

MUGAST Commissioning & performances

MUGAST-AGATA-VAMOS campaign 2019 An extremely complete set-up for direct reaction measurement

SHELL MODEL Is there a problem with protons in N=28 nucleus ⁴⁶Ar ?

 $^{46}Ar(^{3}He,d\gamma)^{47}K$ to probe proton WF and study vacancies in $s_{_{1/2}}$ and $d_{_{3/2}}$ shells.

³He cryogenic target !

NUCLEAR ASTROPHY. Determining the α+¹⁵O radiative capture rate

 $^{15}O(^{7}Li,t\gamma)^{19}Ne$ indirect measure

Important reaction for breakout from Hot-CNO cycle to rpprocess in Type I X-ray bursts UNBOUND STATES Above barrier narrow resonances in ¹⁵F

¹⁴O(p,p') inelastic scattering

- Type of two-proton decay
- Gamma transition within unbound nucleus

A. Gottardo INFN, M. Assié IPN)

C. Diget (York), N De Séréville (IPN)

I. Stefan (IPN), F. de Oliveira (GANIL)

MUGAST commissioning : ¹⁶O(d,p)¹⁷O @ 6 MeV

Beam intensity : $\sim 4 \ 10^4 \text{ pps}$

No CATS due to large straggling effect

Finger in VAMOS covering¹⁶O and partially ¹⁷O

Vamos detection for commissioning

Ì

ප්

<u></u>

·····

MUGAST

MUGAST commissioning : ¹⁶O(d,p)¹⁷O @ 6 MeV

Beam intensity : $\sim 4 \ 10^4 \text{ pps}$

No CATS due to large straggling effect

Finger in VAMOS covering¹⁶O and partially ¹⁷O

Post

MUGAST commissioning : ¹⁶O(d,p)¹⁷O

Full kinematic lines for ¹⁶O on CD₂

MUGAST commissioning : ¹⁶O(d,p)¹⁷O

MUGAST commissioning : ¹⁶O(d,p)¹⁷O

Spokespersons : C. Diget, N. De Séréville

Method: Indirect measurement of alpha capture rate through alpha stripping ${}^{15}O({}^{7}Li,t\gamma){}^{19}Ne$

- Spiral1 beam of ¹⁵O at 4.7 MeV/u and 2 10⁷ pps with 1.25 mg/cm² LiF target
- Triple coincidence measurement of ${}^{15}O({}^{7}Li,t\gamma){}^{19}Ne$: t (MUGAST)+ γ (AGATA) + ${}^{19}Ne$ (VAMOS)
- Mirror reaction ¹⁵N(⁷Li,tγ)¹⁹F at same energy and few 10⁸pps

• Explosive burning on neutron star surface : breakout to rp-process ${}^{15}O(\alpha,\gamma){}^{19}Ne$ and ${}^{18}Ne(\alpha,p){}^{21}Na$

key beak-up route from the Hot-CNO cycle and in the right conditions lead to rp-process
start-up of Type I X-ray burst on the surface of a neutron star depends critically upon this reaction rate

Resonant reaction rate ${}^{15}O(\alpha,\gamma){}^{19}Ne$ expected to dominate through 4033 keV resonance (to be measured in AGATA)

•
$$\Gamma_{tot} = \Gamma_{\gamma} \propto 1/\tau$$
 with
 $\tau = 7.9(15)$ fs from:
 γ -ray Doppler-shift lineshape
Tan et al., PRC 72:041302(R) (2005)
Kanungo et al., PRC 74:045803 (2006)
Mythili et al., PRC 77:035803 (2008)
• $B_{\alpha} = 2.9(21) \cdot 10^{-4}$ from:
 ${}^{19}F({}^{3}He, t){}^{19}Ne^{*}(\alpha){}^{15}O$
Difficult: 8 t- α on 35 b.gr.
 $\Gamma_{\alpha} = B_{\alpha} \cdot \Gamma_{tot} = 24(18) \,\mu eV$
Tan et al., PRL, 98:242503 (2007)
Tan et al., PRC, 79:055805 (2009)

Spokespersons : C. Diget, N. De Séréville

Gamma spectrum in triple coincidence: ¹⁹Ne in VAMOS + MUGAST

--> Very clean spectrum : almost no background !

Spokespersons : C. Diget, N. De Séréville

Charged particle identification : work in progress

For low intensity beam (< few 10⁵pps), BTD devices are used for ToF and normalisation

For higher beam intensity

ToF with VAMOS reconstructing trajectories of heavy residues in VAMOS

Courtesy of D. Ramos (GANIL)

249

493.3

Unbound states : Above barrier narrow resonances in ¹⁵F

I Stefan (IPN), F. De Oliveira (GANIL)

Method: Resonant elastic scattering & inelastic scattering with thick target technique : ¹⁴O(p,p^('))

- Spiral1 beam of ¹⁴O at 7.6 MeV/u and few 10⁵ pps with thick CH₂ target (105 um)
- Coincidence measurement : p-p (MUGAST)+ eventual γ (AGATA) + ¹³N (VAMOS)
- FoF : Beam tracking detector (CATS)
- VAMOS : ¹⁴O and ¹³N (after 2p decay) / finger remove direct ¹⁴O beam / counting rate few 10⁵ pps

700

600

500

400

300

200

100

Unbound states : Above barrier narrow resonances in ¹⁵F : First preliminary results

I Stefan (IPN), F. De Oliveira (GANIL) courtesy of Valérian Alcindor (IPN/GANIL)

Excitation function

Conclusion

2019 MUGAST-AGATA-VAMOS campaign at GANIL :

- transfer experiments to study nuclear structure and nuclear astrophysics

-> proton shell evolution

-> study of unbound states decay properties

-> nuclear astrophysics : alpha capture rate

- set-up very well adapted to study transfer reaction (stripping & pick-up)

- High gamma efficiency, 50 to 80% efficiency for particles (backward/forward)
- Triple coincidences --> very low-background
- Correlator techniques implemented (two-proton decay)
- High & low beam intensity (from Spiral1 beams) with VAMOS
- Special targets can be integrated ³He cryogenic target, tritium target under study

2020 MUGAST-AGATA-VAMOS campaign at GANIL :

- improvement of particle efficiency up to 85%
- transfer reaction + DSAM measurement already accepted by the PAC

(spokesperson : E. Clément, A. Goasduff)