣ

g [Q] →(σ-conv)→ ÛgQÛ−1
g = SΣ

g [Q]
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V. SPECIFIC WAVE EQUATIONS

RESULT OF THE RESENT WORK:

The different SPECIFIC forms of Wave Equations (H)

are determined by approximate invariance

of the covariance properties of Q(t) (position at time t)

with respect to SPECIFIC subgroups of G.

Different specific wave equations correspond

to different subgroups of (Ist order) invariance
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V. SPECIFIC WAVE EQUATIONS

Let the σ-conv. does not affect the covariance proper-

ties of Q(t) with respect to boosts at first order, i.e.

eiĜαuQ
(t)
β e−iĜαu = SΣ

g [Q(t)] + o(t)(u)

eiĜαuQ
(t)
β e−iĜαu= Q

(t)
β − δαβut1I + o(t)(u) (B)

Theorem. (Electromagnetic interaction)

If (B) holds then

idψtdt (x) = − 1
2µ
∑
α

(
∂
∂xα

(x)− aα(x)
)2
ψt(x) + Φ(x)ψt(x)

where aγ(x),Φ(x) ∈ Ω(H0 = IC2s+1)
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V. SPECIFIC WAVE EQUATIONS

Invariance of covariance properties of Q(t)

with respect to spatial translations, Ûg = e−iP̂αu

i.e. ÛgQ(t)Û−1
g = SΣ

g [Q(t)], at first order:

e−iP̂αaQ(t)
β eiP̂αa = Q

(t)
β − δαβa1I + o(t)(a) (T )

Theorem. If (T ) holds then

idψtdt (x) = F (−i∇)ψt(x) + Ψ(x)ψt(x)

where F (p),Ψ(x) ∈ Ω(H0 = IC2s+1)
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V. SPECIFIC WAVE EQUATIONS

Invariance of covariance properties of Q(t)

with respect to both:

e−iP̂αaQ(t)
β eiP̂αa = Q

(t)
β − δαβa1I + o(t)(a) (T )

eiĜαuQ
(t)
β e−iĜαu = Q

(t)
β − δαβut1I + o(t)(u) (B)

Theorem. If (T ) and (B) hold then

idψtdt (x) = − 1
2µ
∑
α

(
∂
∂xα
− âα

)2
ψt(x) + Φ(x)ψt(x)

where âγ ∈ Ω(H0 = IC2s+1)

standard but non magnetic interaction
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CONCLUSIONS

Different equations for different first order invari-

ance subgroups.

Wave equations without first order invariance?

Extension to the relativistic case.

Problem: Covariance properties of Q(t) with respect to

Lorentz boosts not available.
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