

Efforts on angular distributions and correlations with AGATA

Sylvain Leblond GANIL, France

20th AGATA week

Legnaro, Italy

16-19th September 2019

Angular correlation & distribution: a power tool for gamma spectroscopy

- Relation between gamma angular distribution and multipolarity of transition
- Accessible experimentally in two cases:
 - Polarization of emitting nuclei (magnetic field, reaction...)
 - Gamma cascade
- Case of gamma cascade the relative angle $\theta(\gamma_{ini}\text{-}\gamma_{fin})$ contains the information

$$W(\theta) = \sum_{i=0, even}^{\infty} A_{ii} P_i(\cos(\theta))$$

$$W(\theta) \sim A_{00}(1 + a_2 P_2(\cos(\theta)) + a_4 P_4(\cos(\theta)))$$

Smith et al. NIMA 922 2019

Angular γ-γ correlations with a advance gamma ray tracker

AGATA provides high efficiency and tracking resolution

Ideal tool for angular distribution study ?

Angular γ-γ correlations with a advance gamma ray tracker

AGATA provides high efficiency and tracking resolution

Ideal tool for angular distribution study ?

What is the AGATA response function on angular distribution ?

Two main filters affecting angular correlation studies:

- PSA algorithm
- Tracking algorithm

Reference work on ⁶⁰Co angular correlations: what to expect

Starting point: 60Co beta decay

Well known transition in ⁶⁰Ni: $4^+ \rightarrow 2^+ \rightarrow 0^+$ $E\gamma_1[1173.23 \text{ keV}] \rightarrow E\gamma_2 [1332.50 \text{ keV}]$

Angular correlation characterised (E2/M1): a2 = 0.1005(22) a4 = 0.0094(3)

 $W(\theta) \sim (1 + a_2 P_2(\cos(\theta)) + a_4 P_4(\cos(\theta)))$

Huge data set available for AGATA.

```
Starting point of study:
Run 1105 from e673 (2017)
More than 10h
<sup>60</sup>Co source (~7000 Bq) centred
```


Reference work on ⁶⁰Co angular correlations: what to expect

Starting point: 60Co beta decay

Well known transition in ⁶⁰Ni: $4^+ \rightarrow 2^+ \rightarrow 0^+$ $E\gamma_1[1173.23 \text{ keV}] \rightarrow E\gamma_2 [1332.50 \text{ keV}]$

Angular correlation characterised (E2/M1): a2 = 0.1005(22) a4 = 0.0094(3)

 $W(\theta) \sim (1 + a_2 P_2(\cos(\theta)) + a_4 P_4(\cos(\theta)))$

Huge data set available for AGATA.

```
Starting point of study:
Run 1105 from e673 (2017)
More than 10h
<sup>60</sup>Co source (~7000 Bq) centred
```


If AGATA was not a tracking array: back to basic crystal information

Using AGATA as **simple HpGe array**

- No PSA
- No tracking

Looking for ⁶⁰Ni γ - γ events:

- Using core energy
- Interaction position is the middle of the triggered crystal

Finite number of detectors:

- Minimum angle $\sim 14^{\circ}$
- Maximum angle ~ 108°

If AGATA was not a tracking array: back to basic crystal information

Using AGATA as **simple HpGe array**

- No PSA
- No tracking

Looking for ⁶⁰Ni γ - γ events:

- Using core energy
- Interaction position is the middle of the triggered crystal

Finite number of detectors:

- Minimum angle ~ 14°
- Maximum angle ~ 108°

Sensitive to AGATA angular response Geometrical effect, Individual efficiency

Uncorrelated contribution

How to normalize data ?

If AGATA was not a tracking array: Pair counting & efficiency

Using AGATA as **simple HpGe array**

AGATA angular mainly affected by:

- Geometrical acceptance
- Individual detector efficiency

Normalisation procedure:

- Counting number of crystal pairs per angle
- Weight each event by individual detector efficiency

Look simple procedure

If AGATA was not a tracking array: Pair counting & efficiency

Using AGATA as **simple HpGe array**

AGATA angular mainly affected by:

- Geometrical acceptance
- Individual detector efficiency

Normalisation procedure:

- Counting number of crystal pairs per angle
- Weight each event by individual detector efficiency

Look simple procedure

If AGATA was not a tracking array: Pair counting normalisation

Using AGATA as **simple HpGe array**

If AGATA was not a tracking array: Event mixing

Using AGATA as **simple HpGe array**

Basic concept:

Detected $\boldsymbol{\gamma}$ in data are affected by the AGATA response function

Idea: Event mixing construct the uncorrelated distribution from artificial γ - γ pairs

Normalizing Procedure:

- Loop over all data
- Find two random γ - γ events e1 & e2
- Reconstruct artificial angles:

Normalize by obtained distribution

If AGATA was not a tracking array: Event mixing normalisation

Using AGATA as **simple HpGe array**

Normalizing Procedure:

- Loop over all data
- Find two random γ - γ events e1 & e2
- Reconstruct artificial angles:
 - $\theta(e_{1_{1333}} e_{2_{1173}})$ $\theta(e_{1_{1333}} - e_{2_{1173}})$

Normalize by obtained distribution

Results & comments

- Trend is well reproduced
- Slight offset in amplitude (depends on normalization range)

Success ?

If AGATA was not a tracking array: Normalisation comparison

Using AGATA as **simple HpGe array**

AGATA as tracking array: Angular distribution with PSA + tracking

Using AGATA with **<u>all filters</u>**

- PSA
- Tracking
- Looking for ${}^{60}\text{Ni}$ $\gamma\text{-}\gamma$ events:
 - Using tracked energy
 - Interaction position is given by the tracking

Much higher energy and angle resolution

- Near-infinite number of angle pairs
- Large angle distribution

Normalisation algorithm

• Event mixing

AGATA as tracking array: Normalisation with event mixing

Using AGATA with **all filters**

Normalizing Procedure:

- Loop over all data
- Find two random γ - γ events e1 & e2
- Reconstruct artificial angles: $\theta(e1_{1333} - e2_{1173})$ $\theta(e1_{1333} - e2_{1173})$

• Normalize by obtained distribution

Results & comments

- Overall is well reproduced
- Failing at low angles
 - Mixing after tracking !!!
- Huge deviation at large angle

These deviations strongly affect the normalisation

AGATA as tracking array: Normalisation with event mixing

Using AGATA with **all filters**

Normalizing Procedure:

- Loop over all data
- Find two random γ - γ events e1 & e2
- Reconstruct artificial angles: $\theta(e1_{1333} - e2_{1173})$ $\theta(e1_{1333} - e2_{1173})$

• Normalize by obtained distribution

Results & comments

- Overall is well reproduced
- Failing at low angles
 - Mixing after tracking !!!
- Huge deviation at large angle

These deviations strongly affect the normalisation

S. Leblond

AGATA WFFK 2019

AGATA as tracking array: Crystal VS PSA + Tracking

Two normalisation procedures:

- Number of Pair / angle
 + individual efficiency
- Event mixing

Two angle reconstruction:

- Crystal level
- PSA + tracking

General:

- Event mixing seems to provide better normalisation
- Tracking provide better resolution but is not as good at low angles
- Understanding the response function is critical for normalisation

Conclusions & outlooks

I. Investigation of AGATA angular response function with ⁶⁰Co source

- AGATA as classical HPGe array
 - Normalization by number of crystal pairs
 - Normalization by event mixing
- AGATA as a tracking array
 - Normalization by event mixing

II. Preliminary observations

- Event mixing seems to provide reasonable results
- Clear evidence for effect of the tracking filter
- Understanding AGATA response function is critical to perform correctly the normalisation

III.Outlooks

- Perform properly the event mixing before the tracking
- Investigate effect of PSA ?
- Look at in-beam data